Journal of Asian Scientific Research

ISSN(e): 2223-1331
$\operatorname{ISSN}(p):$ 2226-5724
DOI: 10.18488/journal.2.2017.75.145.164
Vol. 7, No. 5, 145-164.
© 2017 AESS Publications. All Rights Reserved.
URL: www.aessweb.com

ANALYSIS BY STAAD-PRO AND DESIGN OF STRUCTURAL D Check for updates ELEMENTS BY MATLAB

Shrikant M. Harle ${ }^{1}$

'B.E., MTech (Civil Engineering), Assistant Professor, Department of Civil Engineering, Professor Ram MegheCollege of Engg छ̊amp; Management, Amravati, India

Abstract

The analysis and design of multi storey building is carried out usually in the software packages which are very strong in analysis. The different software like STAAD-PRO, Etabs, etc is used for such purposes. The programming tools like C+, JAVA, etc are also used in many structural elements for different methods of calculations. The high level programming tools like MATLAB is used for many complicated problems in various fields. In the present paper the STAAD-PRO is used for the purpose of analysis and design of a building. The building was analyzed for the seismic behavior. Shear force, bending moment, deflections are calculated using the software, the reinforcement details are also available through the design. The coding of STAAD editor is also included in this paper. The design of slab, beam, column and footing are carried out by the programming of MATLAB. The objective of this study was to check the programming language for these structural elements.

Article History

Received: 26 April 2017
Revised: 25 May 2017
Accepted: 30 May 2017 Published: 2 June 2017

Keywords

STAAD-PRO
MATLAB
Beams
columns
Shear force
Bending moment
Deflection
Programming.

Contribution/ Originality: This study contributes in the existing literature that MATLAB program and STAAD editor files is provided. The flowchart of the program is also provided. The results of the STAAD is provided in graphs.

1. INTRODUCTION

For high performance numerical computation and visualization MATLAB is a good software with high level programming language [1]. The formulation and obtaining the solution for the minimum cost design for bridge superstructure and for this the high level programming language i.e. MATLAB is used [2]. The finite element approach is used for analysis of dam in which time history method is used to study the dynamic behavior. The gravity dam for earthquake analysis was studied by STAAD-PRO in the investigation [3].

STAAD-PRO and Etabs are the software which are used for the multi storied buildings. Shear force, bending moments, reinforcement and deflection are the parameters found out after analysis and design is carried out [4]. Most engineering software tools use typical menu-based user interfaces, and they may not be suitable for learning tools because the solution processes are hidden and students can only see the results. An educational tool for simple
beam analyses is developed using a pen based user interface with a computer so students can write and sketch by hand. The geometry of beam sections is sketched, and a shape matching technique is used to recognize the sketch [5]. The structural analysis and design of the structural frame considered was done using the STAAD-Pro software which is very user friendly and effective. First a typical frame is selected from the structure.

The frame was analyzed and designed according to the PEB concept and then by the CSB concepts [6].

The power tool for Computerized Structural engineering STAAD. Pro is the most popular structural engineering software product for 3D model generation, analysis and multi-material design. It has an intuitive, user-friendly, visualization tools, powerful analysis and design facilities and seamless integration to several other modeling and design software products [7]. The seismic design of steel frame is carried out by the STAADPRO. RCC frame and steel frame is compared by analyzing in the STAAD-PRO [8]. The modeling and analysis of aqueduct structure is carried out by STAAD-PRO. Seismic static loading is applied on the aqueduct in terms of self weight and other types loading [9]. Computer aided design of a twin reinforced concrete multi-storey tower is presented in this work and it entails the use of Midas Gen software for modeling, analyzing and designing of a 25 storey twin tower and comparing the results with STAAD Pro software
and manual design [10]. A study of one R.C. buildings, of $G+2$ storey institutional building (designed according to IS $456: 2000$) are analyzed. Analysis and redesigning by changing the main reinforcement of various frame elements and again analyzing [11]. RC -Design suite is a reinforced concrete design program that has numerous applications for the design of concrete structures. It contains modules for the design of beams, columns, footings and slabs. For this project the students utilized this program only for the design of floor slab and combined footings. Design of beams and columns are carried out in STAAD- III package itself [12].

Seventy nine soil samples were collected from three different sites in Iraq (Mosul, Baghdad and Basrah) to investigate their effect on the foundation of the buildings. The results of the tests were used in a hypothetical building and analyzed by STAAD Pro.v8i model. Soil in Mosul region includes many types such as clayey (expansive clayey), gypsum and silty clay. The results indicated that the bearing pressure under the foundation was lower than that calculated. Similar results were obtained when using the relatively worse bearing pressure values [13]. A research presents the dynamic time history analysis and response spectrum method of a concrete gravity dam by using STAAD-PRO. Here Finite Element Approach is used to analyze the dam. A concrete gravity dam model is prepared in STAAD-PRO to perform the time history analysis and response spectrum analysis and a comparison is done between both these methods [14].

2. METHODOLOGY

A research presents the main features and organization of STAADPRO, a computer program that has been developed for the static and seismic stability evaluations of concrete gravity dams. STAADPRO is based on the gravity method using rigid body equilibrium and beam theory to perform stress analyses, compute crack lengths, and safety factors. Seismic analyses could be done using either the pseudo-static or a simplified response spectrum method [15]. The Curtain Wall is designed using STAADPRO to resist and handle all the imposed loads on it as well as keep air and water from penetrating in the building. The loads imposed on the curtain wall are transferred to the building structure through structural interface (i.e. brackets) which attaches the mullions to the building [16].

The main aim of a research is to study which section of the large span cantilever structures are more safe and economical among the three sections of pipe, angle and tube. On the study the inference is that by comparing the output of STAAD.Pro (structural analysis and design) analysis results of different sections and it is concluded that the steel take off for pipe section is 3% less than tube section in weight and 14% less than angle section in weight [17]. A six storey RC building in zone III on medium soil is analyzed using the software STAAD -

PRO. It is assumed that no parking floor for the building. Seismic analysis is performed using Equivalent lateral force method given in IS 1893:2002 and also by dynamic analysis [18].

