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This paper deals with the problem of determining the sufficient sample size needed to 
estimate the transition matrix in the Markov chain. In particular, this paper focuses on 
systems with insufficient data or a short frequency of time caused by the difficulty of 
acquiring data. This study developed a Markov chain simulation technique that 
achieves a sufficient sample and can be used to estimate the size of the transition 
probability, despite having a short frequency of time. It also shows how this technique 
can be used in the short-, medium-, and long-term, and how a sufficient sample size can 
be found in these three situations. More specifically, this study illustrates the proposed 
simulation Markov chain model that estimates the transition probability matrix of the 
return of assets (ROA) in the industrial sector in Malaysia between 2007 and 2018. In 

this study, we present a method of determining an adequate sample size using a Markov 
chain simulation model. This model uses data from a number of companies in the 
industrial sector in Malaysia in order to study the performance of ROA and assist 
investors in making investment decisions. However, each company only has yearly 
ROA values. In other words, the frequency of the values is low, which makes studying 
the performance of ROA in the industrial sector more difficult. This could be the case 
because companies don't publish financial yearly reports, or because they are emerging 
companies that don't have adequate financial reports to calculate their ROA. This study 
was able to compensate for the lack of data through the number of companies used. 
 

Contribution/Originality: This study is one of very few studies that has investigated how to determine an 

adequate sample size using a Markov chain simulation model. It presents a selection of companies, in order to study 

the performance of ROA in Malaysia’s industrial sector, and to assist investors in their decision making. 

 

1. INTRODUCTION 

Over the past decades, there has been a considerable amount of debate regarding the extent to which the past 

can be used to forecast the future. Markov chain models, developed by Russian scientist Andrey Markov in 1906, 

have been used extensively to forecast the future. A Markov chain, which is a type of Markov process, is a stochastic 

model that describes a sequence of potential events in which the probability of every event depends entirely on the 

state accomplished in the previous event (Asmussen, 2008).  

In stochastic analysis, the appeal of the Markov chain model is not new. Many stochastic processes used to 

model biological, physical, financial, engineering systems are Markovian, which means that it is easy to simulate, 
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compared to other models. For example, Anderson and Goodman (1957) estimated the transition probability matrix 

in a Markov chain model using maximum likelihoods, asymptotic distributions, and test hypotheses on model 

parameters. Moreover, Fama (1965) discussed the theory of random walks and provided strong evidence to support 

the stochastic nature of stock prices. Furthermore, Goldfeld (1973) applied a Markov model to switching 

regressions in order to study growth dynamics that rely on an extended period. Some studies have dealt with small 

sample sizes, such as Abidin and Jaffar (2014), who used a Geometric Brownian motion to forecast share prices in 

Bursa Malaysia.   

The majority of Markov models are based on a sufficient data set, either in terms of sample size or frequency of 

time, as demonstrated by Fama (1965); Zhang and Zhang (2009); Mettle, Quaye, and Laryea (2014); Sarsour and 

Sabri (2020). However, these models would be difficult to calibrate for data that are characterized by a short 

frequency of time, which results in an unreliable estimation of the transition probability matrix. Increasing the 

sample size in a system of transition could help to overcome this shortcoming.  

The present study proposes a new Markov chain simulation method to determine the required sample size, in 

order to obtain a reliable estimate of the transition probability matrix in cases with only a short frequency of time. 

From an applicative point of view, the main feature of the proposed simulation method is that it allows the 

estimation of the transition probability matrix in the short-, medium-, and long-term. This provides analysts with 

all the required information about the system of transitions, in order to implement risk analyses and evaluations.  

Investors are interested in gaining profit from their investments, but they face many challenges when making 

decisions due to price fluctuations and unstable financial situations. Financial analysts study the performance of 

prices and investments using net present value (NPV), internal rate of return (IRR), and return of asset (ROA). 

Recently, Sabri and Sarsour (2019) studied a new strategy for modeling stock investment valuations by developing 

the modified internal rate of return. In this strategy, they divided and shared issuance, through split shares and 

consolidation, as the financial analysts understood the great importance of reducing investment risks and making 

better informed decisions on future prices. Raheem and Ezepue (2016) predicted the movements of asset returns of a 

Nigerian Bank by dividing asset returns into three states—positive, moderate, and negative—using the Markov 

chain model. In the months of May and October, they revealed the fact that their maximum trading cycle was 18 

days and their minimum trading cycle was 7 days in February. Additionally, many studies have examined 

investment behavior (Helms, Salm, & Wüstenhagen, 2020; Qolbi, Karisma, & Rosyadi, 2020). 

