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ABSTRACT 

The present paper presents a theoretical extension of our earlier work entitled“A comparative 

study of two models SV with MCMC algorithm” cited, Rev Quant Finan Acc (2012) 38:479-493 

DOI 10.1007/s11156-011-0236-1 where we propose initially a mixture stochastic volatility model 

providing a tractable method for capturing certain market characteristics. To estimate the 

parameter of a mixture stochastic volatility model, we first use the Expectation-Maximisation (EM) 

algorithm. The second step is to adopt the clustering approach to classify the database into subsets 

(clusters). 

Keywords: Mixture stochastic volatitlity model, Expectation-Maximization algorithm, clustering 

approach. 

JEL classification: C51, C53, E37   

 

INTRODUCTION 

 

The stochastic volatility (SV) model proposed by Taylor (1982) has become more and more 

popular for clearing up the behavior of financial time series such as stock prices and exchange 

rates. It consists of couple of equations that describe how the returns depend on the volatility. 

Stochastic volatility models (SV) are designed to fit this time-varying behaviour in the conditional 

variance of returns see Harvey, Ruiz et al. (1994). 

 

Danielson (1994) and Sandmann and Koopman (1998) used classical inference methods simulation 

to SV model while, Melino and Turnbull (1990) utilized a generalized method (GMM) approach. 

Liesenfeld and Richard (2003) used a maximum likelihood approach based upon efficient 
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importance sampling. Recently, particle method like Monte Carlo have been applied to the SV 

model Manabu Asai (2008) and Hachicha (2012), where they apply the Metroplis hasting algorithm 

to Markov chain. 

 

A simple single-factor SV model appears to be sufficient to capture extreme value, but mixture 

model provides a tractable method for capturing certain market characteristics. Several research 

until now, have concentrated on analyzing of the SV models with a mixture of two normal 

distributions, Asai, McAleer et al. (2006), Asai (2009).  

 

Ningning and Zhidong (2011) prove that the expectation maximization (EM) algorithm is an 

efficient iterative method for finding maximum likelihood computationally and works well for 

unrounded data in most cases. Wojciech (2012) has recently proposed an estimator for convex 

optimization algorithms with a multivariate binary distribution that incorporates the correlation 

between individual variables. In addition, the EM algorithm is used for estimation of many 

probabilistic models, i.e., Finite Mixture Models (FMM), Gaussian Mixture Models (GMM) 

(Bilmes 1998), McLachlan and Basford (1988).  

 

In our case, we deal with the fixed parameter problem and adopt the EM algorithm to determine the 

distribution of the latent variables in the next expected step. Then, we adopt the clustering 

approach. This paper proceeds as follows, we first propose in section 1 a mixture of two stochastic 

volatility models; the ARSV-t and the SVOL model. Secondly, we use in section 2 the Expectation 

maximization algorithm (EM) in order to estimate the parameter. Finally, we apply in section 3 the 

clustering in order to classify the database according to the first or the second model. 

 

Mixture Model 

In order to present the mixture model we first recall the 1M
 and 2M

. 

1M
 is named the p-th order ARSV-t model, ARSV(p)-t, and is given by: 
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this specification, the conditional distribution, t , follows the standardised t-distribution with zero 

mean and unit variance. Since t  is independent of ),( tt  , the correlation coefficient between 

t  and t is also  . 

 

If )1,0(N , then; 
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The conditional posterior distribution of the volatility of 1M for )....,( 211 p 
 

is 

expressible as:
 

 

The second model 2M
is named SVOL model of Jacquier, Polson et al. (1994) with normally 

distributed conditional errors and it is presented by: 
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The conditional posterior distribution of the volatility of 2M
 
for  2  = ),,( v is given by: 
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Next, we combine the two models recall the 1M
 and 2M

. On one mixture model denoted by M, 

the density of the mixture model can be represented by the following formula: 

 

),,/(),,/(),/( 22221111 MVyfMVyfMyf t  
 

Which is equivalent to: 

)/()/(),/( 222111  ttt yfyfpyf 
 

 

Where   is parameter estimation ( 1 , 2 ), with 1 = ),....,( 21 p  and 2  = ),,( v and 

ty
is the stock market indices. 1  and 2  denote respectively the proportion of belonging to the 

model 1M and 2M which satisfies the condition 1 + 2 =1.  

The formula of bayes applied for the mixture model gives that: 

 

 

Where, 

vf is the density of the volatility model and 0f is the prior density of  . 

 

Expectation- Maximization Algorithm 

In order to maximize ),( Vf  , we use the EM (Expectation-Maximization) algorithm. However, 

using the EM technique, we can find locally MAP (maximum-a-posteriori) parameter estimates for 

the mixture model. 

Let ),......,( 21 TyyyY   be a sample of T independent observation from a mixture of two 

multivariate normal distributions of dimension d, and let ),......,( 21 TzzzZ  be the latent 

variables that determine the component from which observation originates. 

 

We consider that: 

                                   /()1/( 1 iii yfzy  ),...., 21 p  

                                   ),,/()2/( 2 viii yfzy   



Asian Economic and Financial Review, 2013, 3(4):553-569 

 

 
 

 

557 

 

Where, 

1)1( izP   and  12 1)2(  izP  

Where the likelihood function is: 
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Where 1 is an indicator function and f is the Probability Density Function (PDF).  

 

Camila, Rignaldo et al. (2012) develop a local influence analysis for measurement error models 

inspired by the EM algorithm proposed by (Lachos, Vilca-Labra et al. 2010). 

 

The EM algorithm is an efficient iterative process to compute the maximum likelihood (ML) by 

iteratively applying the following two steps: the E-step, and the M-step.  In the E-step, the absent 

data are estimated given the observed data. This is achieved by the conditional expectation to 

evaluate the posterior assignment probabilities. In the M-step, the likelihood function is maximized 

under the hypothesis that is used instead of the actual missing data. The EM has become a 

fashionable instrument in statistical estimation problems concerning uncompleted data which can 

be posed in a similar form like mixture estimation. 

Step E: use the current 
)(t  , to estimate component membership of each unlabeled document, i.e.,  

the probability that each mixture component generated each document.  

 

 

Step M: re-estimate 
)(t . Use maximum a posteriori parameter estimation to find: 
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The Clustering  

The classification is used in most cases for classifying documents, news articles and web pages 

(Lewis and Gale 1994), Joachims (1998), Craven, DiPasquo et al. (1998). 
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After applying the EM algorithm, we obtain the estimation parameter. In order to classify the data 

in model 1M  or 2M , we opt for the hierarchical algorithm method and we compare the quantity 

11
ˆˆ f  and  22

ˆˆ f  

Si )(ˆˆ)(ˆˆ
122111  tt yfyf    alors 11 Myt   

 Sinon 21 Myt   

CONCLUSION 

 

Through this paper, we have presented a theoretical approach to estimate the parameters of the 

mixture model by applying Expectation-Maximization (EM) algorithm as a first step. Then, we 

have classified data according to stochastic volatility models to apply the technique of EM to 

resolve problems of system identification. 
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