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Increasing interest has been shown in the use of classifiers to extract informative 
patterns from time series data generated by monitoring financial phenomena. This 
paper investigates data mining and pattern recognition methods in forecasting the 
movement of the Standard & Poor’s 500 index. We use functional forms of varying 
classifiers to predict financial time series data and to evaluate the performance of 
different classifiers. By using the time series ARIMA model, we forecast the Standard & 
Poor’s 500 index. Additionally, with the AdaBoost algorithm and its extensions, we 
compare the classifying accuracy rates of bagging and boosting models with several 
classifiers, such as support vector machines, k-nearest neighbor, the probabilistic neural 
network, and the classification and regression tree. Results indicate that the boosting 
classifier with real AdaBoost (exponential loss) best forecast the Standard & Poor’s 500 
index movements. This result should be relevant to firms that want to predict the stock 
prices.  
 

Contribution/Originality: The paper contributes to the understanding of how daily changes in the stock index 

and international stock indices can affect the S&P 500 index movement on a daily basis. Pattern recognition and 

classification methods of data mining are used to predict S&P 500 index movement. 

 

1. INTRODUCTION 

For several decades, both researchers and non-academics have been interested in forecasting stock prices. Stock 

prices, however, are not easy to predict accurately because they do not follow any model, process, or distribution. In 

this study, we attempt to predict stock prices using various methodologies by classifying the S&P 500 index for the 

last 20 years using several data mining tools. Surprisingly, research regarding predicting stock prices by classifying 

the stock index via data mining tools is scant. For constructing classifications, we take into account various index 

funds from several countries that influence the S&P 500. Next, we classify the S&P 500 depending on whether the 

selected indices increase or decrease the S&P 500 index compared with the previous day’s closing index. We then 

use several data mining tools, including support vector machines (SVM), k-nearest neighbor (kNN), probabilistic 

neural network (PNN), the classification and regression tree (CART), and AdaBoost to evaluate the accuracy of the 

time series model’s predictions.  
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Numerous studies have employed data mining tools, and review papers have summarized the effectiveness of 

classifiers, such as machine learning (Blum and Langley, 1997) neural networks (Warner and Misra, 1996; Zhang, 

2000) and instance-based learning algorithms (Wilson and Martinez, 2000). The direction of change predictability 

has been evaluated via supervised learning techniques, machine learning algorithms, or classifier induction 

techniques (Apté and Hong, 1994; Kim, 2003). Many researchers (Aha et al., 1991; Aha, 1992; Wilson and Martinez, 

2000; Okamoto and Yugami, 2003) have investigated classification predictions using instance-based learning 

algorithms. Stock prediction has motivated many researchers to use classifiers (Chenoweth and Obradović, 1996; 

Hellstrom and Holmstrom, 1998; Rodriguez et al., 2006; Qian and Rasheed, 2007). Some researchers have used 

neural networks for stock prediction (Chen et al., 2003) and for financial forecasting (Malliaris, 1994; Leung et al., 

2000) whereas other researchers (Chenoweth and Obradović, 1996; Tsaih et al., 1998; Qian and Rasheed, 2007) have 

used neural networks and a decision rule. Rodriguez et al. (2006) used the machine learning algorithm called 

AdaBoost for stock prediction, whereas bagging (Yang and Lee, 2004; Inoue and Kilian, 2008) has been used for 

financial forecasting and classifying stock patterns (Zhanggui et al., 1999; Zeng et al., 2001; Ting et al., 2006). The 

combined approaches of more than two methods can be used for stock prediction neural network, kNN, naïve BC 

and genetic algorithm (Zemke, 1999) neural network, kNN, and decision tree (Qian and Rasheed, 2007). Zemke 

(1999) compared neural network, k-nearest neighbor, naïve Bayesian classifier, and genetic algorithm, developing 

classification rules for their prediction accuracies on stock exchange index data. The method yielding the best 

result, the nearest neighbor, is then refined and incorporated into a simple trading system that achieves returns 

above the index growth. Qian and Rasheed (2007) used the Hurst exponent to select a period with enhanced 

predictability to investigate the predictability of the Dow Jones Industrial Average index using artificial neural 

network, decision tree, and k-nearest neighbor. For the data mining tools, CART (Feldman and Gross, 2005; Razi 

and Athappilly, 2005; Moreira et al., 2006) Bayes classifiers (Shin and Kil, 1998; Tsaih et al., 1998; Pop, 2006) and 

prediction using SVM (Ince and Trafalis, 2004; Moreira et al., 2006) have been used for financial market prediction. 