Furthermore, a considerable number of studies, such as Vázquez-Quintero et al. (2016), Rimal et al. (2018), 

Ahmed, Kamruzzaman, Zhu, Rahman, and Choi (2013), have used simulations such as forecasting changes in land 

cover through a simulation technique based on the Markov chain. Kumar, Trehan, and Joorel (2018) used 

simulation studies to estimate the population mean using stratified random sampling and two auxiliary variables. It 

can also be used in studies where it is difficult to collect data, such as the relationship between an earthquake and 

human activities, as in Albano et al.’s study (2017), as well as medical studies that use the Markov chain Monte 

Carlo, such as Karami et al. (2019), Hamdy, El-Azab, Al-Saeed, Hassan, and Solouma (2017), and Ricci et al. (2019). 

It can also be used when multiple data patterns exist, and so a simulation comparison of imputation methods for 

quantitative data is required (Solaro, Barbiero, Manzi, & Ferrari, 2018). The finance industry can also benefit from 

such a simulation, as seen in Ye, Zhu, Wu, and Miao’s study (2016), which employed the Markov financial 

contagion detection and regime switch quantile with a regression model. 

This study attempts to determine the number of companies that are required in order to examine the behaviour 

of ROA in the entire Malaysian industrial sector using a simulation Markov chain model. Previous similar studies 

have considered ROA for each company separately; however, as ROA values are yearly, their frequency is too low to 

study. In other words, if we assume that we want to study ROA performance in the industrial sector between 2007 

and 2018, the number of ROA values would be twelve for each company, which is too few to study. Therefore, in 



Asian Economic and Financial Review, 2020, 10(8): 906-919 

 

 
908 

© 2020 AESS Publications. All Rights Reserved. 

this study, we established the number of companies required to obtain adequate ROA values, which, based on the 

time period of our study, is 50. Therefore, the number of ROA values is 600.  

The proposed Markov chain simulation method was then applied to determine the number of companies that 

should be involved in order to perform an accurate forecasting analysis on ROAs in the Malaysian industrial sector. 

The results revealed that, in order to obtain reliable estimates of the parameters in the transition probability matrix, 

the number of companies should at least be 69, 37 or 24 companies with more than 3, 6, or 10 years of frequency of 

time, respectively. MATLAB software was used to implement the proposed simulation.   

 

2. METHODOLOGY 

2.1. Markov Chain Model 

   The Markov chain model is widely used in many fields. It is a type of stochastic process that was introduced by 

Andrey Markov in the 1900s and developed by Kolmogorov in 1936. A fundamental part of the stochastic process is 

the Markov chains model, in which the occurrence of every event depends only on the past event. The state space is 

the set of values that the Markov process takes, which may be a discrete or continuous value. 

If a sequence  satisfies the Markov property, it can be expressed as: 

                       

 

2.1.1. Transition Matrix and Transition Probability Matrix 

The number of parameters observed is  with the state at the year, observed in state  at the 

 year. Additionally, the transition count matrices of A and , for the combined years, can be obtained using: 

, where     (1) 

 and , where is the number of states.  

   A Markov process is known as the stationary transition probabilities, if  is independent of time which is 

. The maximum likelihood method can be used to estimate the multinomial trials with probabilities 

of , which can be written as: 

            (2) 

 After obtaining the estimates of the parameters, the transition probability matrix will be expressed as:  

 where         (3) 

 

2.2. Comparison for the Transition Probability Matrices  

In this section, we will display some of the measures taken when comparing the transition probability matrices, 

in order to determine the nearest closed matrix. Some researchers have presented measures for the comparison of 

credit migration matrices based on eigenvalues, eigenvectors, singular values, or Manhattan and Euclidean metrics 
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(Jafry and Schuermann, 2004; Trueck and Rachev, 2009; Bangia, Diebold, Kronimus, Schagen, and Schuermann, 

2002). 

 

a.  Eigenvector Distance Metric 

The present study determines whether or not the matrices are equivalent, based on their eigenvectors and 

regardless of their eigenvalues, which computes a ratio of the matrix norm (Arvanitis, Gregory, & Laurent, 1999). 

