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ABSTRACT 

The purpose of this study is to forecast the import demand of table 

grapes of Thailand using monthly time series from January 2007 to 

April 2020. The ADF unit root test is used for stationarity checking, 

and seasonal autoregressive integrated moving average (SARIMA) is 

applied to forecast the import demand of table grapes. The results 

revealed that the integration of time series was in the first difference 

for non-seasonal and seasonal order. The best-fitted forecasting model 

was SARIMA(1,1,3)(2,1,0)12. The forecasted period for the next eight 

months showed the import demand of table grapes of Thailand that is 

slightly decreased by an average of 11.398 percent, with overall 

expected to decrease by an average of 15.218 percent in 2020.  

 

 

Contribution/ Originality 

The forecasting of table grapes in Thailand is less studied in the literature. Seasonal Autoregressive 

Integrated Moving Average model is appropriate to forecast the time series composed of trend and 

seasonal elements that is applied in this study.  
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1. INTRODUCTION  
 

Grapes have long been an important fruit for the world’s consumers. It is an economic crop that 

generates income for farmers. Grapes can be eaten fresh or processed into various products. It 

contains medicinal properties to prevent disease and can be used as a component in cosmetic 

products, and so on. It has been assumed that grapes were imported to Thailand and planted since 

the reign of King Rama V, in which grape varieties started to have been developed. The table grape 

varieties, consisting of White Malaga, Black Opal, and Cardinal, are largely planted and consumed 

in Thailand. At present, there have been successive demand for grapes, but the production is not 

sufficient to meet domestic consumption. According to the 2018’s statistics, Thailand has imported 

more than 118,316 tons of table grapes from foreign countries, equivalent to 4,854 million baht or 

accounted for 14.41 percent compared to all imported value of fruits and products, while Thailand’s 

grape production capacity can supply only 14,305 tons. The top exporters of table grapes to 

Thailand are China, Australia, Peru, the United States, and India, respectively (Department of 

Agricultural Extension 2019; Office of the Permanent Secretary 2019; Office of Agricultural 

Economics, 2020). This data shows that there is still a large amount of excess demand occurring 

within the country each year. The main reasons that Thai farmers do not grow grapes or with low 

yield are attributed to the highly paid investment and relatively high production cost, such as a 

plastic house, net house coverings, labor wages, fertilizers, pesticides, pest control costs, 

maintenance costs, insufficient knowledge and sources of funds. As such, these hinder small 

farmers from growing grapes. The grape planting, compared to other crops, has a high risk due to 

diseases, pests, as well as rising climate change that easily causes harm. To circumvent these 

problems needs a lot of capital; however, grapes’ price that farmers sell has been unstable. Besides, 

the import of grapes from abroad is also at a lower cost than domestic; thus, some people import 

table grapes from foreign countries instead of investing in domestic planting. 

 

Forecasting import demand for table grapes of Thailand is an important plan in dealing with 

domestic consumption needs. According to a review of documents and related research, few studies 

have been published which examine these issues. For example, Lertsivanont and Boonserm (2014) 

forecasted the import demand of table grapes from China using quarterly time series over the 4th 

quarter of 2003 to the 4th quarter of 2012 with a total of 40 samples which were analyzed using the 

vector autoregressive model (VAR) followed by the forward data forecast until 2015. The results of 

this study show that per capita income determined the import demand of grapes from China. In 

other words, if people have more income, the import demand for grapes from China will be more 

likely to increase until 2015. However, studies related to forecasting of agricultural production by 

using time series analysis have a large number of case studies, such as Jatuporn and Sukprasert 

(2016) developed the forecasting models of rubber production and export quantity of Thailand. The 

statistical methodology consists of three techniques, namely, a regression model with seasonal 

dummy and time trend, Box-Jenkins concepts, and exponential smoothing. To compare the 

efficiency of the forecasting models, Jatuporn and Sukprasert (2016) used the root mean square 

error (RMSE) to determine the best-fitted model and then forecasted the data forward for 16 

months. The empirical results found that the regression with seasonal dummy and time trend is the 

best-fitted model based on the lowest value of the RMSE benchmark. 

