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ABSTRACT 

The purpose of this paper is to price quanto interest-rate exchange options (QIREOs) based on a 

practical and easy-to-use interest-rate model. According to the payoff structure of QIREOs, the 

cross-currency LIBOR market model (CLMM), in which the initial LIBOR market model (LMM) is 

extended from a single-currency economy to a cross-currency economy, is suitable to be adopted to 

price four different types of quanto interest-rate exchange options in this article. Our pricing 

formulae represent the general formulae in the framework of the CLMM. Hedging strategies are 

also provided for practical implementation. 
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Contribution/ Originality 

This study originates new formulas for valuing different types of quanto interest-rate exchange 

options (QIREOs) under the framework of cross-currency LIBOR market model (CLMM). Our 

QIREO-pricing formulas are more tractable and feasible for practical implementation. 

 

1. INTRODUCTION 

Interest-rate exchange options (IREOs), also known as interest-rate difference options (IRDOs) 

or options on yield spreads (OOYSs), are written on the underlying difference between two interest 

rates with different maturities in a single-currency economy and denominated in the same currency, 

which is analogous to an option to exchange one asset for another studied in Margrabe (1978). For 
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example, the SYCURVE options introduced by Goldman, Sachs & Co. are calls and puts on the 

spread between two yields, typically a short-term yield and an intermediate- or long-term yield. 

When IREOs are written on the difference between two interest rates that are available in different 

currencies or between two interest rates in one foreign currency, with the final payments made in 

domestic currency in practice, such IREOs are called quanto interest-rate exchange options 

(QIREOs). When a cross-currency setting degenerates to a single-currency one, QIREOs will 

become IREOs. As a result, IREOs are special cases of QIREOs. Interest rate volatility during the 

past decade has magnified the risk due to an unfavorable shift in the term structure of interest rates, 

thereby leading to a dramatic increase in the number and types of contingent claims that 

incorporate options on change in the level of interest rates. These products have been developed to 

enhance the ability of asset/liability managers to alter their interest-rate exposure. As a result, 

QIREOs are evolved to exploit interest-rate differentials without directly incurring exchange-rate 

risk. 

The applications of QIREOs are quite extensive and similar to those of differential swaps. 

However, QIREOs provide more flexibility in certain applications. First, QIREOs provide a 

mechanism for achieving a payoff based on the differential of interest rates available in two 

different currencies, which is not directly affected by movements in exchange rate. Second, as 

compared with differential swaps, the major advantage of QIREOs is that they can be used to fit a 

very specific strategy since they can be tailored to provide payoffs that depend on whether the 

spread of two interest rates is above or below a specified level, or within or outside a specified 

range on a specific date in the future. Third, QIREOs can provide added precision to a strategy 

involving differential swaps. For example, a portfolio manager might use a differential swap to 

capitalize on anticipated yield-curve movements while also purchasing an QIREO on the spread in 

order to limit his downside risk. Moreover, money market investors may use QIREOs to take 

advantage of a high-yield currency; asset managers may adopt QIREOs to enhance their portfolio 

return; liability managers and other borrowers can employ QIREOs to reduce their effective 

borrowing rates. More details regarding the applications of QIREOs can be seen in Schwartz and 

Smith (1993) and James (2006). 

Despite the wide applications of QIREOs, the academic literature has paid little attention to 

how to price such options. Only few articles were written on the IREOs. Longstaff (1990) derived 

the pricing formula of YSOs under the Cox-Ingersoll-Ross (CIR) model. Fu (1996) and Miyazaki 

and Yoshida (1998) derived the pricing formulas of YSOs based on the Heath-Jarrow-Morton 

(HJM) model. However, there are some problems for these analyses. 

First, their formulas all were conducted in a single-currency economy. Their model setting is 

not consistent with the real economic environment and leads to pricing formulas unsuitable for 

pricing the QIREOs since the “exchange-rate-effect”, long discussed in the finance literature, in a 

cross-currency economy is not considered. Amin and Jarrow (1991); Schlogl (2002); Musiela and 

Rutkowski (2005) and Wu and Chen (2007) show that the “exchange-rate-effect” affects the 

pricing results and should be reflected in valuing cross-currency financial products. 

http://tw.dictionary.yahoo.com/search?ei=UTF-8&p=extensive
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Second, those interest-rate models that have been developed for pricing interest-rate 

derivatives can be, loosely speaking, divided into two types: traditional interest-rate models and 

market models. The traditional interest-rate models, such as the Vasicek model (Vasicek, 1997) the 

CIR model (Cox et al., 1985) and the HJM model (Heath et al., 1992) describe the behavior of 

interest rates by specifying market-unobservable and abstract interest rates, such as instantaneous 

short and forward rates. Contrarily, the LIBOR market model (LMM) are constructed by specifying 

market-observable LIBOR rates. The LMM has been developed by Musiela and Rutkowski (1997); 

Miltersen et al. (1997) and Brace et al. (1997) to improve the drawbacks of the traditional interest-

rate models. The drawbacks of the traditional interest-rate models and the improvements of the 

LMM are stated as follows. 