The following equation will be used: 

                (4) 

Where: 

  = the exact matrix. 

= the numerical matrix obtained from simulation results. 

If , the eigenvectors of the matrices are almost similar, whereas the difference in eigenvectors would 

increase if . Furthermore, the eigenvectors are the same when  equals zero. Although the values of 

 range from 0 to 2, the authors do not give a reason why they have chosen a value of 0.08. 

 

b. Metrics Based on Singular Values  

We can also compare transition probability matrices using the average of all singular values of the mobility 

matrix ( ), as follows: 

     (5) 

When  is the mobility matrix, we obtain it using  = transition matrix  – identity matrix ,  is the 

eigenvalue, and N is the dimension of matrix . 

 

c. Metrics Based on Eigenvalues 

We will illustrate a variety of measures that have been taken to make comparisons between matrices, which 

depend on eigenvalues (Geweke, Marshall, & Zarkin, 1986). For example: 

                      (6) 

                            (7) 



Asian Economic and Financial Review, 2020, 10(8): 906-919 

 

 
910 

© 2020 AESS Publications. All Rights Reserved. 

                                       (8) 

                              (9) 

Where  is the second-largest eigenvalue of , denotes the determinant of ,  denotes 

the trace of matrix , and . 

d. Manhattan and Euclidean Distance Metrics  

These measures are popular approaches to comparing two matrices using the cell by cell distance technique. 

The Euclidean metric calculates the average root mean square difference, whereas the Manhattan metric calculates 

the average of the absolute difference between the corresponding elements of the matrices. Specifically, 

                      (10) 

                               (11) 

In order to see the closed or nearest of the two matrices, we need to take the above measures to calculate the 

difference between  and . 

                                        (12) 

Where  denotes the type of metric. 

 

3. SIMULATION MODEL 

The model must contain a sufficient sample size with a high enough frequency of time to ensure the correct 

estimation of the model’s parameters. The present study, however, has a shorter frequency time. Increasing the 

sample size would be one solution to this problem. However, to what extent should the sample size be increased in 

order to obtain reliable estimates of the parameters of the transition matrix? In order to suitably increase the 

sample size, a novel simulation technique was proposed and implemented, which is summarized in the following 

steps:  

1. Generate a random number group:  for  times, where  is the sample size and is uniformly 

distributed . 

                                (13) 
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where  is the sample size for the  group.  

2. Let  be the initial matrix, where  and  is the number of states which 

. Based on , we can define  for each state, based on the following criterion: if 

, it stays in state ; if , it stays in state , and so on, until it reaches the 

final state,  (Ross, 2019).  

          (14) 

3. Generate a new discrete random number group, , for each state from 1 to , according to the number of 

elements in , respectively, which is then uniformly distributed over the interval (0,1), as 

follows: 

                                (15) 

where  is the number of elements in , . 

4. After , let  be the transition probability matrix where . Based 

on the first row of , the movement from state  to another state or remaining in state , can be 

determined as follows: 

                             (16) 

.  

5. Following on from the previous step, obtain the number of elements in each state by gathering the 

elements of Equation 16, which displays the number of movements to the same state: 

                                                     (17) 

For simplicity, Equation 17 can be expressed as: 

                                        (18) 
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6. Generate a new discrete random variable for each state, based on a new number of elements from Equation 

18 using a uniform distribution in the interval (0,1), i.e. the number of a discrete random variable of state  

is . 

7. Repeat steps 3, 4, 5, and 6 -times after updating the number of elements in each state, where  is the 

frequency time of the study.  

8. The performance measures from  will be used to identify whether or not the sample size is sufficient. 

Accordingly, if  is less than 0.08, it means that the exact matrix is equivalent to the numerical matrix, 

which means that the sample size is sufficient. However, if  is higher than  it means that the 

matrices are not equal. Therefore, the sample size needs to be increased until  is lower than , 

based on the eigenvectors. If it is based on other metrics, we will assume a critical value .  

Figure 1 shows the simulation of the Markov chain model. This model generates  independent sample 

paths beginning with , and  denotes a generic node at time  in the  path (Raychaudhuri, 2008). 

 

 
Figure 1. A simulation of the Markov chain model. 