The analysis and design of a building is carried out in STAAD-PRO for the following data:

- Floor to floor height for ground floor $=3.4 \mathrm{~m}$
- Floor to floor height for above floors $=4 \mathrm{~m}$
- Plinth height $=0.6 \mathrm{~m}$
- Depth of foundation below ground level $=1.8 \mathrm{~m}$
- Thickness of slab at each floor $=0.125 \mathrm{~m}$
- External wall thickness $=0.23 \mathrm{~m}$
- Internal wall thickness $=0.15 \mathrm{~m}$
- Sizes of column $=450 \times 600$
- Sizes of beam $=230 \times 380$
- Live load on floors $=3 \mathrm{kN} / \mathrm{m}^{2}$ (for earthquake 25% of live load)
- Live load on roof $=3 \mathrm{kN} / \mathrm{m}^{2}$ (for earthquake roof live load $=0$)
- Floor finish $=0.75 \mathrm{kN} / \mathrm{m}^{2}$
- Roof treatment $=0.75 \mathrm{kN} / \mathrm{m}^{2}$
- Site location at seismic zone $=$ III
- Building resting on $=$ medium soil
- Density of wall $=20 \mathrm{kN} / \mathrm{m}^{2}$
- Density of concrete $=25 \mathrm{kN} / \mathrm{m}^{2}$
- Grade of concrete $=25 \mathrm{~N} / \mathrm{mm}^{2}$
- Grade of steel $=415 \mathrm{~N} / \mathrm{mm}^{2}$ (main reinforcement)
- Grade of steel $=250 \mathrm{~N} / \mathrm{mm}^{2}$ (secondary reinforcement)
- Dead load
- \quad External member load for ground floor $=(0.23 \times 1 \times 1) \times 20 \times(4-0.38)$
- Internal member load for ground floor $=(0.15 \times 1 \times 1) \times 20 \times(4-0.6-0.38)$
- For first floor and above
- External member load $=(0.23 \times 1 \times 1) \times 20(4-0.38)$
- Internal member load $=(0.75 \times 1 \times 1) \times 20(4-0.38)$
- \quad Parapet load $=0.23 \times 1 \times 1 \times 20$
- Floor Dead load $=1 \times[125+75 / 1000] \times 1=5 \mathrm{kN} / \mathrm{m}^{2}$

2.1. STAAD-PRO Input File

The analysis and design of a structure considering earthquake resistance parameters is carried out in STAADPRO by the coding as detailed in the Appendix-A. This program gives in detail about the analysis of structure including the load conditions and combinations, design of structure by IS code method \& earthquake provisions are included.

3. MATLAB PROGRAMMING

Matlab is a very useful CAE tool for numerical analysis. In the dissertation, the computational algorithms for several vibration control systems are implemented with Matlab and used for diverse simulation studies. Matlab has many embedded tools which simplify matrix operations encountered in the vibration control [19].

One of the interesting engineering application is space truss, a three dimensional element, particularly used as roof for industrial and commercial structure spanning large distances. Analysis of space truss can be performed by much commercial FEA software available in the market. A research concerns the current growth of MATLAB
based program which analyze the space truss step by step as done in Finite Element Analysis [20].
The MATLAB programming for footing, column, beam and slab is completed once the analysis in STAADPRO is done.

3.1. Design of Footing

Problem: Design a rectangular footing of uniform thickness bearing a vertical load of 1616 kN having a base size of 230 mm X 600 mm . Assuming safe bearing capacity of soil is $150 \mathrm{kN} / \mathrm{m}^{2}$. Using M25 grade of concrete and Fes 415 steel.

The programming in MATLAB is detailed in Appendix-B giving all the commands and syntax to design the footing so that any design can take place accordingly.

3.2. Design of Column

Problem: Design a column size of 450 mm X 600 mm subjected to an axial load of 2500 kN under the service dead load and live load. The column has an unsupported length of 4 m and effectively held in position in both ends. Using M25 grade of concrete and Fes 415 steel. The programming in MATLAB is detailed in Appendix-C giving all the commands and syntax to design the column so that any design can take place accordingly.

3.3. Design of Beam

Problem: Design a rectangular beam for simply supported span of 4 m subjected to superimposed ultimate load of $41.11 \mathrm{kN} / \mathrm{m}$ and size of beam is limited to 230 mm X 380 mm . Use of M25 grade of concrete and Fe 415 grade of steel. The programming in MATLAB is detailed in Appendix-D giving all the commands and syntax to design the beam so that any design can take place accordingly.

3.4. Design of Slab

Problem: Design of a two way continuous slab is subjected to uniformly distributed load of $3 \mathrm{kN} / \mathrm{m} 2$ for a room size of 4 m X 4 m . Use of M25 grade of concrete and Fe415 grade of steel. The programming in MATLAB is detailed in Appendix-E giving all the commands and syntax to design the slab so that any design can take place accordingly.

4. RESULTS \& DISCUSSION

The following graphs show the results in terms of deflection, shear force and moment of the beams on First, second, third, fourth floor and fifth floor.

Graph-No.1. Moments (Mz) for the beams on first floor

From the above graph it is clear that the maximum moment in the beam is 182 kNm in case of beam on the first floor while the minimum moment is noted to be 0.5 kNm in the Z direction of beam locally.

Graph-No.2. Moments (Mz) for the beams on second floor

From the above graph it is clear that the maximum moment in the beam on the second floor found to be 162 kNm which is lower than the moment on the beam of second floor while the minimum moment on the beam of second floor found to be 0.5 kNm in most of the beams.

Graph-No.3. Moments (Mz) for the beams on third floor

From the above graph it is clear that the moment in the beams of third floor is 122 kNm which is lower than the moment on the beams of first and second floor while the minimum moment is observed to be 0.25 kNm .

Graph-No.4. Deflection for the beams on fourth floor

From the above graph it is clear that the maximum deflection on the fourth floor found to be 0.465 m and it is more than the deflections of first and second floor while the minimum deflection found to be 0.43 m in other beams.

Graph-No.5. Moments (Mz) for the beams on fourth floor

The beams on the fourth floor have lower moments than that of first, second and third floor and maximum moment found to be 65 kNm while other beams have moment of 0.1 kNm and it is clear that the moment on the beams are decreases as the height of floor increases.

Graph-No. 6. Shear Force (Fz) for the beams on fourth floor

The shear force on the beams on fourth floor found to be maximum as 4.25 kN in the Z direction locally while the minimum shear force is 0.1 kN in other beams of fourth floor.

Graph-No.7. Deflection for the beams on fifth floor

The deflection on the highest floor is maximum i.e 0.488 and it is higher than the deflections of first, second, third and fourth floor while the minimum deflection found to be 0.455 .

Graph-No.8. Moments (My) for the beams on fifth floor

The moments on the fifth floor in Y direction is found to be 3.25 kNm and observed that the moment on the top floor as 3.25 kNm which is much lower than the moments on the remaining floors.

Graph-No. 9. Shear Force (Fz) for the beams on fifth floor

The shear force on top floor i.e fifth floor found to be 3.25 kN which is also lower than that of on the remaining floors.

5. ADVANTAGES \& LIMITATIONS

The advantage of the present work includes programming code of design members of structures like beam, slab, column and footing. Most of the cases the design is carried out on the MS-Excel sheet but the programming in MATLAB are also a good option. The present paper also discusses the STAAD-PRO programming part which also not detailed in other work and earthquake resistant design is also given in that part.

The limitations of the present work involves programming in only one language, other languages need to checked for more faster results. Also design and analysis is carried out in STAAD-PRO, other software tools need to be checked for faster results. Also reinforcement detailing is not provided.

6. CONCLUSION

The analysis and design of a structure in STAAD-PRO software is completed, the maximum shear force and bending moment in the column, beam and slab is noted. The noted values are programmed in MATLAB software so that the required area of reinforcement and size for footing, column, beam and slab is properly designed. The advantages of user friendly software like STAAD-PRO for analysis and MATLAB programming for the design of structural elements are found out.