The instantaneous short rate in short rate models, such as the Vasicek model and the CIR 

model, or the instantaneous forward rate in the HJM forward rate model, is abstract and market-

unobservable. So the recovery of model parameters from market-observed data is a difficult and 

complicated task. Since the forward LIBOR rates in the LMM model are market observable, the 

LMM model circumvents the difficulty of transforming the traded quantities observed in the 

market into the model parameters. 

In addition, the pricing formulas of widely traded interest rate derivatives, such as caps and 

floors, based on the short rate models or the HJM model are not consistent with market practice. 

This results in some difficulties in the parameter calibration procedure. With the advantage of 

pricing interest rate caps and floors consistent with the popular Black formula Black (1976) the 

LMM model is easier for calibration.  

Moreover, the rates in Gaussian term structure models, such as the HJM model, can become 

negative with a positive probability, which may cause some pricing errors. The forward LIBOR 

rates in the LMM have a lognormal volatility structure which prevents interest rates from becoming 

negative with a positive probability. 

As a result, the derived pricing formulas under the LMM are more tractable and feasible than 

those under other models for practitioners. 

Therefore, the purpose of this article is to price QIREOs based on a practical and easy-to-use 

interest rate model, i.e. the LMM. In addition, it is worth noting that the well-known “exchange-

rate-effect” has to be considered as dealing with pricing cross-currency-type options. Schlogl 

(2002) extend the initial LIBOR market model from a single-currency economy to a cross-currency 

economy. Based on Amin and Jarrow (1991); Wu and Chen (2007) also extend the original LMM 

model from a single-currency economy to a cross-currency case to incorporate the process of 

equity-product into the model setting. Consequently, the extended LMM, namely the cross-

currency LIBOR market model (CLMM), is suitable to be used for pricing cross-currency-type 

interest-rate derivatives and is employed in this article to price four different types of QIREOs. 

Our article has several contributions to the literature on QIREOs, particularly in the presence 

of an open cross-currency economic environment and stochastic interest rates. 
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First, we derive general pricing formulas of QIREOs. Our pricing formulas consider the 

“exchange-rate-effect” and hence are consistent with the real economic environment. The pricing 

formulas of QIREOs in this research will be more general and suitable for pricing QIREOs in a real 

cross-currency environment. If the model setting degenerates to the single-currency case, the 

pricing formulas of QIREOs become those of IREOs but in the single-currency LMM framework. 

Therefore, the formulas of Longstaff (1990); Fu (1996) and Miyazaki and Yoshida (1998) are 

special cases of our results. 

Second, our research finds that valuing QIREOs without regard to the effect of the exchange 

rate (we call it a single-currency framework hereafter) causes an inaccuracy of evaluation of 

QIREOs. The inaccuracy can be avoided by using our pricing formulas. 

Third, our derived formulas under the CLMM are more tractable and feasible than those 

developed under other interest rate models in previous literatures for practitioners. 

Finally, using our pricing formulas for valuing QIREOs is more efficient than adopting time-

consuming simulation. 

The remainder of this article is organized as follows. Section 2 briefly describes the economic 

environment and the dynamics of assets for pricing. Section 3 derives the pricing formulae of the 

four different types of QIREOs based on the CLMM. The hedging strategy of each option is also 

examined. Section 4 concludes the paper with a brief summary. 

 

2. ECONOMIC MODEL: THE CROSS-CURRENCY LIBOR MARKET MODEL 

(CLMM) 

From the payoff structure of QIREOs illustrated in Section 3, the economic framework for 

pricing QIREOs should include the dynamics of the domestic interest rates, the foreign interest 

rates and the exchange rate. An economic model which includes these above dynamics is suitable 

to be adopted to develop the arbitrage-free pricing formulas of GCSRs. As a result, the CLMM is 

employed to derive the formulas of QIREOs. In this section, we briefly describe the framework of 

the cross-currency LIBOR market model.
i
  

Assume that trading takes place continuously in time over an interval  0, ,0    . The 

uncertainty is described by the filtered probability space  
  0,

, , ,
t

F P F


  where the filtration is 

generated by independent standard Brownian motions         1 2, ,..., mW t W t W t W t . Q represents 

the domestic spot martingale probability measure. The filtration  
 0,t t

F


 denotes the flow of 

information accruing to all the agents in the economy. The notations are given below with d for 

domestic and f for foreign: 

 ,kf t T  = the k
th

 country’s forward interest rate contracted at time t for instantaneous borrowing 

and lending at time T with 0 t T    , where  ,k d f . 
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 ,kP t T  = the time t price of the k
th

 country’s zero coupon bond (ZCB) paying one dollar at time 

T. 

 kr t =  the k
th

 country’s risk-free short rate at time t. 

  k t  =  
0

exp
t

kr u du 
   , the k

th
 country’s money market account at time t with an initial 

value  0 1k  . 