 

Moreover, Keerativibool (2014) forecasted the export value of Thai Jasmine rice using monthly 

time series, starting from June 2002 to July 2013, and a total of 134 samples were collected. The 

study considered three forecasting models by Box-Jenkins, Winters additive exponential 

smoothing, and combined forecasting method. The study used the mean absolute percentage error 

(MAPE) as a criterion for comparing the accuracy of the forecasts. The results indicated that the 

combined forecasting method is the most accurate method that provides the lowest value of the 

MAPE statistics. Likewise, Masood et al. (2018) used time series models to predict wheat 

production in Pakistan based on linear, quadratic, exponential, S-Curve, double exponential 

smoothing, single exponential smoothing, moving average, and ARIMA. The conclusion of 
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Masood et al. (2018) showed that ARIMA(2,1,2) was selected as the best forecasting model to 

predict wheat production in Pakistan. Numerous studies employed the relationship between actual 

and forecasted value using the correlation coefficient to explain forecasting model efficiency [see, 

for instance, Lim et al. (2009a), Chang et al. (2009), and Kulthatpong et al. (2019)]. 

 

The objective of this study is to forecast the import demand of table grapes of Thailand using the 

Box-Jenkins procedure. The Akaike criterion and Schwarz criterion are utilized to select the fitted 

model of ARIMA(p,d,q), as of Kuo et al. (2008), Lim et al. (2009b), and Saengwong et al. (2012). 

In the next section, the research methodology consisting of data, variables, and forecasting model, 

is explained. Then, the results of the empirical study and conclusions as proposed policy 

suggestions are discussed.  

 

2. METHODOLOGY 
 

The data of this study is the monthly time series, from January 2007 to April 2020, a total of 160 

samples are gathered from the Information and Communication Technology Center, Office of the 

Permanent Secretary, Ministry of Commerce with cooperation from the Customs Department. For 

the variable (QGRAPE), the number of table grape imports is used with the harmonize code of 

08061000.  

 

The analysis of time series techniques requires the testing of the properties of the time series 

because erroneous results would probably arise if the data used in the analysis is not stationary 

(Non-stationary process). The problem is called a spurious relationship, which results from the 

influence of time distorting the outcomes (Granger and Newbold, 1974). The checking can be 

examined by various means, such as considering the line graph, correlogram diagram, or statistical 

testing by using the unit root method. However, analyzing the time series properties of this study 

using the Augmented Dickey-Fuller (ADF) unit root of Dickey and Fuller (1979, 1981) has been 

performed in testing the stationarity of the QGRAPE which can be displayed as the equation (1), (2) 

and (3), respectively. 

 

∆QGRAPE,t = β1QGRAPE,t−1 + ∑ β2∆QGRAPE,t−i + εt                                      … … … … … … . . (1)

p

i=1

 

 

∆QGRAPE,t = α0 + β1QGRAPE,t−1 + ∑ β2∆QGRAPE,t−i + εt                             … … … … … … . . (2)

p

i=1

 

 

∆QGRAPE,t = α0 + δT + β1QGRAPE,t−1 + ∑ β2∆QGRAPE,t−i + εt                  … … … … … … . . (3)  

p

i=1

 

 

 

Where α, δ and β are identified as the parameters to be estimated, Δ is the differencing order, T is 

the time trend, t is the time period, ε is the error term, and p is the optimal lag selection of AR 

based on the lowest value of the Schwarz criterion. 