 

4. RESULTS OF SIMULATION AND DISCUSSION 

4.1. Eigenvectors 

To obtain a sufficient sample size for two states  in three varying situations (short-, medium-, and 

long-term) we shall assume that the initial and transition probability matrices I and  of our Markov chain are 

and , respectively.  
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Figure 2 shows the simulation results of the short-term experiment reaching a sufficient sample size to 

estimate the transition matrices. Typically, the experiment has two states, a frequency time of three years, and is 

replicated 1000 times. This experiment was performed using different sample sizes. About 63% of the replications 

are achieved at a  less than 0.08 when the sample size is 15, which indicates that the overall matrices have a high 

level of differences, meaning that the sample size is insufficient. Using a sample size of 24, 30, 39 and 50 failed to 

achieve more than 95% of the trials, and therefore, we were unable to acquire a sufficient sample size. However, 

when the sample size was 69 and above, more than 95% of the trials had performance measures that were less than 

0.08, thereby achieving a sufficient sample size. This suggests that studies that involve a three-year frequency time 

should have a sample size of at least 69. Hence, once the years are merged, the number of movements becomes 207. 

 

 
Figure 2. Simulation for the medium-term (three years). 

 

The experiments were performed for the medium-term frequency, using two states that have six years of 

frequency time and were replicated 1000 times. As seen in Figure 3, about 78%, 88% and 91% of the replications 

were achieved at a  that was less than 0.08 when the sample size was 15, 24 and 30, respectively. This indicates 

that the overall matrices have a high level of difference, meaning that these experiments failed to reach the required 

sample size. On the other hand, having a sample size of 37 or more resulted in more than 95% of the trials having 

performance measures that were less than 0.08. Therefore, one should select a sample size of at least 37 when the 

studies involved have data that spans six years. Once all the years were merged, the number of movements was 222. 

 

 
Figure 3. Simulation for the medium-term (six years). 
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The experiments were also performed to examine long-term frequency, with two states, a frequency time of ten 

years, and 1000 replications. The simulation results are shown in Figure 4, and it is indicated that about 88% of 

replications have been achieved with a  that is less than 0.08 when the sample size is 15, which indicates that it 

failed to reach a sufficient sample size. However, when the sample size is 24 or more, 95% of the trial performances 

measured less than 0.08, meaning that they have achieving a sufficient sample size. This means that studies that 

involve three years of frequency time should have a sample size of at least 24. After all the years are merged, the 

number of movements becomes 240.   

 

 
Figure 4. Simulation for a long-term (ten years). 

 

4.2. Result Based on Singular, Manhattan and Euclidean Distance Metrics 

In order to evaluate the differences between matrices and , we chose critical value  

to calculate the error in the estimate transition matrix using the above metrics, which allowed the error to be 

between . 

   In this section, we will only discuss singular metrics because the result of a singular metric, similar to the 

Manhattan and Euclidean distance metrics, will determine a sufficient sample size for the transition matrix 

estimation. 

Figure 5 shows the simulation results over three years, in order to evaluate the amount of error in the 

difference between and  through a singular metric that reaches a sufficient sample size and is able to estimate 

the transition matrices. Typically, this experiment uses two states, has a frequency of time of three years, and is 

replicated 1000 times. This experiment was performed using different sample sizes. The result demonstrates the 

fact that, when sample sizes of 10, 20, 30, 40, and 50 are used, they are insufficient to estimate the transition matrix 

because the errors are more than 0.1; however, when a sample size of 60 or more is used, the trials had an error that 

was less than , which is sufficient. We can also see that, when the sample size increases, the box plot will 

approach zero. 
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Figure 5. Simulation for the short-term (three years). 

 

The simulation results in Figure 6 present an experiment that uses two states, has a frequency of time of six 

years, and is replicated 1000 times to evaluate the error. This differentiates between matrices using the value of a 

singular metric in order to reach a sufficient sample size, so that the transition matrices can be estimated. Typically, 

the experiment is performed using different sample sizes. However, 10 and 20 were considered to be insufficient 

sample sizes to determine the transition matrix because the error would still be more than . On the other 

hand, using a sample size of 31 or more will result in the trials having errors that are less than . Hence, 

having 31 samples or more is considered to be a sufficient sample size. 

 

 
Figure 6. Simulation for the medium-term (six years). 

 

The experiments were performed for the medium-term using two states, a frequency of ten years, and being 

replicated 1000 times. As seen in Figure 7, the sample size is ten or less, which indicates that the overall matrices 

have a high level of differences. That means that these experiments have failed to reach the required sample size. On 
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the other hand, having a sample size of 20 or more resulted in less than 10% error. Therefore, one should select a 

sample size of at least 20 when the study involves data that spans ten years. 