For example, Warner and Misra (1996) compared regression analysis and neural networks, Razi and Athappilly 

(2005) compared neural networks, and Ince and Trafalis (2004) compared CART, neural networks, and SVM. 

Additionally, the Hurst Exponent and financial market predictability have been investigated (Corazza and Malliaris, 

2002). In this paper, we investigate stock prediction using various classifiers, predict the ups and downs of the S&P 

500 index for 10 years, and identify the superior classifiers. Of the 10 years examined, the training data account for 

9 years, and the testing data account for 1 year. A five-fold cross validation is also conducted for the study.  

Several stock market data of eight countries were gathered from the Internet Time Series Data Library. Each 

stock index has a series of approximately 260 numbers per year, representing the price for the stock at the 

beginning of a trading day. The stock market data were derived from previously presented data (Franses and Van 

Dijk, 2000). Eight daily indices of stock markets were used, including Amsterdam (EOE), Frankfurt (DAX), Hong 

Kong (Hang Seng), London (FTSE100), New York (S&P 500), Paris (CAC40), Singapore (Singapore All Shares), 

and Tokyo (Nikkei) from January 1988 to December 1997. The data are divided into training data and testing data. 

Training data cover the period from January 1, 1988, to December 31, 1996, spread across 2,348 rows. Testing data 

cover the period from January 1, 1997, to December 31, 1997, spread across 261 rows. When binary classification 

for stock index data is performed, the classified variable is “1” if the stock index increased from the previous day; 

otherwise, it is “0.” Accordingly, the binary class data were obtained through the above process.  

The structure of this paper is organized as follows: In Section 2, we show forecasts using the autoregressive 

integrated moving average (ARIMA) time series model. Section 3 presents the classification of data using learning 

methods. In Section 4, we explain the method of resampling using bootstrapping. Section 5 provides concluding 

remarks. 
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2. PROBLEM DESCRIPTION 

Mining of financial data has proven to be extremely efficient and profitable. Increased interest has therefore 

been shown in using data mining techniques to extract patterns from time series data generated by monitoring 

various financial phenomena. Among the various types of time series data, the stock indices of several exchange 

markets were selected, and the ARIMA model was used to forecast the stock price. The ARIMA model and the 

integrated moving average (IMA) model are examples of nonstationary models. Here we consider the model 

( ) ( )t tB z B a   where ( )B is a nonstationary autoregressive operator such that d of the roots of ( )B = 0 are 

unity, and the remainder lies outside of the unit circle. We can then express ( ) ( )t tB z B a 
 
in the form of 

( ) tB z  ( )(1 ) ( ) ,d

t tB B z B a  
 
where ( )B is a stationary autoregressive operator. Because ,d d

t tz z   for 

1,d   where 1 B   is the difference operator, we can write the model as ( ) ( ) .d

t tB z B a    Equivalently, the 

process is defined by the two equations: ( ) tB w ( ) tB a  and ,d

t tw z  where 2

1 2( ) 1 ,q

qB B B B       
 

2

1 2( ) 1 .p

pB B B B       
 
This is known as the autoregressive integrated moving average (ARIMA) process 

 , , .p d q  IMA models form a special case of the ARIMA models and are similar to the model given by 

( ) ( ) .d

t tB z B a    They can be obtained by dropping the autoregressive part of an ARIMA  , ,p d q  and are 

given by ( ) .d

t tz B a 
 
This class of models are known as integrated moving average (IMA) processes. 

 
Nevertheless, an underlying assumption in the ARIMA model is that the series contains several patterns. Hence, 

cluster data such as temperature, population trends, and so on can be predicted. The stock market though is 

inherently unpredictable. Using several classifiers by R program and Matlab, we carefully investigate the stock 

index. Then, using several classifying methodologies, we train and test the several indices. We then compare the 

classifiers in terms of accuracy rate by changing several functions and parameters. We use support vector machines, 

boosting and bagging, probabilistic neural network (PNN), k-nearest neighbor (KNN), and the classification and 

regression tree (CART). Both boosting and bagging have been successfully used in machine learning to improve the 

performance of classification algorithms. To investigate the predictability of daily financial time series directional 

movement, we use the data mining technique. For boosting, we use the AdaBoost algorithm, and CART is chosen 

as a weak classifier. In addition, the use of CART as an individual classifier demonstrates that boosting and bagging 

are better than CART is in terms of accuracy rate. In summary, methodologies are designed to evaluate the 

performance of the techniques and models. First, using the time series ARIMA model, S&P 500 is forecast and 

compared with the true values. Second, a comparison is performed of the accuracy rates of the directional success of 

bagging and boosting models to the SVM, kNN, and, especially, CART.  