Funding: This study received no specific financial support.
Competing Interests: The author declares that there are no conflicts of interests regarding the publication of this paper.

REFERENCES

[1] S. P. Nirkhe, D. N. Kakade, and A. G. Dahake, "Design of flat slab with matlab," International Journal of Engineering Research, vol. 5, pp. 537-540, 2016.
[2] K. Rajesh, N. G. Gore, and P. J. Salunke, "Applications of matlab in optimization of bridge superstructure," International Journal of Research in Engineering and Technology, vol. 3, pp. 34-39, 2014.
[3] A. B. Rampure and M. Mangulkar, "Finite element analysis of concrete gravity dam by using STAAD-PRO," International Journal of Engineering Research, vol. 5, pp. 549-554, 2016.
[4] D. Ramya and K. A. V. Sai, "Comparative study on design and analysis of multistory building (G+10) by STAAD-PRO software and Etabs software," International Journal of Engineering Science and Research Technology, vol. 4, pp. 125-130, 2015.
[5] S. S. Yong, "Development of educational software for beam loading analysis using pen-based user interfaces," Journal of Computational Design and Engineering, vol. 1, pp. 67-77, 2014. View at Google Scholar | View at Publisher
[6] C. M. Meera, "Pre-engineered building design of an industrial warehouse," International Journal of Engineering Science and Emerging Technologies, vol. 5, pp. 75-82, 2013. View at Google Scholar
[7] F. Syed, C. K. B. Sarath, and R. S. Kanakambara, "Design concept of pre engineered building," International Journal of Engineering Research and Applications, vol. 2, pp. 267-272, 2012. View at Google Scholar
[8] S. M. Dhawade and P. S. Pajgade, "Consideration of seismic design of multistoried steel structure," International Journal of Civil Engineering Research, vol. 5, pp. 177-182, 2014.
[9] S. Naveen, C. R. Zalakkumar, and P. A. Pratik, "Modeling and analysis of aqueduct using STAAD-PRO," International Journal of Engineering and Technology, vol. 3, pp. 2324-2329, 2016.
[10] S. A. Raji, O. F. Ajala, and S. E. Ayenigba, "Computer aided design of a twin reinforced concrete multi storey tower," Journal of Multidisciplinary Engineering Science and Technology, vol. 3, pp. 4584-4588, 2016.
[11] S. Aakash and S. S. Kushwah, "Static analysis of G+2 institutional building in Bhopal," International Journal of Engineering Research and Applications, vol. 5, pp. 159-167, 2015.
[12] P. Jayachandran and S. Rajasekaran, "Structural design of multi-story residential building for Salem, India," presented at the ASEE Conference at WPI, 2016.
[13] A.-T. Entidhar, A.-A. Nadhir, and K. Sven, "Effect of bearing capacity on designing foundations in Iraq using STAADPRO v8i," Scientific Research Journal, vol. 6, pp. 292-303, 2014. View at Google Scholar \mid View at Publisher
[14] B. R. Aarti and N. M. Madhuri, "Comparison between response spectrum and time history method of dynamic analysis of concrete gravity dam," Open Journal of Civil Engineering, vol. 6, pp. 329-334, 2016. View at Google Scholar | View at Publisher
[15] T. Subramani and D. Ponnuvel, "Seismic and stability analysis of gravity dams using STAAD-PRO," International Journal of Engineering Research and Development, vol. 1, pp. 44-54, 2012. View at Google Scholar
[16] T. Pallavi and S. Santosh, "Structural design of a glass facade," International Journal of Scientific and Research Publications, vol. 5, pp. 1-6, 2015.
[17] P. Abhilash and R. K. S. Ramayanapu, "Studied on large span cantilever structures by using STAAD-PRO analysis," International Journal of Engineering Science and Research Technology, vol. 3, pp. 90-96, 2014.
[18] T. Subramani, B. Saravanan, and J. Jayalakshmi, "Dynamic analysis of flanged shear wall using STAAD-PRO," International Journal of Engineering Research and Applications, vol. 4, pp. 150-155, 2014. View at Google Scholar
[19] M. C. Yi-Mei, "Computer-aided engineering methodology for structural optimization and control," Dissertation of Master of Engineering in Civil and Environmental Engineering, MIT, USA, 2000.
[20] P. Sangeetha, K. P. Naveen, and R. Senthil, "Finite element analysis ofspace truss using matlab," ARPN Journal of Engineering and Applied Sciences, vol. 10, pp. 3812-3816, 2015.

Appendix A (STADD-Programme)

STAAD SPACE
START JOB INFORMATION
ENGINEER DATE 15-Apr-15
END JOB INFORMATION
INPUT WIDTH 79
UNIT METER KN
JOINT COORDINATES
 9 О О $8 ; 10408 ; 118$ 0 8; 12 12 0 8; 13 О О $12 ; 144012 ; 158012$; 1612 О $12 ; 17$ О О $16 ; 184$ О $16 ; 198$ О $16 ; 2012$ О $16 ; 2101.8$; ; $2241.8 \mathrm{O} ; 2381.8 \mathrm{O} ; 24121.8 \mathrm{O} ; 2501.84 ; 2641.84 ; 2781.84 ;$ $28121.84 ; 2901.88 ; 3041.88 ; 3181.88 ; 32121.88 ; 3301.812 ;$ $3441.812 ; 3581.812 ; 36121.812 ; 3701.816 ; 3841.816 ; 3981.816$; $40121.816 ; 4105.8 \mathrm{O} ; 4245.8 \mathrm{O} ; 4385.8 \mathrm{O} ; 44125.8 \mathrm{O} ; 4505.84 ;$ $4645.84 ; 4785.84 ; 48125.84 ; 4905.88 ; 5045.88 ; 5185.88 ;$ $52125.88 ; 5305.812 ; 5445.812 ; 5585.812 ; 56125.812 ; 5705.816$; $5845.816 ; 5985.816 ; 60125.816 ; 61$ 0 9.8 0; 62 4 9.8 0; 6389.8 о; 64129.8 О; $6509.84 ; 6649.84 ; 6789.84 ; 68129.84 ; 6909.88 ;$ $7049.88 ; 7189.88 ; 72129.88 ; 7309.812 ; 7449.812 ; 7589.812$; $76129.812 ; 7709.816 ; 7849.816 ; 7989.816 ; 80129.816 ; 81013.8$ O; 82 4 13.8 O; 83813.8 O; 841213.8 O; 85 O $13.84 ; 86413.84 ; 87813.84 ;$ $881213.84 ; 89013.88 ; 90413.88 ; 91813.88 ; 921213.88$; $93013.812 ; 94413.812 ; 95813.812 ; 961213.812 ; 97013.816 ;$ $98413.816 ; 99813.816 ; 1001213.816 ; 101$ O 17.8 O; 102 4 17.8 O; $103817.8 \mathrm{O} ; 1041217.8 \mathrm{O} ; 105017.84 ; 106417.84 ; 107817.84 ;$ $1081217.84 ; 109$ O $17.88 ; 110417.88 ; 111817.88 ; 1121217.88$; $113017.812 ; 114417.812 ; 115817.812 ; 1161217.812 ; 117017.816$; $118417.816 ; 119817.816 ; 1201217.816 ; 121021.80 ; 122421.80 ;$ $123821.8 \mathrm{O} ; 1241221.8 \mathrm{O} ; 125021.84 ; 126421.84 ; 127821.84 ;$ $1281221.84 ; 129021.88 ; 130421.88 ; 131821.88 ; 1321221.88$; 133 О $21.812 ; 134421.812 ; 135821.812 ; 1361221.812 ; 137021.816 ;$ $138421.816 ; 139821.816 ; 1401221.816$;

