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ABSTRACT 

Synchronization of chaos has widely spread as an important issue in nonlinear systems and is one 

of the most important branches on the problem of controlling of chaos. In this paper, among 

different chaotic systems the economy chaotic system has been selected. The main aim of this paper 

is the designing based on the active sliding mode control for the synchronization of fractional-

order chaotic systems. The chaos in the economic series could have serious and very different 

consequences in common macro-economy models. In this paper, this article expressed the various 

positions of synchronization in economic system that include of changes in the coefficients of the 

system ,changes in the initial conditions of the system and different fractional-order 

synchronization on the economic system in which Synchronization is shown in some examples. 

Keywords:  Economic system, Chaos, Chaos control, Synchronization, Active sliding mode 

controller, Fractional order. 

 

1. INTRODUCTION 

Synchronization between two systems is one of the important processes in the control of 

complex phenomena for chemical, physical, and biological systems. The goal of complete 

synchronization or anti-synchronization is to synchronize the states of slave system identical or 

opposite to the states of master system, many approaches were reported to study chaos 

synchronizations for certain types of chaotic attractors such as active control (Chen et al., 2009), 

adaptive control (Li et al., 2010; Yang, 2012). In the last few years, economy physics has been 

raised to an alternative scientific methodology to understand the highly complex dynamics of real 

financial and economic systems. Researchers are striving to explain the central features of 

economic data: irregular microeconomic fluctuations, erratic macroeconomic fluctuations (business 

cycles), irregular growth, structural changes, and overlapping waves of economic development. In 
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recent years, the importance of chaos in economics has tremendously increased: ‘‘chaos represents 

a radical change of perspective on business cycles’’ (Serletic, 1996). Chaos is the inherent 

randomness in a definite system. The randomness is caused by system internals, not by external 

disturbances. The main features of deterministic chaos, such as the complex patterns of phase 

portraits and positive Lyapunov exponents, have been found in many economic. aggregate data 

such as the gross national product (Chen, 1988). Many continuous chaotic models have been 

proposed to study complex economic dynamics in the literature, e.g., the forced van der Pol model 

(Chian, 2000; Chian et al., 2006), the IS-ML model (Fanti and Manfredi, 2006). In the last few 

years, economy physics has been raised to an alternative scientific methodology to understand the 

highly  complex dynamics of real financial and economic systems. Meanwhile, most of precious 

studies have been shown that some fractional-order systems exhibit chaotic behavior (Ahmad and 

Sprott, 2003; Zhou and Ding, 2012). Some approaches based on this configuration have been 

attained to achieve chaos synchronization in fractional-order chaotic systems, such as PC control 

(Li and Deng, 2006). Active control  (Bhalekar and Daftardar-Gejji, 2010). sliding mode control 

(SMC) (Chen et al., 2012), etc. In which, the sliding mode controller has some attractive 

advantages, including  ,fast dynamic responses and good transient performance; external 

disturbance rejection; insensitivity to parameter variations and model uncertainties (Slotine and Li, 

1991; Boiko et al., 2006). In addition, SMC method plays an important role in the application to 

practical problems. For example, in (Tavazoei and Haeri, 2008), Tavazoei MS and his co-operator 

proposed a controller based on active sliding mode theory to synchronize chaotic fractional-order 

systems in master-slave structure. In (Wang et al., 2012), the problem of modified projective 

synchronization of fractional-order chaotic system was considered, and finite-time synchronization 

of non-autonomous fractional-order uncertain chaotic systems was investigated by Aghababa MP 

in (Aghababa, 2012).also, that all fluctuations in financial variables are correlated with all future 

fluctuations. This was our motivation for describing financial systems using a fractional nonlinear 

model since it simultaneously possesses memory and chaos Chaotic attractors have been found in 

fractional-order systems (Ge and Zhang; Hartley et al., 1995) in the past decade. Recently, the 

present author and Chen (Chen and Chen) investigated the chaotic behavior of the van der Pol 

equation with physically fractional damping .and study examines the two most attractive 

characteristics, memory and chaos, in simulations of financial systems (Wei-Ching, 2008). In this 

paper, among different chaotic systems the economy chaotic system has been selected. The main 

aim of this paper is the designing based on the active sliding mode control for the synchronization 

of fractional-order chaotic systems this article expressed the various positions of synchronization in 

economic system that include of changes in the coefficients of the system ,changes in the initial 

conditions of the system and different fractional-order synchronization on the economic system. . in 

which Synchronization is shown in some examples. 
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2. CHAOTIC SYSTEMS 