This process is executed 10 times for each dataset to arrive at a prediction of the accuracy rates’ maximum, 

minimum, mean, standard deviation, and coefficient of variation. These stock predictions do not have an 

independent variable. The absence of an independent variable constitutes a substantial difference from how we 

conduct our work.  

 

3. CLASSIFYING USING LEARNING METHODS 

Several classifiers are used to predict the S&P 500. We conducted time series analyses and predicted S&P 500 

indices. We therefore used several classifiers, performed binary classification for the changed S&P 500 index, and 

compared their accuracy rates.  

 

 

3.1. Support Vector Machine (SVM) 
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To train and test the data, we use the Support Vector Machine (SVM) function in the R package “kernlab” 

(Karatzoglou et al., 2004). In the R package “kernlab,” we use the code “ksvm,” which represents “kernel support 

vector machines.” SVMs are excellent tools for classification. We only use four options for kernel function: radial 

basis function (RBF), polynomial, linear, and sigmoid. For the final project, we add three further optional functions: 

Laplacian kernel, Bessel kernel, and analysis of variance (ANOVA) RFB kernel. Each equation for the kernel 

functions is presented below: 

   
   

 

   

   

    

2
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2

1

, ' exp '

, ' , '

, ' , '

, ' tanh , '

, ' exp '

, ' exp '
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n

v

The Gaussian RBF k x x x x

The Polynomial k x x scale x x offset
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The Sigmoid k x x scale x x offset

The Laplacian k x x x x

The Bessel k x x Bessel x x

The ANO








  

   

 

   

  

  

   
1 11 1

, ' , '
D

id id
i i N d

VA RBF k x x k x x
   

  

 

Table 1 presents the accuracy rates for different functions using various parameters. In terms of accuracy rate, 

polynomial, linear, and sigmoid functions outperform others. 

 
Table-1. Accuracy rates using SVM with various parameters. 

Support Vector Machines 

RBF 
Parameters  =1  =2  =3  =4  =5 

Accuracy Rate 0.51341 0.52107 0.52490 0.52874 0.52874 

Polynomial 
Parameters Degree =1 Degree = 2 Degree = 3 

  
Accuracy Rate 0.54023 0.42912 0.52107 

  

Linear 
Parameters No parameter is needed for Linear Function 

  
Accuracy Rate 0.54023 

    

Sigmoid 
Parameters (1,1) (1,2) (2,1) (2,2) (2,3) 

Accuracy Rate 0.54023 0.54023 0.54023 0.54023 0.54023 

Laplacian 
Parameters  =1  = 2  = 3  =4  =5 

Accuracy Rate 0.517241 0.51724 0.51724 0.52107 0.53640 

Bessel 
Parameters (1,1,1) (1,1,2) (1,1,3) (1,1,4) (1,1,5) 

Accuracy Rate 0.501916 0.45977 0.51724 0.51724 0.50958 

ANOVA RBF 
Parameters (1,1) (1,2) (1,3) (1,4) (1,5) 

Accuracy Rate 0.45977 0.45977 0.45594 0.45977 0.45977 
Source: Authors calculation from R software and Matlab software. 

 

3.2. k-Nearest Neighbor Classifier  

We used Matlab to find the k-nearest neighbor. According to the results of the analysis, no significant 

differences were shown depending on k. The percentage of classification error is the lowest (below 50%) when the k-

nearest neighbor classifier is 9. The confusion matrix is given by 
81 60

70 50

 
 
 

, and the accuracy rate is 0.5019. 

 

3.3. Probabilistic Neural Network (PNN)  

In this subsection, we used the probabilistic neural network (PNN) as a classifier. We changed the   

parameters from 0.010 to 0.020. The accuracy rate is the highest when   is 0.018. As   increases from 0.010, the 

accuracy rate continually increases until   reaches 0.018; the accuracy rate then declines as   increases. The 

sensitivity and reliability also peak when   is 0.018. No clear pattern in specificity is shown. 