  X t  = the spot exchange rate at  0,t   for one unit of foreign currency expressed in 

terms of domestic currency. 

The Zero-Coupon bond price (ZCB),  ,kP t T ,  ,k d f , is defined as: 

   , exp ,
T

k k
t

P t T f t u du  
   .                                    (2.1) 

For some  0, 0,T    and  ,k d f , define the forward LIBOR rate process 

  , ;0kL t T t T   as given by 

 
 

 

,
1 ,

,

k

k

k

P t T
L t T

P t T



 


  exp ,

T

k
T

f t u du


   (2.2) 

The dynamics of the forward LIBOR rates and the exchange rate under the domestic spot 

martingale measure Q can be given as follows.
ii
 

 

 
       

,
, , ,

,

d

Ld Pd Ld

d

dL t T
t T t T dt t T dW t

L t T
           (2.3) 

 

 
          

,
, , ,

,

f

Lf Pf X Lf

f

dL t T
t T t T t dt t T dW t

L t T
            (2.4) 

 

 
        d f X

dX t
r t r t dt t dW t

X t
        (2.5) 

where  ,Lk t T  is a deterministic, bounded and piecewise continuous volatility function, and 

 ,Pk t T  is defined as (2.6), and ( )X t  is a deterministic volatility vector function of an 

exchange rate satisfying the standard regularity conditions . 

 

 

 
    1

1

,
, 0,

1 ,
,

& 0,

0 .

T t k

Lk

k

jPk

L t T j
t T j t T

L t T j
t T

T

otherwise

  
  

 




 
 



 
  

 
 

 



   (2.6) 

where  1 T t     denotes the greatest integer that is less than  1
T t


 . 

To derive the pricing formulas of QIREOs in Section 3 under the framework of CLMM, we 

need to use the domestic ZCB to be the numeraire such that the domestic forward probability 

measure Q
T 

can be induced. The domestic forward measure Q
T
 can be defined by the Radon-

Nikodym derivative 
 

 

 
 

,

,
d

d

P T TT
P t T

T

t

dQ

dQ 


 . From the Radon-Nikodym derivative, the relation of the 

Brownian motions under different measures can be shown as:  

     ,Q T

PddW t dW t t T dt  .  (2.7) 

Substituting (2.7) into equation (2.3) to (2.5), we can obtain the processes of the forward LIBOR 

rates and the exchange rate under the domestic forward martingale measure Q
T
 as follows. 
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 

 
          

,
, , , ,

,

d

Ld Pd Pd Ld

d

dL t T
t T t T t T dt t T dW t

L t T
            (2.8) 

 

 
            , , , ,

,

,
Lf Pf Pd X Lf

f

f

t T t T t T t dt t T dW t
dL t T

L t T
            (2.9) 

 

 
            ,d f X Pd X

dX t
r t r t t t T dt t dW t

X t
         (2.10) 

where    0, , 0,t T T    and  ,Pk t T  is defined in (2.6). 

There are merits of adopting the LMM. One is that the quotes of interest rates and their 

derivatives are consistent with market conventions, and thus making the pricing formulas more 

tractable and feasible for practitioners. In addition, the problems associated with other interest rate 

models, such as the Vasicek model, the Cox, Ingersoll and Ross (CIR) model, and the HJM model, 

can be overcome. These problems include: (a) the instantaneous short rate or forward rate is 

abstract, market-unobservable and continuously compounded. So it is complicated and difficult to 

recover model parameters from market-observed data; (b) the pricing formulas of extensively 

traded interest rate derivatives, such as caps, floors, swaptions, etc., based on the short rate models 

or the Gaussian HJM model are not consistent with market practice. This leads to some difficulties 

in parameter calibration; (c) as examined in Rogers (1996) the rates under Gaussian term structure 

models can become negative with a positive probability, which may cause pricing errors. 

 

3. VALUATION OF QUANTO INTEREST-RATE EXCHANGE OPTIONS 
In this section, we derive the pricing formulae of four different types of quanto interest-rate 

exchange options (QIREOs) based on the cross-currency LIBOR market model. Introductions and 

analyses of each option are presented sequentially as follows. 

