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ABSTRACT 

One presents and discusses an alternative solution writeable in closed form of the Heston’s PDE, 

for which the solution is known in literature, up to an inverse Fourier transform. Since the 

algorithm to compute the inverse Fourier Transform is not able to be applied easily for every 

payoff, one has elaborated a new methodology based on changing of variables which is 

independent of payoffs and does not need to use the inverse Fourier transform algorithm or 

numerical methods as Finite Difference and Monte Carlo simulation. In particular, one will 

compute the price of Vanilla Options for small maturities in order to validate numerically the 

Geometrical Transformations technique. The principal achievement is to use an analytical formula 

to compute the prices of derivatives, in order to manage, balance any portfolio through the Greeks, 

that by the proposed solution one is able to compute analytically. The above mentioned numerical 

techniques are computationally expensive in the stochastic volatility market models and for this 

reason is usually employed the Black Scholes model, that is unsuitable, as it has been widely 

proven in literature to compute the sensitivities of a portfolio and the price of derivatives. The 

present article wants to introduce a new approach to solve PDEs complicated, such as, those 

coming out from the stochastic volatility market models, with the achievement to reduce the 

computational cost and thus  the time machine; besides, the proposed solution is easy to be 

generalized by adding jump processes as well. The present research work is rather technical  and 

one does wide use of functional analysis. For the conceptual simplicity of the technique, one 

confides which many applications and studies will follow, extending the applications of the 

Geometrical Transformations technique to other derivative contracts of different styles and asset 

classes. 

Keywords: Quantitative finance, Option pricing, PDEs, Stochastic volatility models, Heston, 

Numerical methods, European option, Sensitivities.    

 

1. INTRODUCTION 

The Black and Scholes model rests upon a number of assumptions that are, to some extent, 

 

 

 
Asian Economic and Financial Review 

 
 
 

journal homepage: http://www.aessweb.com/journals/5002  



Asian Economic and Financial Review, 2014, 4(6): 793-807 

 

 

 

794 

 

strategic. Among these there are the continuity of the stock price process (it does not jump), the 

ability to hedge continuously without transaction costs, independent Gaussian returns, and constant 

volatility. One is going to focus here on relaxing the last assumption by allowing volatility to vary 

randomly, for the following reason: a well known discrepancy between the Black and Scholes 

predicted European option prices and market traded options prices, the smile curve, can be 

accounted for by stochastic volatility models. Modelling volatility as a stochastic process is 

motivated a priori by empirical studies of the stock price returns in which estimated volatility is 

observed to exhibit random characteristics. Additionally, the effects of transaction costs show up, 

under many models, as uncertainty in the volatility; fat tailed returns distributions can be simulated 

by stochastic volatility. The assumption of constant volatility is not reasonable, since one requires 

different values for the volatility parameter for different strikes and different expiries to match 

market prices. The volatility parameter that is required in the Black Scholes formula to reproduce 

market prices is called the implied volatility. This is a critical internal inconsistency, since the 

implied volatility of the underlying should not be dependent on the specifications of the contract. 

Thus to obtain market prices of options maturing at a certain date, volatility needs to be a function 

of the strike. This function is the so called volatility skew or smile. Furthermore for a fixed strike 

one also needs to different volatility parameters to match the market prices of options maturing on 

different dates written on the same underlying, hence volatility is a function of both the strike and 

the expiry date of the derivative security. This bivariate function is called the volatility surface. 

There are two prominent ways of working around this problem, namely, local volatility models and 

stochastic volatility models. For local volatility models the assumption of constant volatility made 

in Black and Scholes is relaxed. The underlying risk-neutral stochastic process becomes: 

 

where r(t) is the instantaneous forward rate of maturity t implied by the yield curve and the 

function σ(St, t) is chosen (calibrated) such that the model is consistent with market data. It is 

claimed in Hagan et al. (2002) that local volatility models predict that the smile shifts to higher 

prices (or lower prices) when the price of the underlying decreases (or increases). This is in contrast 

to the market behaviour where the smile shifts to higher prices (or lower prices) when the price of 

the underlying increases (or decreases). Another way of working around the inconsistency of 

introduced by constant volatility is by a stochastic process for the volatility itself; such models are 

called stochastic volatility models. The major advances in stochastic volatility models are in Hull 

and White (1987), Heston (1993) and Hagan et al. (2002). Generally speaking, stochastic volatility 

models are not complete, and thus a typical contingent claim (such as a European option) cannot be 

priced by arbitrage. In other words, the standard replication arguments can no longer be applied. 

