
Asian Economic and Financial Review, 2017, 7(3): 279-294 

 

 
279 

† Corresponding author 

DOI: 10.18488/journal.aefr/2017.7.3/102.3.279.294 

ISSN(e): 2222-6737/ISSN(p): 2305-2147 

© 2017 AESS Publications. All Rights Reserved. 

 

PREDICTIVE ANALYTICS IN CAPITAL MARKETS 

 

 

Nitin Singh1†
 --- Prakash Kumar Jha2 

1Chairperson – Business Analytics IIM Kashipur Advisor  KPMG Lodha Excelus NM Joshi Marg Mumbai, India 
2Technical Centre, Ashok Leyland Ltd, Vellivayal Chavadi,Via Manali New Town, Chennai, India 

 

ABSTRACT 

The paper is a practical application of the random walk model on stock price behaviour. The academic literature has 

moved beyond this random walk approach and the recent focus is now much more on how to improve the forecasts. 

Since the performance of the random walk model has been contextual, it is desirable that the model is tested in 

different contexts. Our model shows good results in the Indian context. This model is also useful for traders and 

investors looking to predict stock prices in the immediate future as the model accounts for changes in the immediate 

past. 
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Contribution/ Originality 

The paper’s primary contribution is finding the applicability of the random walk model in the context of Indian 

capital market and improvement in forecast accuracy by introducing a smoothing constant in the model. The 

modification enables a self-correcting feature that inherently checks for drifts and accordingly 'corrects’ the forecast 

for the next period. 

 

1. INTRODUCTION   

Many decision-making applications depend on a forecast of some quantity. Broadly, these can be categorised 

into three groups: (1) the judgemental method, which is non-quantitative method; (2) extrapolation or time series 

methods that use past data of time series variable; and (3) econometric, causal or regression-based methods that use 

other explanatory time series variables. When an organisation plans to invest in stocks, bonds or other financial 

instruments, it typically attempts to forecast movement in prices and interest rates. This paper presents an analytical 

model to predict stock prices. Typically, we predict based on observations made in the past. We can investigate past 

behaviour, search for patterns or relationships and make a forecast. However, it is not easy to uncover historical 

patterns or relationships. It is all the more difficult to separate noise or random behaviour from underlying patterns. 

Moreover, there is no guarantee that past patterns will continue in the future. Extrapolation is found to be a good way 

to study past movement of a variable such as stock price, interest rate, GDP, etc. to forecast its future values. Several 
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time- series methods are available for extrapolation, including moving averages, exponential smoothing, trend-based 

regression, auto regression, random walk model, etc. The literature also provides evidence where the random walk 

model is found to perform very well in prediction (Armstrong, 1986; Schnarrs and Bavuso, 1986). In this paper, we 

attempt to build a forecast by using a random walk model. Furthermore, we investigate the utility of introducing a 

smoothening constant to stabilise the forecast. It has been found that this helps to shadow the real price movement 

over the next time period with a reasonable degree of accuracy. 

 

2. LITERATURE REVIEW  

The present study seeks to review the application of a random walk model in different situations and regions 

while highlighting some (not all) relevant and seminal work on the topic in order to call attention to pertinent issues. 

While random walk is considered a standard model of entirely random and irregular behaviour, its application 

includes methodological differences. Since the methodologies involved differ, the results achieved through the 

application of such methodologies also vary. It is also noteworthy that the efficacy of the random walk approach 

depends on the sample of stock or data to which it is applied. In this study, the author seeks to apply the random walk 

approach to the Indian context and develop a forecasting model. A review of the literature (in chronological order) 

depicting various contexts in which random walk has been applied is given in the following passages. Studies on the 

random nature of stock market prices may be traced back as far as the 1960s. Levy (1967) stated that empirical 

evidence for non-randomness was missing, and sought to disprove the random walk hypothesis to back select tenets 

of technical analysis while upholding norms of academic evidence. Cochrane (1988) offered a measure of persistence 

of fluctuations in GNP built on the variance of its long differences. The measure revealed slight long-term persistence 

in GNP. While prior studies on the subject established significant persistence in GNP and suggested models such as 

random walk, reconciling the results of Cochrane (1988) study with those of past research showed that standard 

criteria for time series model building could give deceptive approximations of persistence. Eckbo and Liu (1993) 

modelled stock prices as a total of a random walk and a general stationary (predictable) component, and suggested an 

estimable lower bound on the proportion of total stock return variance caused by the predictable component. The 

lower bound thus proposed fairly estimated the true variance proportion in finite samples also when the temporary 

component did not adhere to a first-order autoregressive process. The value-weighted market portfolio displayed 

generally less significant variance proportion estimates in the study. 