 

3.1. Valuation of First-Type QIREOs 
Definition 3.1 A contingent claim with the payoff specified in (3.1.1) is called a First-Type 

QIREO (Q1IREO) 

     1 , ,d d fC T N L T T L T T 


   
,         (3.1.1) 

where  

 ,dL T T = the domestic T-matured LIBOR rates with a compounding period   

 ,fL T T  = the foreign T-matured LIBOR rates with a compounding period  ,    

dN  = notional principal of the option, in units of domestic currency 

T  =the maturity date of the option 

 x


 =  ,0Max x  

  =a binary operator (1 for a call option and -1 for a put option). 

 

An Q1IREO is an option written on the difference between a domestic LIBOR rate with a 

compounding period   and a foreign LIBOR rate with a compounding period  , but the final 

payments are denominated in domestic currency. In addition, an Q1IREO with 1   represents a 

call option on the domestic LIBOR rate with the foreign LIBOR rate serving as the floating strike 

rate. On the contrary, an Q1IREO with 1    denotes a put option with the foreign LIBOR rate 

as the underlying rate. 

There are several benefits and applications associated with Q1IREOs. First, Q1IREOs provide a 

mechanism for taking advantage of cross-currency interest-rate differentials without directly 

incurring exchange rate risk. Second, investors can benefit from utilizing a corresponding Q1IREO 

with making a correct assessment of the cross-currency interest-rate differential between two 

underlying LIBOR rates at some particular time point. Third, Q1IREOs also can be used to provide 

added precision to strategies incorporating differential swaps. For example, a portfolio manager 
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might use a differential swap to capitalize anticipated yield curve movements while also purchasing 

an Q1IREO on the interest-rate differential in order to limit his downside risk. In addition, asset 

managers whose investments are mainly denominated in domestic currency can utilize Q1IREOs to 

enhance portfolio return. A structure of this type can also be employed by liability managers and 

borrowers to effectively limit interest rate payments to the lower of either the domestic or foreign 

currency interest rates, without incurring exchange rate risk exposure. 

Q1IREO pricing is expressed in the following theorem, and the proof is provided in Appendix A. 

Theorem 3.1 The pricing formula of Q1IREOs with the final payoff as specified in (3.1.1 ) is 

expressed as follows: 

     
 

   
 

 
1 1, , , ,

1 11 12, , ,

T T

d f
t t

u T T du u T T du

d d d fC t N P t T L t T e N d L t T e N d
 

      
     

 

  (3.1.2) 

where 

 
 

    2

1 1 1

11

1

, 1
ln , , , ,

, 2

T
d

d ft
f

L t T
u T T u T T du V

L t T
d

V


 


   

 
           

 


 

12 11 1d d V   

   2 2

1 , ,
T

Ld Lf
t

V u T u T du     

       1 , , , , ,
d d

s s

P PLdd
t T T t T t T t T

           
  

 

         1 , , , , ,
f d

s s

P PLf xf
t T T t T t T t T t

             
  

 

1   (a call) or -1 (a put). 

and      , , ,
s

Pk t k d f    is defined as (A.7) in Appendix A. 

The pricing equation (3.1.2) may be regarded as a generalized representation of Margrabe 

(1978) in the framework of the cross-currency LMM. Note that when both compounding periods 

are identical (  ), the pricing formula (3.1.2) reduces to the pricing model of a regular option 

on the spread between the domestic and the foreign LIBOR rates in the cross-currency LMM 

framework. 

Theorem 3.1 not only provides the pricing formula for the Q1IREOs but also reveals a clue to 

the construction of a hedging (replicating) portfolio for the Q1IREOs. 

For hedging, we rewrite equation (3.1.2) as equation (3.1.3) (the proof is provided in Appendix 

A) as follows  

             1 1

1 1 2, , , ,t d d t f fC t P t T P t T P t T P t T            
,        (3.1.3) 

where 

      
 1 , ,1

1 11

1
1 ,

T

d
t

u T T du

t d dN L t T N d e


   


    

        1

2 12 1

1
1 , ,t d dN L t T N d QA t T   


     

 
 

 
 1 1

,
, ,

,

d

f

P t T
QA t T t T

P t T


 




 


      

 
 1 , ,

1 ,

T

f
t

u T T du

t T e


 


 . 

Equation (3.1.3) serves as a guide to the formation of a hedging portfolio  1

tH  for an Q1IREO. 

 1

tH  can be completed by a linear combination of four types of assets: holding long  1

1t  units of 

http://tw.dictionary.yahoo.com/search?ei=UTF-8&p=completed
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 ,dP t T  and   1

2t  units of  ,fP t T   and selling short  1

1t  units of  ,dP t T   and   1

2t  units of 

 ,fP t T . 

The term  1 ,QA t T   appearing in (3.1.3) denotes the quanto adjustment due to the hedged 

risk of the exchange rate. This exchange rate adjustment is induced by the fact that expected 

foreign cash flow is derived under the domestic martingale measure, and by the compound 

correlations between all the involved factors (the domestic and foreign bonds and the exchange 

rate). 