Table-2. Accuracy rates using PNN with different values of  . 
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  Confusion Matrix (a)Accuracy (b)Sensitivity (c)Reliability (d)Specificity 

0.010 39 102 0.452107 0.276596 0.4875 0.658333 

 
41 79 

    
0.011 52 89 0.471264 0.368794 0.514851 0.591667 

 
49 71 

    
0.012 59 82 0.478927 0.41844 0.522124 0.55 

 
54 66 

    
0.013 69 72 0.482759 0.489362 0.522727 0.475 

 
63 57 

    
0.014 80 61 0.509579 0.567376 0.544218 0.441667 

 
67 53 

    
0.015 85 56 0.51341 0.602837 0.544872 0.408333 

 
71 49 

    
0.016 86 55 0.524904 0.609929 0.554839 0.425 

 
69 51 

    
0.017 86 55 0.532567 0.609929 0.562092 0.441667 

 
67 53 

    
0.018 87 54 0.536398 0.617021 0.564935 0.441667 

 
67 53 

    
0.019 85 56 0.517241 0.602837 0.548387 0.416667 

 
70 50 

    
0.020 90 51 0.505747 0.638298 0.535714 0.35 

 
78 42 

    
Source: Authors calculation from R software and Matlab software. 

 

Using sensitivity and specificity, we obtain the receiver operating characteristic (ROC) curve for the 

probabilistic NN function shown in Figure 1.  

 

 
Figure-1. ROC curve for probabilistic NN function. 

                    Source: Authors’ calculation from R software and Matlab software. 

 

3.4. Classification and Regression Tree (CART) 

Using the function “rpart,” we built a large regression tree and investigated the optimal magnitude for a range 

of complexity parameters. The results are presented in Table 3. 

 

 

 
Table-3. Classification and regression tree. 
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CP nsplit rel.error x.error xstd. 

1 0.03794 0 1.0000 1.0000 0.0656 

2 0.03252 4 0.8293 1.2358 0.0648 

3 0.02439 5 0.7968 1.2276 0.0649 

4 0.01626 11 0.6504 1.1951 0.0651 

5 0.01220 15 0.5854 1.1951 0.0651 

6 0.01000 17 0.5610 1.1951 0.0651 
                                                   Source: Authors’ calculation from R software and Matlab software. 

 

We observe that the error is minimized when the complexity parameter (CP) is approximately 0.037940. When 

the CP is 0.03794, the minimized error is 1.00. By using another plot function, we can easily compare the 

complexity parameters shown in Figure 2.  

 
Figure-2. Plot of  complexity parameter. 

                                   Source: Authors’ calculation from R software and Matlab software. 

 

We then selected the best CP and drew the decision tree classifiers shown in Figure 3. Finally, we could predict 

the classified variables of the test data with the training data using CART.  
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Figure-3. Decision Tree. 

        Source: Authors’ calculation from R software and Matlab software. 

 

3.5. Boosting with CART 

Boosting has proven to be an effective method of improving the performance of weak classifiers, both 

theoretically and empirically. The underlying concept of boosting is the combination of weak classifiers to form an 

ensemble, the performance of which is significantly improved. In our study, we chose the weak classifiers as CART. 

In addition, adaptive boosting (AdaBoost) proves to be a practical implementation of the boosting ensemble method. 

Freund and Schapire (1995) developed the well-known AdaBoost.M1 algorithm, which generates a sequentially 

weighted set of weak classifiers that are combined to form an overall strong classifier. Boosting is a technique that 

improves the performance of machine learning algorithms. The boosting technique has been successfully used in 

machine learning to improve the performance of classification algorithms. The purpose of boosting is to increase the 

strength of a weak learning algorithm. Generally, a weak learning algorithm should be superior to random 

guessing. For a binary classifier, the weak learning hypothesis achieves 50% accuracy. Boosting trains a weak 

learner a number of times, using a reweighted version of the original training set. Boosting trains the first weak 

learner with equal weight on all the data points in the training set and then trains all the other weak learners based 

on the updated weight. The data points incorrectly classified by the previous weak learner are given a heavier 

weight, and the correctly classified data points are given a lighter weight.  

Accordingly, the next classifier will attempt to fix the errors made by the previous learner. Several boosting 

algorithms are available, including AdaBoost, AdaBoost.M1, AdaBoost.M2, and AdaBoost.R. AdaBoost is used for 

binary classification problems, and AdaBoost.R is used for regression. In each step of the sequence, Adaboost 

attempts to find an optimal classifier according to the current distribution of weights on the observations. If an 

observation is incorrectly classified using the current distribution of weights, the observations under the current 

distribution of weights will then receive less weight in the next iteration. In Friedman et al. (2000) three extensions 

of the AdaBoost algorithm were proposed: Gentle AdaBoost, Logit AdaBoost, and Real AdaBoost. Among them, we 

use Gentle and Real AdaBoost. 
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3.6. Boosting Extensions  