For this reason, the issue of valuation of derivative securities under market incompleteness has 

attracted considerable attention in recent years, and various alternative approaches to this problem 

have been subsequently developed. Seen from a different perspective, the incompleteness of a 

generic stochastic volatility model is reflected by the fact that the class of all martingale measures 
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for the process St/Bt comprises more than one probability measure, and thus there is the necessity to 

specify a single pricing probability measure. For this purpose, one needs to first specify the market 

price of volatility risk λ(ν, t). Mathematically speaking, the market price for the risk is associated to 

the drift of stochastic processes and it can be changed by the Girsanov’s theorem. Let us observe 

that the price of volatility risk λ(ν, t) has to satisfy the Feller condition, such that the volatility 

process is nonnegative, and Hason (2010). 

 

2. HESTON PDE AND ITS TRANSFORMATIONS 

In this section one discusses a series of coordinate transformations in order to reduce the 

Heston PDE in a simpler. Assume that the dynamic of the couple of diffusion processes (St, νt), 

under a martingale measure, is given by (1), that is the famous Heston market model: 

(1) 

where EQ[dWt
(1)

xdWt
(2)

]=ρdt  for some constant ρ∈[−1, +1], and suppose also that both 

processes St and νt, are nonnegative. 

By Ito’s lemma one has the two-dimensional PDE (2), and for solving it, suitable numerical 

procedures need to be employed. The calculations based on the discretization of the partial 

differential equation satisfied by the pricing function appear excessively time consuming. An 

alternative Monte Carlo approach for stochastic volatility models has been examined by Fourier 

approach, but also in this case one has an excessively time consuming. Other techniques are 

introduced from Forde and Jacquier (2009), Avramidi (2010) and Dell’Era (2010), which are not 

without problems. 

 Following the idea to reduce the Heston’s PDE in another simpler, by the change of variables, 

see [12], one can obtain an alternative solution which could be useful for its generality.  

 One shows the proposed method in what follows: one writse the partial differential equation 

for pricing options, assuming that (1) is the market model and  f (T, ST, νT)  is the payoff of a 

derivative contract: 

(2) 

where φ(ST ) is a general payoff function for a derivative security. Consider some coordinate 

transformations in the right order: 
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thus one has: 

 

 

Again, one makes another coordinates transformation: 

 

 

 

and one has: 

 

 

 

Finally, by the third coordinates transformation: 

 

 

 

f2(t, ξ, η) = f3(τ, γ, υ)  where γ=γ(t, ξ), υ=υ(t, η) and τ is a random variable, function of the variable 

t, for the Fundamental Theorem of Integral Calculus. 

That being said, by the third transformation one obtains the following PDE: 



Asian Economic and Financial Review, 2014, 4(6): 793-807 

 

 

 

797 

 

 

 

(3) 

which is simpler than (2). Imposing that: f3(τ,γ,υ) = e
aτ+bγ+cυ

f4(τ,γ,υ), where: 

 

 

one has: 

    

(4) 

 

The solution of the PDE (4) is known in the literature (Andrei D. Polyanin, Handbook of Linear 

Partial Differential Equations, 2002, p. 188), and it can be written as integral, whose kernel 

G(0, γ′, υ′|τ, γ, υ) is a bivariate gaussian function: 

 

 

therefore 

 

 

namely since   one has: 
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and 

 

 

(5) 

where Φ4 is the payoff written in the new variables (γ, υ), see (4) and f4(u, γ, 0) is the value of the 

option over the time for υ = 0, that should be simulated; however it is not interesting and in what 

follows, one is going to consider only small maturities, such that the second term of the last integral 

goes to zero, since τ → 0  when T→0. 

 

3.VANILLA OPTION PRICING 

In order to test above option pricing formula (5), one considers as option, a Vanilla Call with 

strike price K and maturity T. In the new variable the payoff (ST−K)
+
 is equal to 

.
 
Substituting this latter in the equation (5) one has: 

 

(6) 

Avoiding all tedious computations, and using the stochastic notation, the solution is: 

 

       (7) 

where the term f4(u,γ,υ=0) is the value over the time, of the considered Option, written using the 

new variables (γ,υ), whereas u is an integration variable such as γ′.  
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The value of a Vanilla Option, by the solution (7) becomes, for small maturities (T → 0), equal to: 

 

 

(8) 

and this is true because for T → 0 also τ → 0, and the second integral of (7) is intuitively worthless.  