MEMBER INCIDENCES

$32121 ; 332$ 22; 343 23; $35424 ; 36525 ; 37626 ; 38727 ; 39828$ 2 409 29; 41 10 30; 42 $11131 ; 431232 ; 441333 ; 451434 ; 461535 ; 471636 ;$

4817 37; 4918 38; 5019 39; $512040 ; 522122 ; 5322$ 23; 54 23 24; 55 21 25; 5622 26; 5723 27; 5824 28; $592526 ; 602627 ; 6127$ 28; $622529 ; 6326$ 30; $642731 ; 652832 ; 662930 ; 673031 ; 683132 ; 692933 ; 703034 ; 713135$; 7232 36; 7333 34; 74 34 35; $753536 ; 7633$ 37; 77 34 38; 78 35 39; 79 3640; 8037 38; 8138 39; $823940 ; 832141 ; 842242 ; 852343 ; 862444 ; 872545$; $882646 ; 892747 ; 902848 ; 912949 ; 923050 ; 933151 ; 943252 ; 953353$; $963454 ; 973555 ; 983656 ; 993757 ; 1003858 ; 1013959 ; 1024060$; $1034142 ; 1044243 ; 1054344 ; 1064145 ; 1074246 ; 1084347 ; 1094448$; $1104546 ; 1114647 ; 1124748 ; 1134549 ; 1144650 ; 1154751 ; 1164852$; $1174950 ; 1185051 ; 1195152 ; 1204953 ; 1215054 ; 1225155 ; 1235256$; $1245354 ; 1255455 ; 1265556 ; 1275357 ; 1285458 ; 1295559 ; 1305660$; $1315758 ; 1325859 ; 1335960 ; 1344161 ; 1354262 ; 1364363 ; 1374464$; $1384565 ; 1394666 ; 1404767 ; 1414868 ; 1424969 ; 1435070 ; 1445171$; $1455272 ; 1465373 ; 1475474 ; 1485575 ; 1495676 ; 1505777 ; 1515878$; $1525979 ; 1536080 ; 1546162 ; 1556263 ; 1566364 ; 1576165 ; 1586266$; $1596367 ; 1606468 ; 1616566 ; 1626667 ; 1636768 ; 1646569 ; 1656670$; $1666771 ; 1676872 ; 1686970 ; 1697071 ; 1707172 ; 1716973 ; 1727074 ;$ $1737175 ; 1747276 ; 1757374 ; 1767475 ; 1777576 ; 1787377 ; 1797478$; $1807579 ; 1817680 ; 1827778 ; 1837879 ; 1847980 ; 1856181 ; 1866282$; $1876383 ; 1886484 ; 1896585 ; 1906686 ; 1916787 ; 1926888 ; 1936989$; $1947090 ; 1957191 ; 1967292 ; 1977393 ; 1987494 ; 1997595 ; 2007696$; $2017797 ; 2027898 ; 20379$ 99; 204 80 100; 20581 82; 20682 83; 20783 84; $2088185 ; 2098286 ; 2108387 ; 2118488 ; 2128586 ; 2138687 ; 2148788$; $2158589 ; 2168690 ; 2178791$; 2188892 ; 21989 90; 220 90 91; 221 9192 ; 22289 93; $2239094 ; 2249195 ; 2259296 ; 2269394 ; 2279495 ; 2289596$; $2299397 ; 2309498 ; 2319599 ; 23296100 ; 2339798 ; 2349899 ; 23599100$; 23681 101; 23782 102; 23883 103; $23984104 ; 24085105 ; 24186106$; $24287107 ; 24388108 ; 24489109 ; 24590110 ; 24691111 ; 24792112$; $24893113 ; 24994114 ; 25095115 ; 25196116$; 25297117; 25398118; $25499119 ; 255100120 ; 256101102 ; 257102103 ; 258103104 ; 259101105$; $260102106 ; 261103107 ; 262104108 ; 263105106 ; 264106107 ; 265107108$; $266105109 ; 267106110 ; 268107111 ; 269108112 ; 270109110 ; 271110111$; $272111112 ; 273109113 ; 274110114 ; 275111115 ; 276112116 ; 277113114$; $278114115 ; 279115116 ; 280113117 ; 281114118 ; 282115119 ; 283116120$; $284117118 ; 285118119 ; 286119120 ; 287101121 ; 288102122$; 289103123 ; $290104124 ; 291105125 ; 292106126 ; 293107127 ; 294108128 ; 295109129$; $296110130 ; 297111131$; $298112132 ; 299113133 ; 300114134 ; 301115135$; $302116136 ; 303117137 ; 304118138 ; 305119139 ; 306120140 ; 307121122$; $308122123 ; 309123124 ; 310121125 ; 311122126 ; 312123127$; 313124128 ; $314125126 ; 315126127 ; 316127128 ; 317125129 ; 318126130 ; 319127131$; $320128132 ; 321129130 ; 322130131 ; 323131132 ; 324129133 ; 325130134 ;$ $326131135 ; 327132136 ; 328133134 ; 329134135 ; 330135136 ; 331133137$; $332134138 ; 333135139 ; 334136140 ; 335137138 ; 336138139 ; 337139140$;

DEFINE MATERIAL START
ISOTROPIC CONCRETE
E $2.17185 \mathrm{e}+007$
POISSON 0.17
DENSITY 23.5616
ALPHA 1e-005
DAMP 0.05
END DEFINE MATERIAL
MEMBER PROPERTY AMERICAN
36 TO 47495087 TO 98100101138 TO 149151152189 TO $200202203240-241$ TO 251253254 291 TO 302304305 PRIS YD 0.23 ZD 0.6

32 TO 35485183 TO 8699102 134 TO 137150153185 TO 188201 204-
236 TO 239252255287 TO 290303306 PRIS YD 0.23 ZD 0.45
52 TO 82103 TO 133154 TO 184205 TO 235256 TO 286307 TO 336 -
337 PRIS YD 0.38 ZD 0.23
CONSTANTS
BETA 90 MEMB 333437384142454649508485888992939697100101 -
 $203237238241242245246249250253254288289292293296297300301-$