The Real AdaBoost algorithm attempts to minimize the expectation of 
  yF x

e


 similarly to Discrete 

AdaBoost. In general, Friedman et al. (2000) proposed a further extension called the Gentle AdaBoost algorithm, 

which minimizes the exponential loss function of AdaBoost through a sequence of Newton steps. For Real 

AdaBoost and Gentle Adaboost, the weak classifier is CART. This is because we determined the accuracy rate of 

CART as an individual classifier and because the most popular weak learners employed by boosting algorithms are 

classification and regression trees. The objective is to construct a classification rule that can accurately predict the 

class labels of objects for which only the attribute vector is observed. 

 

Discrete AdaBoost 

The discrete AdaBoost implements the original AdaBoost using both exponential and logistic loss functions for 

classification problems. When the exponential method is used, the confusion matrix is given by 
545 569

306 928

 
 
 

, and 

the train error rate is 0.373. After training and testing the data, we obtain the training and testing error plot shown 

in Figure 4. Additionally, the pairs function produces a visualization of the pairwise relationships between a subset 

of variables in the dataset shown in Figure 5. The upper panels represent the true class labels as a color for each 

pairwise relationship, whereas the lower panels give the predicted class for each observation.  

 

 

Figure-4. Training and Testing Error. 
                                                       Source: Authors’ calculation from R software and Matlab software. 
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Figure-5. Pairs plot of  the first three descriptors. 

    Source: Authors’ calculation from R software and Matlab software. 

 

Real AdaBoost 

Real AdaBoost is the generalization of a discrete AdaBoost algorithm first introduced by Freund and Schapire 

(1995). Real AdaBoost should be treated as a basic hardcore-boosting algorithm. When the exponential method is 

used, the confusion matrix is given by 
8 1106

0 1234

 
 
 

, and the train error rate is 0.471.  

 

Gentle AdaBoost 

As a more robust and stable version of Real AdaBoost, Gentle AdaBoost has proven to be the most efficient 

boosting algorithm in practice. However, our experiments in the current project show that Real AdaBoost performs 

slightly better than Gentle AdaBoost on regular data does, although Gentle AdaBoost functions considerably better 

on noisy data and is significantly more resistant to outliers. For the training results, the accuracy rate is 0.802, and 

its kappa value is given by 0.601. From the test results, the accuracy rate is 0.452, and the kappa value is -0.059. 

When the exponential method is used, the confusion matrix is given by
834 280

255 979

 
 
 

, and the train error rate is 

0.228. Gentle AdaBoost is used to illustrate the variable importance function. Figure 6 shows the scores of the 

variable assessment for Gentle AdaBoost. This plot is helpful in identifying variables that are important for 

predicting the S&P 500.  
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Figure-6. Variable Importance plot. 

                                                           Source: Authors’ calculation from R software and Matlab software. 

 
Table-4. Variable Scores. 

1 7 6 4 3 5 2 

0.00026168 0.00023111 0.00022971 0.00022744 0.00022201 0.00021562 0.0001893 
    Source: Authors’ calculation from R software and Matlab software. 

 

The variable scores can be obtained directly without a plot, as shown in Table 4. Table 5 shows the accuracy 

rates of three AdaBoosts, where M indicates the number of iterations. As expected, the accuracy rate is generally 

better when the number of iterations is increased. The boosting algorithm in its general form can operate under an 

arbitrary loss function. In this study, we use both the exponential and logistic loss function. Table 5 summarizes the 

accuracy rates using AdaBoost algorithms. 

 
Table-5.  Accuracy Rates Using AdaBoost Algorithms. 

  Exponential Loss Logistic Loss 

  M = 1 M = 10 M = 20 M = 50 M = 1 M = 10 M = 20 M = 50 

Discrete Adaboost 0.5520 0.5928 0.6286 0.6670 0.5324 0.5779 0.5788 0.5988 

Real Adaboost 0.5451 0.6014 0.6537 0.6840 0.5511 0.5916 0.5894 0.6120 

Gentle Adaboost 0.4744 0.4744 0.5443 0.5311 0.5622 0.4744 0.4744 0.4744 
          Source: Authors’ calculation from R software and Matlab software. 