Au et al. (1997) stated that ground-breaking developments in option pricing theory by Black, Scholes, and 

Merton, and the swift growth of derivative securities in the financial market made it important for finance students to 

understand the relatively little known stochastic process and geometric Brownian motion. They linked the intuitive 

discrete time random walks with their corresponding continuous time limits. In their study, stock price movements 

were illustrated through a logarithmic random walk to assign discerning meaning to the phrase, "geometric Brownian 

motion". Chen (1999) sought to find an advanced exchange rate forecasting model that could surpass, with respect to 

the mean square error, the random walk at short-run horizons. The study adopted the Smooth Transition 

Autoregressive (STAR) and Exponential Generalized Autoregressive Conditional Heteroscedastic in Mean 

(EGARCH-M) model, which incorporated non-linearity. 

Jabbari et al. (2001) developed models to characterise time until boundary crossing and associated statistics in 

cellular wireless networks. They suggested modelling terminal movements in a cell through a discrete two-

dimensional random walk process. Furthermore, they determined the time until crossing an exit point from a circular 

cell by selecting a random direction between starting and exit points. Lai et al. (2002) examined predictability of 

technical trading rules on daily returns of the Kuala Lumpur Stock Exchange Composite Index from January 1977 to 

December 1999, and found non-randomness of successive price changes. 
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Using Lo and MacKinlay (1988) variance ratio tests, Rashid (2006) examined the random walk hypothesis for 

the Pakistani foreign exchange market by considering five pairs of nominal exchange rate series weekly over 

approximately 10 years. The study found that nominal exchange rates followed random walks. Balsara et al. (2007) 

rejected the random walk null hypothesis for class A and class B stock market indices traded on the Shanghai and 

Shenzhen stock exchanges with the help of a variance ratio test. The study further found that ARIMA forecasting 

model forecasted more accurately as opposed to the naïve model founded on the random walk assumption. Jarrett 

(2008) attempted to examine capital market efficiency in the context of securities traded on organised Hong Kong 

markets and identified predictable short-term properties in data considered. 

Lim and Brooks (2010) used the rolling bicorrelation test to determine the extent of nonlinear departures from a 

random walk for aggregate stock price indices of fifty countries pertaining to the years 1995–2005. The results 

indicated that in countries with lower per capita GDP, stock markets generally witnessed price deviations with greater 

frequency. The reason behind this appeared to be cross-country variation in the extent of private property rights 

protection. Lim and Brooks (2010) further opined that inadequate protection deterred informed investors from 

participating, resulting in sentiment driven noise traders dominating the market. Trading by such investors led stock 

prices in emerging economies to diverge from random walk standards for prolonged periods of time. 

Lakshmi and Roy (2012) examined the Indian equity market for random movements in stock indices by testing 

random walk hypotheses in daily, weekly and monthly returns of six Indian stock market indices (including Nifty, 

CNX Nifty Junior, NSE 500, SENSEX, BSE 100 and BSE 500) from January 2000 to October 2009. The study found 

no random movements in share indices. Furthermore, mixed results were observed when Lo and MacKinlay (1988) 

applied the variance ratio test with assumptions of homoscedasticity and heteroscedasticity. At times, 

heteroscedasticity was found to beget non-random behaviour in share indices. 