 

 So that, the solution (8) can be considered as an approximation for brief maturities of the 

general solution (7). 

 

4.NUMERICAL VALIDATION 

In what follows one considers the approximation τ → 0 which will be interpreted as the price 

of an Option with few days to maturity. From 1 day up to 10 days are suitable maturities to prove 

the validation hypothesis, at varying of the volatility. The chosen parameter values are those in 

Bakshi et al. (1997) namely κ = 1.15, Θ = 0.04, α = 0.39 and ρ = −0.64 where the spot interest rate 

is r = 10%, and strike price is K = $100, on the three different maturities T above indicated. It is 

worth noting that in all function arguments of the solution (8): ψ1(0), ψ2(0), a1,1, a1,2, a2,1, a2,2, there 

is the term: 

 

(see Appendix), which needs to be computed numerically, since νs is the variance process (1). 

However for large maturities, one can use the Ergodic theorem, for which: 

 

that is known analytically. 

In the table hereafter one can see the results of numerical experiments: 
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5. GREEKS 

Given a portfolio composed by equity assets, bond and derivatives, as for example European 

Call and Put Options, the most great problem that one has to deal is to manage the variation over 

the time of its value as well as to compute its daily risk exposition, by the Value at Risk techniques 

(VaR, CVaR, etc.). In all these cases one needs to compute the sensitivities, known in literature as 

Greeks. These latter  are defined by the following derivatives: 

 

 by which one can describe the sensitivities of a portfolio, to the variations of the value of held 

derivatives, with respect to the variations of the variables: St spot price, νt variance, (T-t) time to 

maturity and r spot interest rate. 

As one has just seen in the last section, the formula (8) computes right prices for small 

maturities of Vanilla Options, but it can be used also for other derivatives, thus to compute the 

sensitivities of a portfolio is rather simple, since one is able to compute these analytically by the 

formula (8) as: 
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 in this way, one can obtain a great computational advantage, together to the absence of 

numerical errors, due to numerical techniques. 

 

Usually, one uses Monte Carlo simulation method to compute Greeks by evaluating numerically 

the following expected value: 

 

       (9) 

where  is the payoff and (T-t, S, ν, r) is the intrinsic value at time t of the derivative. As one can 

image from (9),  to evaluate the sensitivities of a whole portfolio is really heavy from 

computational viewpoint and therefore to reduce the computational cost it is essential to manage 

better the wealth of a portfolio composed by several derivatives correlated to each other. 

 

6. CONCLUSIONS 

The main problem that one has using the Fourier’s technique for pricing options, is that there is  

any possibility to calculate the numeric error directly, but one needs to compare Fourier prices with 

Monte Carlo prices, for which one can manage the variance, establishing the error; besides the Fast 

Fourier Transform algorithm (known as FFT ) used to calculate the anti-Fourier transform for 

Vanilla Options, is not easy to generalize to other derivatives as well. For these reasons find a new 

approach to solve Heston’s PDE is a sensible argument in Finance, as shown by the wide literature, 

in which one can find many articles in matter (see the References section). The proposed method is 

straightforward from theoretical viewpoint and it is independent to the payoff and therefore, to 

price derivatives have the same algorithmic complexity for every payoff, unlike using Fourier 

Transform method, for which the complexity is tied to the payoff. By the introduced methodology, 

one reduces the Heston’s PDE in a simpler, using, in a right order, some suitable changing of 

variables, whose Jacobian has not singularity points, unless for ρ=±1 (this evidence gives the safety 

that the chosen variables are well defined). The PDE (4), which is the last transformed PDE, is an 

heat equation, whose solution is known in literature and it gives the price of options in closed form, 

as proven in the section Vanilla Option Pricing, by the equation (7). In the present paper one has 

discussed only a particular case, for small maturities, and the numerical results are satisfactory. But 

small maturities are sufficient to compute Greeks, that are an important instrument to manage and 

balance any portfolio composed with derivatives. For this reason one can think to use the proposed 

technique is better than Heston’s solution to evaluate VaR, CVaR and so on. The numerical 
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evidence gives the boost to spend other time in this research direction, in order to generalize the 

methodology for every maturity and payoff. The present article wants to be a new approach to 

solving PDEs complicated as come out from the Heston market model, for which the proposed 

solution is easy to generalize; with adding for example of jump processes. Therefore for the 

simplicity of the technique, one confides which many applications and studies will follow. 
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