Chaos is a long-term behavior of no periodic in a Deterministic system which shows sensitive 

dependence on initial conditions. By long-term non-periodic behavior of the dynamical systems we 

mean that there are paths when time tends to infinity, the paths of these systems are not leading to 

fixed points, periodic orbits and quasi-periodic orbits. By being sensitive to the initial conditions in 

dynamical systems, we mean that the adjacent channels are separated rapidly and dramatically. In 

fact, this feature is the main difference between non-chaotic dynamical systems and chaotic 

dynamical systems. 

 

3. FINANCIAL SYSTEM 

3.1. Dynamic of Financial System 

Recently, the studies in (Ma and Chen, 2001) have reported a dynamic model of finance, 

composed of three first-order differential equations. The model describes the time-variation of three 

state variables: the interest rate x, the investment demand y, and the price index z. The factors that 

influence the changes of x mainly come from two aspects: firstly, it is the contradiction from the 

investment market, _the surplus between investment and savings_; secondly, it is the structure 

adjustment from goods prices. The changing rate of y is in proportion with the rate of investment, 

and in proportion by inversion with the cost of investment and the interest rate. The changes of z, 

on one hand, are controlled by the contradiction between supply and demand of the commercial 

market, and on the other hand, are influenced by the inflation rate. Here we suppose that the 

amount of supplies and demands of commercials is constant in a certain period of time, and that the 

amount of supplies and demands of commercials is in proportion by inversion with the prices. 

However, the changes of the inflation rate can in fact be represented by the changes of the real 

interest rate and the inflation rate equals the nominal interest rate subtracts the real interest rate. 

The original model has nine independent parameters to be adjusted, so it needs to be further 

simplified. Therefore, by choosing the appropriate coordinate system and setting an appropriate 

dimension to every state variable, we can get the following more simplified model with only three 

most important parameters:(Mohammed Salah Abd-Elouahab et al., 2010). 

                                                                          (1) 

Where  the saving is amount, the cost per investment, and  is the elasticity of 

demand of commercial markets. It is obvious that all three constants, a, b, and c, are nonnegative. 

 

4. ACTIVE SLIDING MODE CONTROLLER DESIGN AND ANALYSIS OF 

ECONOMIC SYSTEMS 

4.1. Active Sliding Mode Controller Design 

Consider a chaotic fractional-order system of order  described by the following 

nonlinear fractional-order differential equation. 
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                    (2) 

The controller  is added into the slave system, so it is given by. 

              (3) 

Synchronization of the systems means finding a control signal that makes states of the 

slave system to evolve as the states of the master system. 

That the non-linear are system: 

        (4)  

Where: 

     (5) 

And To simplify the notations, the linear part of the slave system 

is represented by matrix 2A A
The aim is to design the controller 

3)( Rtu 
 such 

that: 

                              (6) 

In accordance with the active control design procedure], the nonlinear part of the error dynamics is 

eliminated by the following choice of the input vector: 

            ( 7) 

here is a constant gain vector . 

in which is a switching surface that prescribes the desired dynamics. 

 

4.2. Sliding surface design   

The sliding surface can be defined as follows: 

                                 ( 8) 
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       ( 9)            
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Where,  is a constant vector. The equivalent control is found by the fact that   is 

a necessary condition for the state trajectory to stay on the switching surface Hence, when in 

sliding mode, the controlled system satisfies the following conditions: 

                                                        ( 10) 

.the error dynamics on the sliding surface are determined by the following relation: 

                  ( 11) 

 

4.3. Design of the Sliding Mode Controller 

We consider the constant plus proportional rate reaching law in our study  (Zhang et al., 2004; 

Haeri et al., 2007). Then the reaching law is chosen as: 

                       (12) 

where sgn(.) denotes the sign function. The gains  and  are determined such that the 

sliding condition is satisfied and the sliding mode motion occurs.  