It is worth noting that the advantage of adopting the cross-currency LMM model rather than 

other traditional models is that all the parameters as shown in (3.1.1) and (3.1.2) can be easily 

obtained from market quotes, which makes the pricing formula more tractable and feasible for 

practitioners. 

 

3.2. Valuation of Second-Type QIREOs 
Definition 3.2 A contingent claim with the payoff as specified in (3.2.1) is called a Second-

Type QIREO (Q2IREO) 

     2 , ,f f fC T X N L T T L T T 


   
,          (3.2.1) 

where 

fN = notional principal of the option, in units of foreign currency 

X = the fixed exchange rate expressed as the domestic currency value of one unit of foreign 

currency. 

An Q2IREO is an option written on the difference between two foreign LIBOR rates with 

different compounding periods   and   , but the final payment is measured in domestic currency. 

From the viewpoint of domestic investors, holding an Q2IREO acts in much the same way as 

longing a foreign yield-spread option, whose payoff is based on the difference between the two 

underlying foreign interest rates, denominated in foreign currency, and converting the foreign-

currency payoff via multiplying the fixed exchange rate into the domestic-currency payoff.  

Using Q2IREOs has several benefits and applications. Domestic investors can benefit from 

utilizing a corresponding Q2IREO with making a correct estimate of the differential between two 

foreign LIBOR rates at some particular time point, thereby avoiding exposure to exchange rate risk. 

For multinational enterprises or managers of cross-currency financial assets, Q2IREOs can be used 

to enhance the interest profit of foreign assets or to reduce the interest cost arising from foreign 

liabilities without incurring exchange rate risk. Furthermore, Q2IREOs can be used to limit the 

downside risks of some particular payments if a manager of cross-currency financial assets wants 

to manage the risk of foreign interest rate spread via a long-period foreign basis swap involving the 

exchange of two series of floating-rate cash flows in the same foreign currency. 

To keep the reasonable length of our paper, the pricing formula of Q2IREO is expressed in 

Theorem 3.2 below and the proof is omitted since the Q2IREO can be priced via the martingale 

method under the CLMM. The result is available upon request from the authors. 
iii

 

Theorem 3.2 The pricing formula of Q2IREOs with the final payoff as specified in (3.2.1) is 

presented as follows: 

     
 

   
 

 
2 2, , , ,

2 21 22, , ,

T T

f f
t t

f d

u T T du u T T du

f fX N P t TC t L t T e N d L t T e N d
 

         
 

   (3.2.2) 

where 

 

 
    2

2 2 2

21

2

, 1
ln , , , ,

, 2

T
f

f ft
f

L t T
u T T u T T du V

L t T
d

V


 


   

 
           

 


 

22 21 2d d V   

   2 2

2 , ,
T

Lf Lf
t

V u T u T du     
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           2 , , , , , , ,
f d

s s

P PLf xf
t T T t T t T t T t      

         
  

. 

Longstaff (1990); Fu (1996) and Miyazaki and Yoshida (1998) have derived the pricing 

formulae for interest rate difference options, which are written on the underlying difference 

between two domestic interest rates and denominated in domestic currency. In comparison with 

their pricing formulae, the major differences between Theorem 3.2 and their formulae lie in the fact 

that not only the “exchange-rate-effect” is considered in Theorem 3.2, but also all parameters 

appearing in Theorem 3.2 can be extracted from market quotes, which makes our pricing formula 

more tractable and feasible for practitioners. 

Once again, equation (3.2.2) can be written in terms of (3.2.3), and the proof is presented in 

Appendix B. 

             2 2

2 1 2, , , ,t f f t f fC t P t T P t T P t T P t T             
,     (3.2.3) 

where 

        2

1 21 2

1
1 , ,t f dX N L t T N d QA t T 


     

        2

2 22 2

1
1 , ,t f dX N L t T N d QA t T 


     

 
 

 
   2 2

,
, , , ,

,

d

f

P t T
QA t T t T

P t T
  


  


 

  
 

 
2 , ,

2 , , ,

T

f
t

u T T du

t T e


  


   .  

Equation (3.2.3) shows the composition of a hedging portfolio  2

tH  for an Q2IREO: it holds 

long  2

1t  units of  ,fP t T  and  2

2t  units of  ,fP t T   and sells short  2

1t  units of  ,fP t T 

and  2

2t  units of  ,fP t T . The implication of the quanto adjustment  2 ,QA t   is similar to 

 1 ,QA t T   as mentioned above. 