304 305
MATERIAL CONCRETE ALL
SUPPORTS
1 TO 20 PINNED

DEFINE 1893 LOAD
ZONE 0.16 RF 5 I 1 SS 1 DM 0.05 DT 1.5
JOINT WEIGHT

1 WEIGHT 2.195
2 WEIGHT 2.195
3 WEIGHT 2.195
4. WEIGHT 2.195

5 WEIGHT 2.926
6 WEIGHT 2.926
7 WEIGHT 2.926
8 WEIGHT 2.926
9 WEIGHT 2.926
10 WEIGHT 2.926
11 WEIGHT 2.926
12 WEIGHT 2.926
13 WEIGHT 2.926
14 WEIGHT 2.926
15 WEIGHT 2.926
16 WEIGHT 2.926
17 WEIGHT 2.195

18 WEIGHT 2.926
19 WEIGHT 2.926
20 WEIGHT 2.195
21 WEIGHT 81.089
22 WEIGHT 101.54
23 WEIGHT 101.54
24 WEIGHT 81.089
25 WEIGHT 102.819
26 WEIGHT 78.526
27 WEIGHT 78.526
28 WEIGHT 102.819
29 WEIGHT 102.284
30 WEIGHT 77.844
31 WEIGHT 77.844
32 WEIGHT 102.284
33 WEIGHT 102.812
34 WEIGHT 78.384
35 WEIGHT 78.384
36 WEIGHT 102.812
37 WEIGHT 81.066
38 WEIGHT 104.058
39 WEIGHT 104.058
40 WEIGHT 81.066
41 WEIGHT 105.104
42 WEIGHT 152.706
43 WEIGHT 152.706
44 WEIGHT 105.104
45 WEIGHT 154.341
46 WEIGHT 192.095
47 WEIGHT 192.095
48 WEIGHT 154.341
49 WEIGHT 153.271
50 WEIGHT 188.666
51 WEIGHT 188.666
52 WEIGHT 153.271
53 WEIGHT 154.328
54 WEIGHT 191.543
55 WEIGHT 191.549
56 WEIGHT 154.328
57 WEIGHT 105.062
58 WEIGHT 156.526
59 WEIGHT 156.526
60 WEIGHT 105.062
61 WEIGHT 105.4
62 WEIGHT 152.831

```
6 3 \text { WEIGHT 152.831}
64 WEIGHT 105.4
65 WEIGHT 154.584
6 6 ~ W E I G H T ~ 1 9 1 . 3 6
67 WEIGHT 191.36
6 8 \text { WEIGHT 154.584}
69 WEIGHT 153.637
70 WEIGHT 188.434
7 1 ~ W E I G H T ~ 1 8 8 . 4 3 4 ~
72 WEIGHT 153.637
73 WEIGHT 154.575
74 WEIGHT 190.848
75 WEIGHT 190.848
76 WEIGHT 154.575
77 WEIGHT 105.363
78 WEIGHT 156.609
79 WEIGHT 156.609
80 WEIGHT 105.363
81 WEIGHT 105.518
82 WEIGHT 152.796
83 WEIGHT 152.796
84 WEIGHT 105.518
85 WEIGHT 154.57
86 WEIGHT 191.274
87 WEIGHT 191.274
88 WEIGHT 154.57
89 WEIGHT 153.685
90 WEIGHT 188.419
91 WEIGHT 188.419
92 WEIGHT 153.685
93 WEIGHT 154.561
94 WEIGHT 190.761
95 WEIGHT 190.761
96 WEIGHT 154.561
97 WEIGHT 105.487
98 WEIGHT 156.569
99 WEIGHT 156.569
100 WEIGHT 105.487
101 WEIGHT 104.562
102 WEIGHT 152.904
103 WEIGHT 152.904
104 WEIGHT 104.562
105 WEIGHT 154.365
106 WEIGHT 192.465
107 WEIGHT 192.465
```

```
108 WEIGHT 154.365
109 WEIGHT 153.082
110 WEIGHT 188.755
111 WEIGHT 188.755
112 WEIGHT 153.082
113 WEIGHT 154.351
114 WEIGHT 191.902
115 WEIGHT 191.902
116 WEIGHT 154.351
117 WEIGHT 104.503
118 WEIGHT 156.752
119 WEIGHT 156.752
120 WEIGHT 104.503
121 WEIGHT 13.782
122 WEIGHT 17.138
123 WEIGHT 17.138
124 WEIGHT 13.782
125 WEIGHT 18.929
126 WEIGHT 22.197
127 WEIGHT 22.197
128 WEIGHT 18.929
129 WEIGHT 19.29
130 WEIGHT 22.813
131 WEIGHT 22.813
1 3 2 \text { WEIGHT 19.29}
133 WEIGHT 18.934
134 WEIGHT 22.19
135 WEIGHT 22.19
136 WEIGHT 18.934
137 WEIGHT 13.81
138 WEIGHT 18.745
139 WEIGHT 18.745
140 WEIGHT 13.81
LOAD 4 LOADTYPE Seismic TITLE LOAD CASE 4 EQX 1893 LOAD X 1
LOAD 5 LOADTYPE Seismic TITLE LOAD CASE 5 -EQX 1893 LOAD X -1
LOAD 6 LOADTYPE Seismic TITLE LOAD CASE 6 EQZ 1893 LOAD Z 1
LOAD 7 LOADTYPE Seismic TITLE LOAD CASE 7 -EQZ 1893 LOAD Z -1
```

LOAD 1 LOADTYPE Dead TITLE DL
SELFWEIGHT Y -1 LIST 32 TO 337

MEMBER LOAD
52 TO 5558626569727679 TO 82 UNI GY - 17.02
565759 TO 61636466 TO 68707173 TO 757778 UNI GY -6.44
103 TO 106109113116120123127130 TO 133 UNI GY -17.02
107108110 TO 112114115117 TO 119121122124 TO 126128129 UNI GY -8.15 154 TO 157160164167171174178181 TO 184 UNI GY -17.02

158159161 TO 163165166168 TO 170172173175 TO 177179180 UNI GY -8.15
205 TO 208211215218222225229232 TO 235 UNI GY -17.02
209210212 TO 214216217219 TO 221223224226 TO 228230231 UNI GY -8.15
256 TO 259262266269273276280283 TO 286 UNI GY -17.02
260261263 TO 265267268270 TO 272274275277 TO 279281282 UNI GY -8.15
FLOOR LOAD
YRANGE 319 FLOAD -5 GY
LOAD 2 LOADTYPE Live TITLE LL
FLOOR LOAD
YRANGE 319 FLOAD -3 GY
LOAD 3 LOADTYPE Roof Live TITLE RLL
FLOOR LOAD
YRANGE 20.823 FLOAD -3 GY
LOAD 21 LOADTYPE Wind TITLE WLX
MEMBER LOAD
$556269768387919599106113120127134138142146150157164171-$ $178185189193197201208215222229236240244248252259266273280-$ 287291295299303310317324331 UNI GX 10.144