Vanderbei et al. (2013) used linear programming duality to resolve optimal stopping problem of a perpetual 

American option (both call and put) in discrete time while assuming that underlying stock prices followed discrete 

time and discrete state Markov processes - a geometric random walk. The pricing problem was formed as an infinite 

dimensional linear programming (LP) problem with the help of excessive-majorant property of the value function. It 

was discovered that for the call option, such critical values existed in a few cases only, and were dependent on the 

order of state transition probabilities and the economic discount factor (the interest rate prevailing). However, it was 

not a concern for the put. Kung and Carverhill (2012) sought to determine, using bootstrap technology, whether the 

Nikkei 225 evolved with time according to four generally used processes for estimating stock prices: random walk 

with a drift, AR(1), GARCH(1,1), and GARCH(1,1)-M. It was found that of the four processes, GARCH(1,1)-M 

gave returns that were most aligned with those estimated from the actual Nikkei series. Bacry et al. (2012) proposed a 

continuous-time stochastic process to satisfy an exact scaling relation, including odd-order moments, thus suggesting 

a continuous-time model for the price of a financial asset that reflected most major stylised facts observed on real 

data, including asymmetry and multifractal scaling. Rossi (2013) sought to identify and illustrate, through a literature 

review and empirical analysis, which variables (if any) forecasted exchange rates, and proposed new methodologies. 

Predictability was most apparent when one (or more) of the following held: the predictors were Taylor rule or net 

foreign assets, the model was linear, and a small number of parameters were estimated. The most difficult benchmark 

was the random walk without drift. Chitenderu et al. (2014) examined the Johannesburg Stock Exchange for presence 

of random walk hypothesis employing monthly time series of All Share Index (ALSI) for the years 2000–2011. It was 

found that ALSI bore resemblance to a series that followed the random walk hypothesis with significant proof of 

wide variance between forecasted and actual values, which suggested that the series had weak or no forecasting 

strength. 
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Kim and Seo (2015) investigated the influence of transaction costs on market efficiency and price discovery in 

the EU ETS. They discovered that transaction costs did affect mean reversion behaviour, limit market efficiency and 

price discovery. Tanrıöver and Çöllü (2015) tested weak form efficiency within the random walk model structure 

considering price movements of the BIST-100 Index, and assessed forecasting performance of investors in the 

Turkish stock market. The results revealed that investors in the Turkish capital market could forecast on the basis of 

historical stock price movements. 

The discussion above highlights the various contexts in which the random walk approach has been used. Our 

study builds a forecast for a time series of stock prices on the basis of stock values pertaining to a period of 242 days. 

To this end, underlying patterns in a dataset of stock prices were observed and it was found that prices followed 

random behaviour. 

 

2.1. Theory 

Studies employing a random walk model to forecast stock prices have produced mixed results. Furthermore, 

there is evidence in the literature that certain time series models might have better mean forecasts. Studies have also 

found that the performance of the random walk model is contextual and a function of the underlying nature of data 

points. This implies that the model warrants testing in various contexts to determine its efficacy according to context. 

Modifications to the model may help overcome certain shortcomings, which might also enhance the model’s 

predictive ability. Considering the above, we analyse time series stock price data to check on runs, randomness and 

lags, and develop a modified forecasting model of random walk which is applied on the daily stock prices of different 

firms. To capture the drift, the model is modified to account for the stabilisation effect. The modification in random 

walk model enables a self-correcting feature that inherently checks for drifts and accordingly 'corrects’ the forecast 

for the next period. This is a significantly useful feature of the model as daily traders and investors might use it to 

anticipate changes in stock prices in the immediate future as a result of activity in the immediate past. We have taken 

the approach from exponential smoothing in time series models and interweave this methodology in a random walk 

model. We check for mathematical accuracy by deriving equations from the random walk model and validate the 

model by running several tests. The tests and their results have been described in the results and discussion section. 

Forecast accuracy has been tested through unit independent measure of forecast accuracy MAPE (Mean Absolute 

Percentage Error). Predicted values and actual values have been presented in a visual format through spreadsheet 

applications. Our analysis shows that the modified random walk model applied to stock price data in the Indian 

context works very well. It also validates the contention that the model must be tested in various contexts to establish 

its efficacy. This model can also be productised and used by traders and investors in combination with other tools and 

techniques to predict stock prices. Thus, the present study makes a significant contribution to existing body of 

literature and carries important implications for practitioners, traders and investors. 

 

2.2. Proposition 

We address the issue of forecasting time series of stock prices for which we have the information on their past 

values over the full financial year period. Such information is obtainable from public domain as the stock prices of a 

company are quoted in various financial dailies and databases. We have selected the growth sectors from Indian 

equity market that are expected to grow in the near future from the perspective of investment decisions. We have 

relied on the information given by research agencies such as S&P to identify such sectors. The sectors identified 

include Cements, ITES, FMCG and Commercial Vehicles. Within each sector, leading companies were taken as 

investment choices. We have taken a full financial year of longitudinal data of 2014–15 for each of these companies. 