3.3. Valuation of Third-Type QIREOs 

Definition 3.3 A contingent claim with the payoff as specified in (3.3.1) is called a Third-Type 

QIREO (Q3IREO) 

       3 , ,f f fC T X T N L T T L T T 


   
,                              (3.3.1) 

where  

 X T = the floating exchange rate expressed as the domestic currency value of one unit of 

foreign currency at time T. 

An Q3IREO is analogous to the Q2IREO as specified in Subsection 3.2, but with the fixed 

exchange rate X  replaced by the floating exchange rate  X T  at maturity T. The structure of an 

Q3IREO is slightly different from that of an Q2IREO in that this option is directly affected by 

movements in the exchange rate. If the exchange rate moves upward, an investor using this option 

could enhance profits from the difference between both the foreign interest rates and the exchange 

rate. And a seller of this option could reduce payments due to downward movements in a foreign 

currency’s value. 

Theorem 3.3 below presents the pricing formula of an Q3IREO. The proof is provided in 

Appendix C. 

Theorem 3.3 The pricing formula of Q3IROs with the final payoff as expressed in (3.3.1 ) is 

presented as follows: 

       
 

   
 

 
3 3

3 31 32

, , , ,

, , ,

T T

f ft t

f f f f

u T T du u T T du

C t X t N P t T L t T N d L t T N de e
 

 
      
      

  
  

  

  ,       (3.3.2) 

where 
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 

 
    2

3 3 3

31

3

, 1
ln , , , ,

, 2

T
f

f ft
f

L t T
u T T u T T du V

L t T
d

V


 


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 
           

 


 

32 31 3d d V   

   2 2

3 , ,
T

Lf Lf
t

V u T u T du     

         3 , , , , , , ,
f f

s s

P PLff
t T T t T t T t T     

        
  

. 

Similarly, we rewrite (3.3.2) to obtain (3.3.3) as follows 

             3 3

3 1 2, , , ,t f f t f fC t P t T P t T P t T P t T             
,   (3.3.3) 

where 

      
 

 
3 , ,3

1 31

1
1 ,

T

f
t

u T T du

t f fX t N L t T e N d


 


    

      
 

 
3 , ,3

2 32

1
1 ,

T

f
t

u T T du

t f fX t N L t T e N d


 


   . 

Equation (3.3.3) also implies a composition for a hedging portfolio  3

tH  similar to that given 

in the previous theorems. It is worth noting that the quanto adjustment disappears in (3.3.3), since 

the exchange rate risk in the Q3IREO is unhedged; this option is directly affected by unanticipated 

changes in the exchange rate. 

 

3.4 Valuation of Fourth-Type QIREOs 
Definition 3.4 A contingent claim with the payoff as specified in (3.4.1) is called a Fourth-Type 

QIREO (Q4IREO) 

       4 , ,f f d dC T X T N L T T N L T T 


   
.           (3.4.1) 

   = a binary operator (1 for a call option and -1 for a put option). 

An Q4IREO is an option written on the difference between a foreign interest payment based on 

the foreign LIBOR rate with a compounding period   and a domestic interest payment based on 

the domestic LIBOR rate with a compounding period  . 

This option is slightly different from those options described in the above subsections. It can 

be considered as an option to exchange domestic-currency-denominated interest payments for 

foreign-currency-denominated interest payments.  

The pricing formula of Q4IREOs is expressed in Theorem 3.4 below and the proof is provided 

in Appendix D. 

Theorem 3.4 The pricing formula of Q4IREOs with the final payoff as expressed in (3.4.1 ) is 

presented as follows: 

       
 

 

   
 

 

4

4

, ,

4 41

, ,

42

, ,

, ,

T

g
t

T

d
t

u T T du

f f f

u T T du

d d d

C t X t N P t T L t T e N d

N P t T L t T e N d





 


 


 

 

 
  

 
  







                  (3.4.2) 

where 

     
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
   

 
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 


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f f

s s

P PLfg
t T T t T t T t T

           
  

 

       4 , , , , ,
d d

s s

P PLdd
t T T t T t T t T
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  

. 
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In order to obtain a hedging portfolio, equation (3.4.2) is rewritten as equation (3.4.3).  

             4 4

4 1 2, , , ,t f f t d dC t P t T P t T P t T P t T            
,   (3.4.3) 

where 

      
 

 
4 , ,4

1 41

1
1 ,

T

g
t

u T T du

t f fX t N L t T e N d


   


    

    
 

 
4 , ,4

2 42

1
1 ,

T

d
t

u T T du

t d dN L t T e N d


   


   . 

Equation (3.4.3) shows the composition of a hedging portfolio  4

tH  for an Q4IREO: holding 

long  4

1t  units of  ,fP t T  and  4

2t  units of  ,dP t T   and selling short  4

1t  units of  ,fP t T   

and  4

2t  units of  ,dP t T . Due to the unhedged exchange-rate risk inherent in the Q4IREO, the 

quanto adjustment does not exist in equation (3.4.3) as in the case examined in Subsection 3.3; this 

option is directly affected by exchange-rate movements as well. 