LOAD 22 LOADTYPE Wind TITLE WLXMEMBER LOAD
$5865727986909498102109116123130137141145149153160167174-$ $181188192196200204211218225232239243247251255262269276283-$ 290294298302306313320327334 UNI GX -10.144

LOAD 23 LOADTYPE Wind TITLE WLZ MEMBER LOAD

52 TO 54 83 TO 86103 TO 105134 ТО 137154 TO 156185 TO 188205 TO 207 236237 TO 239256 TO 258287 TO 290307 TO 309 UNI GZ 7.608

LOAD 24 LOADTYPE Wind TITLE WLZ-
MEMBER LOAD
80 TO 8299 TO 102131 TO 133150 TO 153182 TO 184201 TO 204233 TO 235 252 TO 255284 TO 286303 TO 306335 TO 337 UNI GZ -7.608

LOAD COMB 8 COMBINATION LOAD CASE 8 (1.5D.L.+ 1.5L.L.+ 1.5RLL)
11.521 .531 .5

LOAD COMB 9 COMBINATION LOAD CASE 9 (1.5D.L.+1.5EQX)
11.541 .5

LOAD COMB 10 COMBINATION LOAD CASE 10 (1.5D.L.-1.5EQX)
11.551 .5

LOAD COMB 11 COMBINATION LOAD CASE 11 (1.5D.L.+1.5EQZ)
11.561 .5

LOAD COMB 12 COMBINATION LOAD CASE 12(1.5D.L.-1.5EQZ)
11.571 .5

LOAD COMB 13 COMBINATION LOAD CASE 13 (1.2DL+1.2LL+1.2EQX)
11.221 .241 .2

LOAD COMB 14 COMBINATION LOAD CASE 14 (1.2D.L. +1.2LL-1.2EQX)
11.221 .241 .2

LOAD COMB 15 COMBINATION LOAD CASE 15(1.2D.L. +1.2LL+1.2EQZ)
11.221 .261 .2

LOAD COMB 16 COMBINATION LOAD CASE 16(1.2DL.L. + 1.2LL-1.2EQZ)
11.221 .271 .2

LOAD COMB 17 COMBINATION LOAD CASE 17(0.9D.L.+1.5EQX)
10.941 .5

LOAD COMB 18 COMBINATION LOAD CASE 18 (.9D.L.-1.5EQX)
10.951 .5

LOAD COMB 19 COMBINATION LOAD CASE 19(0.9D.L.+1.5EQZ)
10.961 .5

LOAD COMB 20 COMBINATION LOAD CASE 20(0.9DL-1.5EQZ)
10.971 .5

LOAD COMB 25 1.5(DL+WLX)
11.5211 .5

LOAD COMB 26 1.5(DL-WLX-)
11.5221 .5

LOAD COMB 27 1.5(DL+WLZ)
11.5231 .5

LOAD COMB 28 1.5(DL-WLZ-)
11.5241 .5

LOAD COMB 29 1.2(DL+LL+WLX)
11.221 .2211 .2

LOAD COMB 30 1.2(DL+LL-WLX-)
11.221 .2221 .2

LOAD COMB 31 1.2(DL+LL+WLZ)
11.221 .2231 .2

LOAD COMB 32 1.2(DL+LL-WLZ-)
11.221 .2241 .2

PERFORM ANALYSIS PRINT STATICS LOAD
LOAD LIST 8
START CONCRETE DESIGN
CODE INDIAN
FC 25000 ALL
FYMAIN 415000 ALL
FYSEC 250000 ALL
DESIGN BEAM 52 TO 82103 TO 133 154 TO 184 205 TO 235256 TO 286307 TO 337 DESIGN COLUMN 32 TO 5183 TO 102 134 TO 153185 TO 204 236 TO 255287 TO 306

END CONCRETE DESIGN

FINISH

Appendix-B (MATLAB Programming on Design of Footing)

Flowchart: Calculate size of footing \longrightarrow Calculate design of section \longrightarrow Calculate depth for one way shear \longrightarrow Check for two way shear \longrightarrow Design of reinforcement \longrightarrow check for development length \longrightarrow check for transfer of load at base
(Note: If any check do not satisfy then revise the section of footing)

MATLAB programming:

\% for m25 \& fe415
\% xumax $/ d=0.48$, ru=3.45
$\% 1$) size of footing
\% load on column
$\mathrm{w}=1616$;
$\% \mathrm{p}=10 \%$ of w
$\mathrm{p}=\mathrm{w}+\left(10^{*} \mathrm{w}\right) / 100$
$\%$ area of footing=load/bearing capacity
\% bearing capacity
$\mathrm{bc}=150$;
$\mathrm{a}=\mathrm{p} /\left(1.5^{*} \mathrm{bc}\right)$
\% ratio of b / l for column
$\mathrm{b}=230 ; \mathrm{l}=600$;
$\%$ ratio of b / l
$\mathrm{r}=\mathrm{b} / \mathrm{l}$
\% length of footing
$11=\operatorname{sqrt}(\mathrm{a} / \mathrm{r})$
\% breadth of footing
b1=a/l1
\% providing footing of size 2×4.6
$12=4.6 ; \mathrm{b} 2=2$;
\% net upward pressure
$\mathrm{po}=(\mathrm{w} /(12 * \mathrm{~b} 2))$
if po<bc disp('ok')
else
disp('change size of footing') end
$\%$ design of section
$\%$ a) design on the basis of b.m compression
\% b.m moment at section $\mathrm{x}-\mathrm{x}$
$\mathrm{ml}=\left(\mathrm{po}{ }^{*} 2^{*} *(12-(1 / 1000))^{\wedge} 2\right) / 8$
$\%$ taking 1.5 as safety factor
$\mathrm{mlu}=1.5 * \mathrm{ml}$
\%b.m moment at section y-y
$\mathrm{m} 2=\left(\mathrm{po} * \mathrm{l} 2 *(\mathrm{~b} 2-(\mathrm{b} / 1000))^{\wedge} 2\right) / 8$
$\mathrm{m} 2 \mathrm{u}=1.5^{*} \mathrm{~m} 2$
\% since mlu>m2u then considering
m1u for design
ru=3.45;
$d=\operatorname{sqrt}\left(\left(\mathrm{m} 1 u^{*} 10^{\wedge} 6\right) /\left(r u * b 2^{*} 1000\right)\right)$
\% providing depth of 400
$\mathrm{d} 1=400$;
\% assuming 50 mm cover
\% therefore total depth
$\mathrm{td}=\mathrm{d} 1+50$
$\%$ b)depth on basis of one way shear
$\%$ assuming under reinforced section
\% depth of footing
otd=(po* $\left.{ }^{*}{ }^{*} 1000\right) /\left(\left(\mathrm{sc}^{*} 1000\right)+\mathrm{po}\right)$
\% taking overall depth
otd $1=680$;
$\%$ c) check for two way shear action
\% for two way shear action/ punching shear
action along ABCD
\% perimeter of ABCD
$\mathrm{p}=2^{*}((\mathrm{l}+\mathrm{otd} 1)+(\mathrm{b}+\mathrm{otd} 1))$
$\%$ area of ABCD
$\operatorname{ar}=((\mathrm{l} / 1000+\mathrm{otd} 1 / 1000) *(\mathrm{~b} / 1000+\mathrm{otd} / 1000))$
\% punching shear
tau=100;
$\mathrm{ps}=\operatorname{tau}^{*} 1.5^{*}\left(\left(12^{*} \mathrm{~b} 2\right)-\mathrm{ar}\right)$
tauv $=\left(p s^{*} 10^{\wedge} 3 /\left(p^{*}\right.\right.$ otd 1$\left.)\right)$
fck=25;
tauc $=0.25 * \operatorname{sqrt}(\mathrm{fck})$
$\mathrm{ks}=0.5+(\mathrm{b} / 1000+\mathrm{l} / 1000)$
\% adopting ks=1
ks1=1
$\mathrm{h}=\mathrm{ks} 1^{*}$ tauc
if ($\mathrm{h}>$ tauv) disp('ok')
else
disp('check')
end
$\%$ 5) design of reinforcement
\% for mul
fy $=415$;
a $1=(1-s q r t(1-$
$\left(\left(4.6^{*} \mathrm{mlu}^{*} 10^{\wedge} 6\right) /\left(\right.\right.$ fck $\left.\left.\left.\left.{ }^{*} \mathrm{~b} 2^{*} 1000^{*} \operatorname{otd} 1^{\wedge} 2\right)\right)\right)\right)$
ast $1=\left(0.5 * \mathrm{fck}^{*} 2^{*}{ }^{*} 1^{*} 1000^{*} \mathrm{~d}\right) / \mathrm{fy}$
\% no of bars
$\%$ assuming 12 mm dia bars
nob1 $=\left(\operatorname{ast} 1 /\left(0.785^{*} 12^{*} 12\right)\right)$
\% these are to be distributed uniformly in
width $\mathrm{b}=2$
$\mathrm{a} 2=(1-(\mathrm{sqrt}(1-$
$\left.\left.\left.\left(\left(4.6^{*} \mathrm{~m} 2 \mathrm{u}^{*} 10^{\wedge} 6\right) /\left(f \mathrm{fck}{ }^{*} 12 * 1000^{*} \mathrm{~d}^{\wedge} 2\right)\right)\right)\right)\right)$
ast2 $=0.5 *(f \mathrm{fck} / \mathrm{fy}) * \mathrm{a} 2^{*} \mathrm{l} 2 * 1000 * \mathrm{~d}$
\% no of bars
nob2 $=$ ast2 $/\left(0.785^{*} 12^{\wedge} 2\right)$
\% providing 10 bars
$\%$ check for development length
$\mathrm{fi}=12$;
$l \mathrm{~d}=47^{*}{ }^{*}$
\% providing 60 mm side cover ,available length
$\mathrm{al}=0.58^{*}(\mathrm{~b} 2 * 1000-\mathrm{b})-60$
if (al>ld)
disp('ok')

```
with \(\mathrm{p}=0.3 \%\)
\% shear stress for m25 grade concrete
\(\mathrm{sc}=0.36\);
\(\%\) for \(\mathrm{td}>=300 \mathrm{~mm}\)
\(\mathrm{k}=1\);
\% therefore permissible shear stress
\(\mathrm{ps}=\mathrm{k}\) *sc
\(\mathrm{c}=\left(\mathrm{po}{ }^{*} \mathrm{~b} 2 * 1.5\right) /(\mathrm{b} 2)\)
\(\mathrm{c} 1=\mathrm{c} / \mathrm{ps}\)
```

```
else
```

else
disp('check')
disp('check')
end
end
$\%$ check for transfer of load at base
$\%$ check for transfer of load at base
$\%$ adopting sqrt(a1/a2)=2
$\%$ adopting sqrt(a1/a2)=2
$\mathrm{z}=2$;
$\mathrm{z}=2$;
\% bearing stress
\% bearing stress
$\mathrm{sb}=0.45 * \mathrm{fck}^{*} \mathrm{z}$
$\mathrm{sb}=0.45 * \mathrm{fck}^{*} \mathrm{z}$
$\%$ actual bearing stress
$\%$ actual bearing stress
abs $=\left(1.5^{*}{ }^{*} * 1000\right) /\left(b^{*} 1\right)$
abs $=\left(1.5^{*}{ }^{*} * 1000\right) /\left(b^{*} 1\right)$
if (abs<sb)
if (abs<sb)
disp('ok')
disp('ok')
else
else
disp('check')
disp('check')
end

```
    end
```


Appendix-C (Programming in MATLAB-Design of Column)

Flowchart: check the column is short or slender \longrightarrow check for minimum eccentricity \longrightarrow calculation of area of steel

MATLAB programming:

\% design of column
$\%$ given data
$\mathrm{l}=4000 ; \mathrm{b}=450 ; \mathrm{D}=600 ; \mathrm{w}=2500000 ; \mathrm{fck}=25 ; \mathrm{fy}=415 ; \mathrm{s}=$ 1.5;
\% step 1) To check the column is short or slender
$\%$ by refering table no 28 of page 94
lex $=0.65 * 1$
ley $=0.65^{*} 1$
\% refering clause no 25.1 of I.S 456 :2000
$\mathrm{x}=\mathrm{lex} / \mathrm{D}$
$\mathrm{y}=\mathrm{ley} / \mathrm{D}$
if $\mathrm{x}>12$
disp('column is long')
elseif $\mathrm{y}>12$
disp('column is long')
else
disp('column is short')
end
\% step 2) to check minimum eccentricity
\% refering clause no 25.4
$e x=(1 / 500)+(D / 30)$
ex $1=20$;
if ex>ex 1
exmin=ex
else
exmin $=$ ex 1
end
$e y=(1 / 500)+(b / 30)$
ey $1=20$;
if ey>ey 1
eymin=ey
else
eymin=ey 1
end
\% step 3) calculation of area of steel
\% refering clause no 39.3 of I.S.
456:2000
asc $=\left(\mathrm{w}^{*}\right.$ s-
$0.4 *$ fck $\left.{ }^{*}{ }^{*} \mathrm{D}\right) /\left(0.67^{*} \mathrm{fy}-0.4 * \mathrm{fck}\right)$
$\%$ asumming 32 mm dia bars bars $=$ asc $/\left(0.785^{*} 32^{\wedge} 2\right)$
$\%$ providing $5-32 \mathrm{~mm}$ dia bars $\mathrm{pt}=\left(5^{*} 0.785^{*} 32^{\wedge} 2^{*} 100\right) /\left(450^{*} 60\right.$
0)
\% check
if $\mathrm{pt}<0.8$
disp('repeat')
elseif $\mathrm{pt}>6$
disp('repeat')
else
disp('hence ok')
end

Appendix-D (Programming in MATLAB-Design of Beam)