All of these are listed companies whose share price data were extracted from Bloomberg. 
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Figure 1 shows time series plot of the closing prices from 1 April 2014 to 31 March 2015 for ACC Ltd, which is 

traded on the stock exchange in India. Refer to Appendix for the stock price information for the identified companies. 

We are thus posed with the question of how future value of these prices should be forecast. What are the other 

underlying patterns and is the time series really random as it seems to be? 

A first cut analysis through visual inspection shows that the series itself is not random as a whole since there is a 

gradual upward trend, especially in the last quarter. Hence, the original series is not random. However, the series does 

show meandering tendency throughout, i.e., the difference series shows randomness as seen visually from the scatter 

plot of difference series in Figure 2. 

 

3. METHODOLOGY  

A way to check for randomness in a time series of prices is to examine autocorrelations. Many forecasting 

techniques are based on a specific autocorrelation structure of a time series of prices. Such a structure can tell us how 

prices are related to their own past values in a time series. If this structure is known, it will provide valuable insights 

for designing a forecast. If successive observations of prices are correlated with one another, then a series cannot be 

random. For example, if a time series is such that large values of observation follow large values or small values 

follow small values then this is a kind of positive autocorrelation. However, there can be negative autocorrelation, 

and even the lags between autocorrelated values can differ. To begin with, we test for randomness of time series using 

the autocorrelation test.To test for randomness, we first create a lagged series with different lags. Lags are simply past 

observations, removed by a certain number of time periods from the present time. Autocorrelation of lag m is 

essentially the correlation between original series and lagged-m version of the series. We have limited ourselves to 32 

lags, which is no more than 25 percent of the number of observations. Given that there is no seasonality, we find 32 

lags to be sufficient for capturing the test for autocorrelation. Examination of the autocorrelation coefficient and the 

standard errors in Figure 3 indicates that autocorrelation is significant up to 25 lags. We can see that autocorrelation 

coefficient in these cases is more than two standard errors in magnitude, which helps us to conclude that a time series 

is not random. 

At the next stage, we test for autocorrelation in the difference in stock prices over consecutive time periods. In 

this case, we basically test the hypothesis that changes in prices may or may not be correlated. Evidently, it can 

provide a glimpse into underlying pattern of stock prices that can help us forecast better. 

For this, we take differenced series. Each value in differenced series is obtained as under: 

 ( )     ( )   (   )    

 ( )   = Closing price in time period t+1 

 (   )   = Difference in closing price in time period t+1 

We create differenced series and apply autocorrelation test on this series. We created lagged series for closing 

price difference and calculated autocorrelation of lag m, i.e., the correlation between original differenced series and 

lagged-m version of the differenced series. Autocorrelation is checked for close price difference up to 32 lags. The 

number of observations in this case is 242, so 32 lags work out to be sufficient. Examination of the autocorrelation 

coefficient and the standard error as evident from Figure 4 and Table 1 suggests that autocorrelation is not significant 

in any of the lags. It is less than two standard errors in magnitude except for lag#5 which is slightly more than two 

standard error in magnitude; thus, this lag#5 can be ignored. This leads us to conclude that differenced time series is 

random. 

To support the check for randomness we also apply a runs test to the differenced series. First, we determine the 

number of runs in different time periods. We choose a base value, which is equal to average value of time series. 
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Then, we define a run as a consecutive series of values that are at one side of the base level. The number of 

observations above the cut-off is 116 and those below the cut-off is 126 as seen in Table 2. 

If the P-value is sufficiently small (≤ 0.05 for 95% confidence level) then we can reject the null hypothesis of 

randomness and conclude that the series does not alternate enough (too few runs) or alternates too much (too many 

runs). In this case, the number of runs (126) is very close to the expected number of runs E(R) = 121.7934. The p 

value (2-tailed) = 0.5872 is much greater than 0.05, which implies that we cannot reject the null hypothesis of 

randomness, i.e., the number of runs is equal to the expected number of runs E(R); therefore, we conclude that the 

series is random. In the plot of differences in Figure 3, we can see that differences do not vary around a mean of zero; 

rather, these are actually moving across the mean of 0.84, and there is an upward drift. Evidently, observation in time 

series plots follows similar behaviour. The series itself is not random, but the changes from one period to next are 

random. It is interesting to test this phenomenon by the autocorrelations and runs test we have completed so far. 