 

4. CONCLUSIONS 
We derive the formulas for valuing four different types of QIREOs with four theorems under 

the framework of CLMM. The derived pricing formulae represent the general formulae of 

Margrabe (1978) in the framework of the CLMM, and are familiar to practitioners for easy 

practical implementation. These pricing formulae have been examined to be very accurate as 

compared with Monte-Carlo simulation.
iv
  

Moreover, we have provided the hedging strategies for the QIREOs via the pricing formulae 

and discussed the calibration procedure in detail. Since the LIBOR rate is market observable and its 

related derivatives, such as caps and swaptions, are actively traded in the markets, it is easier to 

calibrate these model parameters than with traditional interest-rate models. Thus, our QIREO-

pricing formulas are more tractable and feasible for practical implementation. 
 

Appendix-A. Proof of Theorem 3.1 

A.1 Proof of Equation (3.1.2) 

By applying the martingale pricing method, the price of an Q1IRO at time t, 0 t T  , is derived 

as follows: 

 
 

   1 , ,

T

d
t

r s ds
Q

d d f tC t N E e L T T L T T F 
 
  
 

  
    

  

   (A.1) 
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    
  

   (A.2) 

           , , 0, , , ,
d f

T

d d d f A t A L T T L T TN P t T E L T T L T T F   
           

 (A.3) 

    
 

    
 

, , , ,T T

d d d A t d d f A t

A I A II

N P t T E L T T F N P t T E L T T F  

 

      (A.4) 

where 

 QE   denotes the expectation under the domestic martingale measure Q. 

 TE   denotes the expectation under the domestic forward martingale measure Q
T
 defined 

by the Radon-Nikodym derivative 
 

 

 
 

,

,
d

d

d

d

P T TT
P t T

T

t

dQ

dQ 


 . 

   is a binary operator (1 for a call option and -1 for a put option). 

IA  is an indicator function with    1, , , 0

0,

d fif L T T L T T

otherwise

      



. 
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Part (A-I) and (A-II) are solved, respectively, as follows. 

From equation (2.8) to (2.9), the dynamics of  ,dL t T  and  ,fL t T  under the domestic forward 

measure Q
T
 are shown as follows: 

 

 
       

,
, , , ,

, d d

d T

Ld P P Ld t

d

dL t T
t T t T t T dt t T dW

L t T



 


           

,  (A.5) 

 

 
         
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, , , ,

, f d
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

 


            

 
. (A.6) 

According to the definition of the bond volatility process   
 ,

,Pk t s T
t T


 in (2.9),   

 ,
,Pk t s T

t T


 

is not deterministic. Thus, the stochastic differential equations (A.5) and (A.6) are not allowed to 

solve the distributions of  ,dL T T  and  ,fL T T . We can, however, approximate  ,Pk t T  by 

 ,
s

Pk t T  which is defined by: 
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otherwise

  
  

 




 
 



 
  

 
 

 



   (A.7) 

where 0 s t T    and  ,k d f . Accordingly, the calendar time of the process 

  
 ,

,k t s T
L t T



 in (A.7) is frozen at its initial time s, thus the process   
 ,

,
s

Pk

t s T

t T


 becomes 

deterministic. This is the Wiener chaos order 0 approximation, which is first used for pricing 

swaptions by Brace et al. (1997). It was further developed in Brace et al. (1998) and formalized by 

Brace and Womersley (2000). 

Substituting  ,
s

Pk t T  for  ,Pk t T  in the drift terms of (A.5) and (A.6), we obtain: 

 

 
       

,
, , , ,

,
d

s sd T
P PdLd Ld t

d

dL t T
t T t T t T dt t T dW

L t T



 


          

  
,  (A.8) 

 

 
         

,
, , , ,

,
f d

s sf T
P PLf x Lf t

f

dL t T
t T t T t T t dt t T dW

L t T



 


            

  
. (A.9) 

In this way, the drift and volatility terms in (A.8) and (A.9) are deterministic. Therefore, we can 

solve (A.8) and (A.9) and find the approximate distributions of  ,dL T T  and  ,fL T T . 