 

The forecasting models employed the time series method of Box et al. (1994) or autoregressive 

integrated moving average (ARIMA), which is a widely common model for analyzing and 

forecasting time series data. The method considered the behavior of the data itself in the past to 

determine the current pattern and predict future information. The model is divided into three 

components: AR(p), I(d), and MA(q) or ARIMA(p,d,q). The forecasting process using Box-Jenkins 

procedure can be divided into four steps (Gujarati and Porter, 2009): (1) identifying the 
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ARIMA(p,d,q) by considering I(d) with the ADF unit root and considering AR(p) and MA(q) with 

the correlogram diagram, respectively, (2) estimating the parameters with maximum likelihood 

(ML), (3) checking for the serial correlation with Ljung-Box Q statistics (QLB), and (4) forecasting 

forward for eight months till to December 2020. However, if the ARIMA(p,d,q) is found more than 

one model. It needs to be selected for the most fitted model using the lowest value of the Akaike 

criterion (AC) and Schwarz criterion (SC). ARIMA(p,d,q) was configured by the equation (4). 

 

∆QGRAPE,t = α0 + ∑ ϕi∆QGRAPE,t−i + ∑ θjεt−j

q

j=1

+ εt                                      … … … … … … . . (4)

p

i=1

 

 

Where p is specified as the past period of QGRAPE, q is the preceding period of ε, and ϕ and θ are the 

parameters to be estimated of AR(p) and MA(q), respectively. 

 

However, the ARIMA model in equation (4) is fitted for a time series without seasonality. In other 

words, ARIMA(p,d,q) is a model to predict time series that contains only the elements of a time 

trend. According to the variable (QGRAPE), it contains the influence of time trend and seasonal 

components. Therefore, Box et al. (1994) proposed the seasonal ARIMA model or 

SARIMA(p,d,q)(P,D,Q)s to predict the time series with time trend and seasonal elements by 

including additional P, D, Q and s as SAR(P), seasonal order of integration or I(D), SMA(Q) and 

seasonal frequency (s), respectively. SARIMA(p,d,q)(P,D,Q)s can be configured by the Equation 

(5). 

 

ϕp(B)P(Bs)(1 − B)d(1 − Bs)DQGRAPE,t = θq(B)ΘQ(Bs)εt                       … … … … … … . . (5) 

 

Where ϕp(B) and θq(B) are structured with no seasonal components of AR(p) and MA(q) 

respectively, while P(Bs) and ΘQ(Bs) are structures that contain seasonal components of SAR(P) 

and SMA(Q), respectively (Makridakis et al., 1998; Jatuporn et al., 2016). 

 

3. RESULTS AND DISCUSSION 
 

In time series analysis, it is necessary to examine the properties of the time series to prevent the 

spurious relationship because such problems will skew the results from the actual values. 

Therefore, in the process of testing the time series of QGRAPE, the test for stationarity by Dickey and 

Fuller (1979, 1981), the ADF unit root method was used. The null hypothesis (H0) is that the 

variable is a non-stationary time series. If the output does not have a statistical significance level of 

0.05, that is, the time series is non-stationarity, we have to find the first differencing order of the 

data and then retake the test until the data is stationarity.1   

 

Testing for stationarity by using the ADF unit root is shown in Table 1. The model is based under 

three conditions: (1) the ADF model without constant (α) and time trend (T), (2) the ADF model 

with constant (α), and (3) the ADF model with constant (α) and time trend (T). The results showed 

that the variable (QGRAPE) provided the t-ratio equal to (1.063), (-1.074), and (-1.605), respectively. 

The results of the analysis could not reject the null hypothesis of non-stationarity at a significance 

level of 0.05. It can be concluded that the QGRAPE time series is not stationarity at the normal level 

stage. Then, the data is converted to the first difference and then tested again, which specified the 

statistics of the t-ratio equal to (-12.097), (-12.311), and (-12.292), respectively. The results of the 

analysis rejected the null hypothesis at a significance level of 0.01, that is, the QGRAPE time series is 

stationarity with the order of integration or I(d) is equal to I(1). However, the QGRAPE time series 

contains seasonal components with the frequency of the seasonality (s) equal to 12. Therefore, there 

is a need to try out stationarity of the seasonal or I(D) as well. Also, the results of the analysis in 

                                                           
1 The data was analyzed using the Gretl program (Gnu Regression, Econometrics, and Time-series Library) 
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Table 1 showed that I(D) of the QGRAPE time series ranked the seasonal stationarity as the first 

seasonal difference with rejected the null hypothesis at a significance level of 0.01, that is, I(D) is 

equal to I(1) as specified the statistics of the t-ratio equal to (-5.254), (-5.230) and (-5.207), 

respectively.  