 

5. NUMERICAL SIMULATIONS 

The main aim of this paper is the designing based on the active sliding mode control for the 

synchronization of fractional-order chaotic systems. The chaos in the economic series could have 

serious and very different consequences in common macro-economy models. The controlled 

systems in this thesis are based on the framework of master – slave which was followed by a two 

different -stage design in this paper. At first, the active sliding mode controller has been designed 

for synchronization of chaotic systems of chaotic economic with different fractional order and it 

adds uncertainty to the system. Finally, the active sliding mode controller was designed to 

synchronize chaotic economic systems with different fractional order. 

 

5.1. Simulation 1 

Numerical simulations for chaotic economic system with different fractional-orders and with 

changing the system initial conditions and in the coefficients of the system are presented. 

It is obvious that all three constants, a, b, and c, are nonnegative. Where The master system 

a=3,b=0.1,c=1and initial conditions(2,3,2) Is considered. Where The slave system a=3.2, 

b=1.01,c=1.05and initial conditions(3,4,3) Is considered. in which Synchronization is shown in 

Figures( 1,2,3),and error reach to minimize such that it is shown in fig(4,5,6). 
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Slave system: 

 

 

 

(Fig-1. Master and slave systems state synchronized trajectories [x1,x2] ) 

 

 

(Fig-2. Master and slave systems state synchronized trajectories [y1,y2] ) 

 

 

(Fig-3. Master and slave systems state synchronized trajectories [z1,z2] ) 
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(Fig-4. Error trajectories of the synchronized master and slave systems [x1,x2]) 

 

 (Fig-5. Error trajectories of the synchronized master and slave systems [y1,y2])  

 

 

(Fig-6. Error trajectories of the synchronized master and slave systems [z1,z2]) 

 

 

(Fig-7. Sliding surface) 
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(Fig-8. Control signals) 

 

 

 

5.2. Simulation 2 

In this part the designing of active sliding mode controller for synchronization of chaotic 

economic system considering two different initial conditions and the 0.84 order is presented. 

Where The master system a=3, b=0.1, c=1and initial conditions (2, 3, 2) Is considered .Where The 

slave system a=3, b=1., c=1, and initial conditions (3, 4, 3) is considered. In which Synchronization 

is shown in Figs. (9, 10, 11), and error reach to minimize such that it is shown in Figs. (12, 13, 14). 
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(Fig-9.Master and slave systems state synchronized trajectories [x1,x2] ) 

 

 

(Fig-10. Master and slave systems state synchronized trajectories [y1,y2] ) 

 

 

(Fig-11. Master and slave systems state synchronized trajectories [z1,z2] ) 

 

  

(Fig-12. Error trajectories of the synchronized master and slave systems [x1,x2]) 

 

 

 

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

t

x
1
,x

2

 

 

x1

x2

0 5 10 15 20 25 30 35 40
1

1.5

2

2.5

3

3.5

4

t

y
1
,y

2

 

 

y1

y2

0 5 10 15 20 25 30 35 40
-1

-0.5

0

0.5

1

1.5

2

2.5

3

t

z
1
,z

2

 

 
z1

z2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

e
1



Asian Economic and Financial Review, 2014, 4(5): 692-704 

 

 

 

701 

 

 

 

(Fig-13. Error trajectories of the synchronized master and slave systems [y1,y2]) 

 

 

(Fig-14. Error trajectories of the synchronized master and slave systems [z1,z2]) 

 

 

(Fig-15. Sliding surface) 
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 (Fig-16. Control signals) 

 

 

 

 

6. CONCLUSIONS 

In this article we proposed an active sliding mode control for synchronization of chaotic 

systems with different and the same orders in the form of master-slave systems. In addition, we 

provided a stability analysis of the proposed controller. Using active sliding mode control would be 

quite useful for systems with fractional derivatives. With the right choice of control parameters (r, 

K, C)-based and client (sequent) systems are synchronized. The sliding control nature improves the 

robustness of the controller. Trade between robustness and efficiency can be accomplished by 

altering the parameter p. Numerical simulation shows the usefulness of the proposed controller to 

synchronize the fractional-order chaotic systems. in which Synchronization is shown in some 

examples. 
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