 

3.7. Bagging 

Bagging involves fitting the model, including all potential data points, to the original training set. Bootstrap 

samples with replacement of the original training set of a size up to that of the training set are generated. Some of 

the data points can appear more than once, whereas others do not appear. By averaging the resamples, bagging 

effectively removes the instability of the decision rule. Thus, the variance of the bagged prediction model is smaller 

than when only one classifier is fit into the original training set. By using bagging, overfitting can also be avoided. 

Nonetheless, our classified experiment using bagging shows an accuracy rate of 48.66%. When the exponential 

method is used, the confusion matrix is given by 
29 43

91 98

 
 
 

, and the train error rate is 0.51341. By feeding the same 

inputs for both the boosting and bagging procedures, as well as for SVM, kNN, PNN, and CART, we can compare 
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how each performed. The accuracy percentage is used to measure the performance. If the model predicts an increase 

and the index increases or remains steady, then it is correct; otherwise, if the index decreases, it is assumed to be 

incorrect. The accuracy of the percentage of stock and the index over the nine years are summarized in Table 6.  

 
Table-6.  Accuracy rate using different classifiers. 

Compare the classifiers' Accuracy Rate 

Boosting 

Exponential Loss 

Discrete AdaBoost 0.6657 

Gentle AdaBoost 0.5443 

Real AdaBoost 0.6840 

Logistic Loss 

Discrete AdaBoost 0.5988 

Gentle AdaBoost 0.5622 

Real AdaBoost 0.6120 

Bagging     0.4866 

Support Vector Machines 

  RBF 0.5287 

 
Polynomial 0.5402 

 
Linear 0.5402 

 
Sigmoid 0.5402 

 
Laplacian 0.5364 

 
Bessel 0.5172 

  ANOVA RBF 0.4597 

k-Nearest Neighbor     0.5019 

Probabilistic Neural Network 
 

0.5364 

CART      0.5231 
                        Source: Authors’ calculation from R software and Matlab software. 

 

Table 6 shows that AdaBoost’s accuracy rates are superior to those of any other individual classifiers. This is 

because AdaBoost uses a sequence of simple weighted classifiers, each forced to learn a different aspect of the data, 

to generate a final, comprehensive classifier, which with high probability outperforms any individual classifier in 

terms of misclassification error rate. Real AdaBoost with exponential loss provides the best accuracy rate. 

 

4. DISCUSSION 

This paper investigates a short-term prediction of stock prices, whereby we only attempt to provide a daily 

indication of whether the S&P 500 index would increase or decrease. Although a considerable amount of extant 

research has covered stock prediction, few studies have used dependent variables. We need to be careful when using 

dependent variables. Because both independent and dependent variables usually constitute daily data, if we were to 

predict the S&P 500 using independent variables, we would also need to establish an interval. For example, the 

independent variable data of one week would affect the S&P 500 index of the subsequent week. Otherwise, we 

would need to determine a narrower purpose for this paper, i.e., to compare the classifiers or to predict the stock 

price.  

 

5. CONCLUDING REMARKS 

We classified the S&P 500 index using the indices used in several other countries and predicted the S&P 500 

index using the ARIMA time series model. The classifiers are the SVM, k-nearest neighbor classifiers, PNN, 

bagging and boosting, several extensions of AdaBoost, and CART. We present the selected accuracy rates using the 

financial data shown in Table 7.  
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Table-7. Accuracy rates comparison using different classifiers. 

Comparing the classifiers’ accuracy rates 

Boosting 
Exponential Loss Real AdaBoost 0.6840 

Logistic Loss Real AdaBoost 0.6120 

Bagging 
  

0.4866 

Support Vector Machines 
 

Polynomial 0.5402 

k-Nearest Neighbor 
  

0.5019 

Probabilistic Neural Network 
 

0.5364 

CART 
  

0.5231 
                        Source: Authors’ calculation from R software and Matlab software. 

 

Table 7 shows that AdaBoost uses weak classifiers and that CART provides the highest rate of accuracy. We 

also practice resampling to allocate our investments efficiently using bootstrap. Future research topics could be 

related to the content explored in this study. Besides the stock indices of other countries, several other economic 

factors and indices can affect the S&P 500 index, such as oil prices, interest rates, exchange rates, and so on. Using 

these factors, we can predict the S&P 500 more accurately. However, it is not easy to obtain these time series 

accumulated data in the same format. In addition, financial data mining involves numerous financial issues, such as 

stock options, interest rate derivatives, and credit derivatives, whereas each index contains many individual stock 

prices. Hence, we can use clustering, principal component analysis, and Fisher discriminant functions to make data 

more controllable. Consequently, data mining in financial engineering topics will continue to present significant 

potential for growth.  
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