 

Table 1: The results of the ADF unit root test 
 

Model 
Non-seasonal I(0) Non-seasonal I(1) Seasonal I(1) 

t-ratio p-value t-ratio p-value t-ratio p-value 

ADF without α + T       

  QGRAPE 1.063 0.925 -12.097 <0.001 -5.254 <0.001 

ADF with α        

  QGRAPE -1.074 0.728 -12.311 <0.001 -5.230 <0.001 

ADF with α + T       

  QGRAPE -1.605 0.791 -12.292 <0.001 -5.207 <0.001 
 

ADF without α + T, ADF with α, and ADF with α + T refer to the unit root models from equation (1), (2), and 

(3), respectively. 

I(0), I(1), and I(D) refer to the order of integration of level stage for I(0), the first difference for I(1), and the 

first seasonal difference for I(D), respectively 

 

The results of the stationary testing of the QGRAPE time series can be concluded that the stationary 

rating I(d) is equal to I(1), the stationarity of the seasonal I(D) is equal to I(1) and the frequency of 

seasonality (s) is equal to 12; thus the model of SARIMA(p,d,q)(P,D,Q)s primarily represents 

SARIMA(p,1,q)(P,1,Q)12. Then, the forecasting model was determined by considering the 

correlogram diagram for decision making, and configured by the parameters with the next highest 

probability method. 

 

Table 2 presents the results of the parameter estimation using ML estimator of six models of 

SARIMA(p,d,q)(P,D,Q)s, which are fitted for forecasting based on the coefficients ϕ, θ, Φ and Θ at 

a significance level of 0.05. All the models in Table 2 were no serial correlation problem because 

the outputs from the QLB statistics could not reject the null hypothesis of the model without serial 

correlation. Finally, SARIMA(1,1,3)(2,1,0)12 is selected as the appropriate forecasting model 

because it shows the lowest value of the AC and SC statistics as (2744.625) and (2762.568), 

respectively. 

 

The forecasting results for import demand of table grapes of Thailand (QGRAPE) using the model of 

SARIMA(1,1,3)(2,1,0)12 found that the number of table grapes consumed in Thailand during the 

remaining eight months of the year 2020 is 98,863.572 tons, which decreased by 11.398 percent 

when compared to the same period of the previous year 2019. 
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 Table 2: The results of SARIMA(p,d,q)(P,D,Q)s 
 

Variable 
Coefficients of SARIMA(p,d,q)(P,D,Q)s 

(1,1,3)(2,1,0)12 (2,1,3)(0,1,1)12 (2,1,3)(1,1,0)12 (2,1,9)(0,1,1)12 (9,1,3)(0,1,1)12 (12,1,3)(0,1,0)12 

  ϕ1 -0.302*      

  ϕ2  -0.197* -0.231* -0.168* -0.177* -0.191* 

  ϕ9     0.171*  

  ϕ12      -0.509* 

  θ1  -0.347* -0.371* -0.389* -0.383* -0.396* 

  θ2 -0.333*      

  θ3 -0.447 -0.514* -0.489* -0.469* -0.506* -0.482* 

  θ9    0.261*   

  Φ1 -0.763*  -0.525*    

  Φ2 -0.381*      

  Θ1  -0.643*  -0.698* -0.627*  

Q6 (p-value) 2.582(0.108) 1.651(0.438) 0.719(0.698) 1.750(0.186) 1.530(0.216) 1.277(0.528) 

Q12 (p-value) 9.958(0.191) 11.328(0.184) 14.157(0.078) 9.068(0.248) 8.303(0.307) 15.066(0.058) 

AC 2744.625 2748.069 2760.822 2744.802 2746.142 2760.596 

SC 2762.568 2763.021 2775.774 2762.745 2764.085 2775.548 
 

* denotes the statistical significance at 5% level. 