 

 
Figure 7. Simulation for a long-term (ten years). 

 

We can conclude that a sufficient sample size can be achieved rapidly as we increase the frequency of time and 

decrease the number of states. The results of the simulation of the adequate sample size can be determined using the 

above metrics. Typically, simulations with a higher frequency of time result in adequate sample sizes with lower 

values.  

 

5. ILLUSTRATION OF A TWO-STATE MARKOV MODEL THAT FORECASTS CHANGES 

TO RETURN ON ASSETS (ROA) 

This section provides an example to illustrate how the proposed simulation method achieves a sufficient sample 

size to obtain reliable estimates of the transition matrix based on the eigenvector’s metric. In this example, the 

frequency of time is short. Empirical calculations were based on studying the performance of investments through 

ROAs, from the state  to another state . These two states were studied in each company operating in 

the Malaysian industrial sector between 2009 and 2018, where data on ROA were collected on a yearly basis. Hence, 

the main problem in this example is the relatively small amount of data for each company, which requires us to 

perform the proposed simulation method: State one for a negative ROA and state two for a positive ROA or a ROA 

equal to zero in the long-term. 

                                         (19) 

Where ROA is an indicator that measures the company’s profitability relative to its total assets, which 

demonstrates the efficiency of the administration in using its assets to achieve higher profits. The ROA, sometimes 

referred to as the return on investment, is calculated as a percentage by dividing the company’s annual profits by 

the total of its assets. 

The transition matrices of successive pairs (T-1) for the ROA of 147 companies between 2007 and 2018 have 

been calculated using Equation 1 and are shown in Table 1.  
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Table 1. Transition count matrices for each pair between 2007 and 2018. 

 
2007-2008 2008-2009 2009-2010 2010-2011 2011-2012 2012-2013 

State1 State2 State1 State1 State1 State1 State2 State2 State2 State2 State1 State2 

State1 17 7 19 12 16 24 12 10 18 6 19 18 

State2 14 109 21 95 6 101 12 113 19 104 16 94 

 
2013-2014 2014-2015 2015-2016 2016-2017 2017-2018 

 
State1 State2 State1 State1 State1 State1 State2 State2 State2 State2 

State1 21 14 25 12 25 15 22 16 28 9 

State2 16 96 15 95 13 94 15 94 23 87 

After combining data from all the years between 2007 and 2018, the transition count matrix of ROA will be acquired using Equation 3. 

 

 
The transition count matrix was checked using the stationarity test. We obtained the maximum likelihood 

estimates of transition probability  of ROA. 

 
 

5.1. Long-term Performance  

Based on the simulation results derived from Section 4, we have to select at least  companies to study 

the long-term performance of  years. Therefore, a random sample of 24 companies was selected from the 

same sector, in order to study the behavior of ROA over ten years to check the accuracy of the proposed simulation. 

The transition probability matrix after carrying out the stationarity test on nine pairs is as follows: 

 

Through a calculation of Equation 4, is less than 0.08, meaning that the transition matrices for the 

147 companies and 24 companies were very close. 

 

5.2. Middle-Term Performance  

For the middle-term, random companies of  were selected with  years. The transition 

probability matrix was calculated as: 

 
After calculating the Eigenvector distance metric between the sector matrix and 39 companies, the matrix was 

, which indicates that the two matrices were very close. 

 5.3. Short-Term Performance  

In the short-term of  years, we randomly chose  companies based on the simulation results, 

where the transition probability matrix was calculated as: 

. 
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After comparing three years of the sector matrix of ROA using the eigenvector distance metric 

 the matrices were found to be close. 

Therefore, we can conclude that all matrices in all three cases were very close to each other, meaning that the 

result of the simulation was acceptable. 

 

6. CONCLUSION 

Sometimes a system of transition may have data that have been obtained over a short frequency of time. The 

present study aimed to gain reliable estimates of the transition probability matrix. Therefore, a Markov chain 

simulation method was developed to obtain the required sample size needed to achieve the aims of the study. Three 

variant models were used to determine the required sample sizes (short-term, medium-term, and long-term). 

Finally, the application of the proposed simulation method has been demonstrated using yearly ROA data from 

companies operating in the Malaysian industrial sector. The results in all three cases were close.   
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