However, if we were to forecast stock prices over the next few days, we cannot really use the average of past values 

as a forecast given that it may be either too low or too high. Stock prices may follow a trend and, in this case, the 

forecast will either undershoot or overshoot the actual value of the stock price. In such situations, we may be more 

prudent if we were to base our forecast on the most recently observed values. The closing price difference series is of 

N periods of length t. Therefore, we can define an additive process y by: 

 

  (  )   (    )   (    )√                   (1) 

for k = 1, 2, 3,…N. This process is termed as a random walk. 

 (    ) is a normal random variable with mean 0 and variance 1 - a standardised normal random variable. The 

process is started by setting  (  )    after which a path emerges that meanders around depending upon the chance 

of random variables. 

Differenced random variables can be written as:  (  )   (    ). Such a difference is related to the standardised 

normal variable (  ): 

  (  )   (    )   ∑  (  )√  
   
  (2) 

 

  [ (  )   (    )]    (3) 

Difference random variables are found to be normally distributed and have a mean of 0 as equation (3) shows. 

Most importantly, if difference variables made up of different  (  ) are independent, we find that: 

  [ (  )   (    )]   [∑  (  )√  
   
 ]

 
 (4) 

where  [ (  )   (    )]= variance of [ (  )   (    )] 

   [∑  (  )
      

 ] (5) 

=          

It is clear that variance of  (  )   (    ) is exactly equal to 1 if the time difference between two non-

overlapping intervals is also 1. 

The functional form of random walk model can be given by equation (6). 

              (  ) (6) 

where 

  = mean of differences and represents the expected value of differenced variable 

 (  ) = random series (noise) with mean zero and standard deviation σ that remains constant with time. 

  = observation in time t. 

If    is the change in series from time (t) to time (t–1) at t, then equation (6) can be written as: 

         (  ) (7) 
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It is apparent that the series tends to have an upward trend if     and will have a downward trend if    . 

Basically, we add the estimated trend to the current value in order to forecast the next value. 

            
  (8) 

To forecast future closing prices, we use the following equation: 

              (  ) (9) 

where 

  = forecast in time period t. 

We measure forecast accuracy by taking standard error of forecasting k periods. We compute the standard error 

using following equation: 

     √ 
 

 

     Standard error of forecasting k periods ahead 

σ= standard deviation of differences 

We suggest improving the forecast by factoring the difference in actual price and predicted price in preceding 

period. We use a stabilisation coefficient to factor in the difference itself and, as a result, we get a revised forecast 

model as given by the following equation: 

              (  )    (         ) (10) 

where 

 = stabilisation coefficient 

    = Actual price in time period t–1 

    = Forecast in time period t–1 

To validate the modified random walk model modified by smoothening or stabilising coefficient, we apply this 

modified model on 12 leading stocks of Indian equity stocks from across the industry as described in the next section. 

 

4. DATA ANALYSIS  

Companies in the cement sector are ACC, Ambuja, Dalmia, India Cements and Ultra Cements. In the ITES 

sector, the firms that we have picked up are TCS, Infosys and Wipro. In FMCG and Pharma, we picked one company 

each as Hindustan Unilever and Sun Pharma, respectively. For auto, we selected two companies - Ashok Leyland Ltd. 

and Tata Motors Ltd. We previously observed in case of ACC stocks that closing prices follow an upward drift. If 

forecast is overshooting the actual price, then forecast in the next time period will take into account the difference and 

modify the forecast value appropriately. In these cases, the forecast for the next time period would tend to reduce its 

value by the stabilisation coefficient multiplied by the difference. In a similar vein, the forecast is modified if the 

actual price overshoots the forecast. In both cases, we must grapple with the task of choosing a suitable stabilisation 

coefficient. This can be any number between 0 and 1. We would be giving a very high credence to the price-forecast 

difference if we were to choose one as the stabilisation coefficient. The best way forward is to choose ‘α’ such that 

we give an adequate amount of weight to the difference in order to stabilise the forecast. We experiment with 