QLB denotes the Ljung-Box Q statistics. 

AC and SC denote the Akaike criterion and Schwarz criterion 

ϕ, θ, Φ, and Θ denotes the estimated parameters of AR(p), MA(q), SAR(P) and SMA(Q), respectively. 
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4. CONCLUDING REMARKS 
 

The purpose of this study is to forecast the import demand of table grapes of Thailand using the 

Box-Jenkins procedure. The analysis of the fitting forecasting model is performed by considering 

the lowest value of the AC and SC statistics, which is SARIMA(1,1,3)(2,1,0)12 and then predicting 

for the next eight months to see the trend of demand for table grapes consumed in Thailand. 

Furthermore, the efficiency of the forecasting model SARIMA(p,d,q)(P,D,Q)s, according to the 

study of Lim et al. (2009a), Chang et al. (2009) and Kulthatpong et al. (2019), was analyzed from 

the correlation coefficient that can explain the relationship between the actual value and forecasted 

value. It was found that the forecasting model of SARIMA(1,1,3)(2,1,0)12, which was established, 

provides the forecasted value when compared to the actual value with the correlation coefficient 

equal to 0.925. This result suggests that the forecasting model can explain the correlation with the 

actual value (QGRAPE) up to 92.580 percent. The findings of this empirical study present that the 

import demand of table grapes to Thailand from January to April 2020 based on actual value 

decreased by 30.299 percent as well as the whole year of 2020 is expected to decrease by 15.218 

percent when compared to the same period of the previous year 2019. The dramatic decline in the 

import quantity of table grapes is the result of a Coronavirus disease (COVID-19) that has 

decreased domestic demand. 

 

The import of table grapes to Thailand has still massively existed. The main reason is that the 

production is insufficient for domestic consumption. The investment of farmers for grape plantation 

involves high production costs and intricate management. Given the climate change, insect, and 

pest epidemic, farmers who need to grow grapes in the plastic house with net house coverings 

require more efficient production control, which causes more production costs. Following the study 

of Promchon et al. (2018), it was found that many farmers stopped planting grapes and grew other 

crops instead. At present, the price that farmers sell does not encourage farmers to grow grapes due 

to its high risks. Based on empirical data, it was found that the import price of table grapes during 

the past five years (2015 - 2019) is likely to decrease by an average of 2.866 percent per year. 

Moreover, the import price of table grapes from abroad has lower than the domestic price of 

7.971% in 2018. Therefore, entrepreneurs tend to import table grape from abroad to meet the needs 

of domestic consumption.  

 

The plan of planting grapes in response to domestic demand must be aligned with the imported 

quantity; otherwise, it will affect the price at which farmers could sell and their occupational future. 

The study suggests that the effective production system must be improved in some aspects, 

especially the planting of grapes in the plastic house with net house coverings that help produce 

higher quality products and provides a reasonable price with good quality. Besides, growing grapes 

in the plastic house with net house coverings can also reduce losses due to diseases, pests, climate 

fluctuations, and so on. However, the investment in building a plastic house with net coverings to 

grow grapes is relatively high. If the government sector comes to assist with low-interest loans or 

has crop insurance programs for grape growers, it will help them to bear a risk of growing grapes. 

Moreover, the government should assist in the development of grape production technology, 

especially the development of grape varieties to withstand diseases and pests or tolerate climate 

fluctuations. For future research recommendations, there should be more studies analyzing the 

efficiency of grape production and, cost and benefit of grape plantation with technologies to find 

the ways to produce the most efficient and the optimal cost with good product quality. Finally, risk 

management of grape plantation should, therefore, be performed to support farmers to grow the 

table grapes. 
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