Solving the stochastic differential equations(A.8) and (A.9), we obtain: 

   
     2

1

1
, , , ,

2, ,

T T
T

Ld Ld ud
t t

u T T u T du u T dW

d dL T T L t T e

     
 

 
    

  
 , (A.10) 

   
     2

1

1
, , , ,

2, ,

T T
T

uLf Lff
t t

u T T u T du u T dW

f fL T T L t T e

     
 

 
   

  
  (A.11) 

where  

       1 , , , , ,
d d

s s

P PLdd
u T T u T u T u T

           
  

, (A.12) 

         1 , , , , ,
f d

s s

P PLf xf
u T T u T u T u T u

             
  

. (A.13) 

By substituting (A.10) into (A-I), (A-I) can be rewritten as: 

   
     2

1

1
, ,, ,

2,

T TT T
Ld Ld ud t tt

u T du u T dWu T T du T

d A tA I L t T e E e F
    



        
  

 (A.14) 

 
 

    1
1

, ,

, , , 0

T

d
t

u T T du R

d r d f tL t T e P L T T L T T F


   
     

. (A.15) 
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 1R

rP   denotes the probability measured in the martingale measure R1 which is defined by the 

Radon-Nikodym derivative    21
, ,

1 2

T T
T

Ld Ld u
t t

u T du u T dW

T

dR
e

dQ

     
 .  

From the Radon Nikodym derivative 1

T

dR

dQ
, we know that 

 1 ,R T

t t LddW dW t T dt  . (A.16) 

Under the measure R1, we obtain the results by substituting (A.16) into (A.10) and (A.11): 

   
     2 1

1

1
, , , ,

2, ,

T T
R

Ld Ld ud
t t

u T T u T du u T dW

d dL T T L t T e

     
 

 
    

  
 , (A.17) 

   
         2 1

1
, , , , , ,

2, ,

T T
R

Ld uf Lf Lf Lf
t t

u T T u T u T u T du u T dW

f fL T T L t T e

         
 

 
      

  
 . (A.18) 

By inserting (A.17) and (A.18) into  1R

rP  , the probability can be obtained after rearrangement as 

follows: 

      1

11, , 0R

r d f tP L T T L T T F N d     
 

 (A.19) 

where  

 N   represents the cumulative density function of the normal distribution, 

 
 

    2

1 1 1

11

1

, 1
ln , , , ,

, 2
,

T
d

d ft
f

L t T
u T T u T T du V

L t T
d

V


 


   

 
           

 


 (A.20) 

   2 2

1 , ,
T

Ld Lf
t

V u T u T du    . (A.21) 

The procedures to solve (A-II) are similar to those of (A-I). 

By substituting (A.11) into (A-II), (A-II) is derived as follows: 

   
     2

1

1
, ,, ,

2,

T TT T
uLf Lff t tt

u T du u T dWu T T du T

f A tA II L t T e E e F
    



        
  

  (A.22) 

 
 

    1
2

, ,

, , , 0

T

f
t

u T T du R

f r d f tL t T e P L T T L T T F


   
    

 
. (A.23) 

 2R

rP   denotes the probability measured in the martingale measure R2 which is defined by the 

Radon-Nikodym derivative 
   21

, ,
2 2

T T
T

uLf Lf
t t

u T du u T dW

T

dR
e

dQ

     
 .  

From the Radon-Nikodym derivative 2

T

dR

dQ
, we find that 

 2 ,R T

t t LfdW dW t T dt  . (A.24) 

Under the measure R2, we obtain the results by substituting (A.24) into (A.10) and (A.11): 

   
         2 2

1

1
, , , , , ,

2, ,

T T
R

Ld Ld Ld uLfd
t t

u T T u T u T u T du u T dW

d dL T T L t T e

         
 

 
      

  
 , (A.25) 

   
     2 2

1
, , , ,

2, ,

T T
R

uf Lf Lf
t t

u T T u T du u T dW

f fL T T L t T e

     
 

 
    

  
 . (A.26) 

Inserting (A.25) and (A.26) into  2R

rP  , we obtain 

      2

12, , 0R

r d f tP L T T L T T F N d     
 

 (A.27) 

12 11 1d d V 
. (A.28) 

By combining A(4), A(15), A(19), A(23) with A(27), equation (3.1.2) of Theorem 3.1 is obtained. 

 

A.2 Proof of Equation (3.1.3) 

By definition, 
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 
 

 

,1
, 1

,

d

d

d

P t T
L t T

P t T



 

 
    

 (A.29) 

 
 

 

,1
, 1

,

f

f

f

P t T
L t T

P t T



 

 
    

 (A.30) 

By substituting (A.29) and (A.30) into (3.1.2) and rearranging it, equation (3.1.3) is derived. 
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Notes 

                                                 

i Details can be seen in, Amin and Jarrow (1991). Schlogl (2002) and Wu and Chen (2007). 

ii More details can be seen in Amin and Jarrow (1991) and Wu and Chen (2007). 

iii
 The proofs of Theorem 3.3 and 3.4 are also omitted to keep the reasonable length of our paper. The results are also available upon request 

from the authors. 
iv

 The result is available upon request from the authors 
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