Flowchart: determination of max bending moment \longrightarrow Calculation of mu ${ }_{\mathrm{lim}}$ and astlim Determination of $\mathrm{Mu}_{2}, \mathrm{~A}_{\mathrm{st} 2}, \mathrm{~A}_{\mathrm{sc}}, \mathrm{A}_{\mathrm{st}} \longrightarrow$ check for min \& max tension \& compression steel \longrightarrow
(Note: If any check do not satisfy then revise the section of Beam)

MATLAB programming:

\% design of beam
$\%$ given data
$\mathrm{l}=4000 ; \mathrm{w}=41.11 ; \mathrm{b}=230 ; \mathrm{D}=380 ; \mathrm{fck}=25 ; \mathrm{fy}=415$;
$\%$ 1)determination of max bending moment
$\operatorname{mumax}=\left(\mathrm{w}^{*}{ }^{*} * \mathrm{l}\right) / 12$
\% assume
cover $=35$;
d=D-cover
\% for m25 \& fe 415
xumax $=0.48^{*} d$
$\%$ b) In tension minast $=\left(0.85{ }^{*} b^{*} d\right) /$ fy maxast $=(4 *$ b*D $) / 100$ if minast<ast disp('ok') elseif ast<maxast disp('ok') else
$\%$ 2)determination of $\mathrm{mu}_{\text {lim }}$ and astlim mulim $=0.36^{*}$ xumax*(d-0.42*xumax)* ${ }^{*}$ fck if mulim<mumax
disp('it is doubly reinforced beam')
else
disp('it is singly reinforced beam')
end
astlim $=$ mulim $/\left(\left(0.87^{*} \mathrm{fy}\right) *\left(\mathrm{~d}-\left(0.42^{*}\right.\right.\right.$ xumax $\left.\left.)\right)\right)$
$\% 3$) determination of mu2, ast2,asc,ast
mu2=mumax-mulim
\% calculating from the table
fsc=346.4;
fcc $=0.446 *$ fck
asc $=$ mu2 $/\left((\mathrm{fsc}-\mathrm{fcc})^{*}(\right.$ d-cover $\left.)\right)$
ast2 $=$ mu2 $/(0.87 *$ fy $*($ d-cover $))$
ast=astlim+ast2
\% 4) check for min \& max tension \& comp steel
$\%$ a) in compression
$\operatorname{minasc}=\left(0.2 *{ }^{*} * \mathrm{D}\right) / 100$
$\operatorname{maxasc}=\left(4 *{ }^{*}{ }^{*} \mathrm{D}\right) / 100$
if minasc<asc
disp('hence ok')
elseif asc $<$ maxasc
disp('hence ok')
else
disp('check again')
end

Appendix-E (Programming in MATLAB-Design of Slab)

Flowchart: Design constant and limiting depth of N.A. \longrightarrow Calculation of load and moment \longrightarrow
Calculation of effective depth \longrightarrow Calculation of area of steel (Short span) \longrightarrow Calculation of area of steel (Long span)

> MATLAB programming:
> $\% ~ 1)$ design constant and limiting depth of N.A.
> $\%$ given
> $\%$ fck $=25 ; \mathrm{fy}=415 ;$ xumax $/ \mathrm{d}=0.479 ; \mathrm{ru}=2.761$;
> $\mathrm{a}=20^{*} 1.68$
> $\mathrm{l}=4000$;
> $\mathrm{d}=\mathrm{l} / \mathrm{a}$
> $\%$ providing nominal cover of $20 \mathrm{~mm} \& 8 \mathrm{~mm}$ dia bars
> $\mathrm{td}=\mathrm{d}+20+8 / 2$
> $\%$ providing overall depth of 180 mm
> $\%$ i) weight of slab per sqm
> ws=0.18* $1^{*} 1^{*} 25000$

```
\% ii)super imposed load
\(\mathrm{sl}=3000\);
\(\mathrm{tl}=\mathrm{ws}+\mathrm{sl}\)
\(\mathrm{wu}=1.5 * \mathrm{tl}\)
\(\%\) taking effective depth \(=150 \mathrm{~mm}\)
\(\mathrm{ly}=6+0.15\)
\(\mathrm{lx}=5+0.15\)
\(r=1 y / l x\)
\% from table
alpx \(=0.072\);
alpy \(=0.056\);
mux \(=\) alpx \({ }^{*}{ }^{*} u^{*}(1 \mathrm{x})^{\wedge} 2\)
muy \(=\) alpy* \({ }^{*}\) wu* \(^{*}(\mathrm{~lx})^{\wedge} 2\)
\% 3)computational of eff depth
ru=2.76;
d=sqrt(mux*1000/ru*1000)
\(\mathrm{d}=\operatorname{sqrt}\left(\left(\right.\right.\) mux \(\left.\left.^{*} 1000\right) / \mathrm{ru}^{*} 1000\right)\)
\(\mathrm{d}=\operatorname{sqrt}\left(\left(\right.\right.\) mux* \(\left.^{*} 1000\right) /\left(\right.\) ru* \(\left.\left.^{*} 1000\right)\right)\)
\(\%\) available depth for short span
adsh=180-20-(8/2)
\(\%\) available depth for long span
adlp=adsh-8
\(\% 4)\) computation of steel reinforcement for short span
fck \(=20\);
c1 \(1=1-\left(\left(4.6^{*}\right.\right.\) mux \(\left.^{*} 1000\right) /\left(\right.\) fck \(\left.\left.^{*} 1000^{*}(\text { adsh })^{\wedge} 2\right)\right)\)
\(\mathrm{fy}=415\);
astx \(=\left(0.5 * f{ }^{*} \mathrm{fck}^{*}(1-\mathrm{sqrt}(\mathrm{c} 1))^{*} 1000^{*} \mathrm{adsh}\right) / \mathrm{fy}\)
\% spacing
\(\mathrm{sx}=\left(1000^{*}\left(0.785^{*} 8^{\wedge} 2\right)\right) /\) astx
\% use 8mm dia bars@ 120mm c/c
\(\% 5\) ) computation of reinforcement for long span
astx \(=\left(0.5^{*}\right.\) fck \(*(1-s q r t(c 1))^{*} 1000^{*}\) adsh \() / \mathrm{fy}\)
c2 \(=1-\left(\left(4.6^{*}\right.\right.\) muy \(\left.^{*} 1000\right) /\left(\right.\) fck \(\left.\left.^{*} 1000^{*}(\mathrm{adlp})^{\wedge} 2\right)\right)\)
asty \(=\left(0.5 *{ }^{*} \mathrm{fck} *(1-\mathrm{sqrt}(\mathrm{c} 2)){ }^{*} 1000^{*}\right.\) adlp) \() / \mathrm{fy}\)
\%provide 8 mm dia. bars
\% spacing
\(\operatorname{sy}=\left(1000^{*}\left(0.785^{*} 8^{\wedge} 2\right)\right) /\) asty
\% hence provide 8mm dia. bars @ 150mm c/c
```