different values of ‘α’ and check forecast accuracy for each of the experiments over a time period. We present the 

random walk and modified version on a stock (we chose ACC to illustrate this model) in Figures 5 and 6, 

respectively. We show the actual values, the predicted values using the random walk model as presented in the 

paragraphs above in Figure 5. Additionally, we attempted to simulate the movement of stock prices at different time 

periods and observed their deviation vis-à-vis predicted values. We chose 44 days as the time horizon. The replication 

was done 25 times and the expected value for each day (period) was computed and presented in the figure. We find 

that the expected value approaches closer to the predicted value of a random walk as we move closer to 25 

replications. However, the simulated values that we obtain in any given run fall within a 95% confidence interval. 
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The same is also depicted in the figure. We also found that predicted values could be brought closer to the actual 

values if we could probe further into the model to minimise the error. For the sake of better visibility in this approach, 

we have zoomed in on the prediction horizon of 44 days, showing the actual and predicted values and presented them 

in a separate figure (Figure 6). Additionally, the modified random walk model prediction is also shown here. 

Next, we wanted to see the performance of predicted values against different values of stabilisation coefficient 

(α). We start the experimentation by keeping α = 0.2 and then increased it systematically to 0.5, 0.8 and 1, 

respectively, in each experiment. That way we have a total of 5 experiments including one in which α = 0. Figure 7 

depicts different line plots for different values of α. 

We measure the efficacy of the forecast model by comparing one-period ahead forecast      from the model and 

compare it to the known or actual values,   , for each t in the future time period. We report Mean Absolute 

Percentage Error for different forecast models (with different values of  ), which is given by 

       ∑
|  |   

 
 
  (11) 

where N = number of future time periods in which forecast and actual values are compared. In each case, we 

computed MAPE and compared it with predicted values (with different α) and evaluated as to which forecast was 

working better. We present this analysis in Table 3, which shows the forecast values against actual prices for different 

values of the stabilisation coefficient. 

It is obvious from the chart that the forecast with     is performing better as most forecast values are 

meandering very close to actual prices. 

We select this stabilisation coefficient value to prepare our forecasts. We also note that the forecast profile in this case 

closely matches the actual values. This leads us to interpret that the forecast is largely able to capture the random 

behaviour of these stock prices. 

 

4.1. Discussion  

We find that successive price movements of stocks follow a random walk movement; we have used this 

assumption in applying the random walk model and its modified form to test its validity for another 11 equity stocks 

for the 44 days of the horizon period based on these companies’ full-year stock price data. The abridged analysis is as 

below: 

 All the stocks’ predictions show that modified random walk predictions closely follow the actual price 

movement. In fact, they shadow the actual price movement unlike the linear trend line of random walk model for the 

predicted mean price. 

 Whereas accuracy of the random walk model in terms of MAPE for the various stocks ranges from 3.6% to 

14.5%, the same value for modified random walk model is 1.2% to 3.74%; the latter consistently outperforms the 

former in each case as seen from Figure 8. 

 Stocks predictions of ACC, Ambuja, Ashok Leyland, Sun Pharma FY 14-15, TCS and Wipro show a similar 

nature with both the models converging at the end as seen from the representative case of Ashok Leyland in Figure 9. 

Random walk predictions for Ambuja, Dalmia, India Cements, Ultra Cements, Hindustan Unilever Ltd, TML, Sun 

Pharma FY 2015-16 and Infosys Company show that the random walk model for mean value are drifting away from 

the actual price, especially for the last month of the data as seen in the representative figure of HUL as below in 

Figures 10(a) and 10(b). 

This drift in random walk model is also reflected by higher forecast error -MAPE of 7% to 11%. This is because 

the random walk model was based on the year-long trend, which may be different from temporal trends and 

especially to that of prediction horizon. On the other hand, it can be seen that the modified model is still able to 
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closely follow actual price movement in the entire prediction horizon for all the stocks with the MAPE in the range of 

1.5 to 3.75% only (Figure 8). Two datasets of Sun Pharma for FY 1014-15 and FY 2015-16 were taken; these 

displayed the opposite year-long trend in these two years. FY 2014-15 has an increasing price trend whereas FY 

2015-16 has a decreasing trend. In both cases, a modified random walk model is able to shadow the actual price 

movement (Figure 11(a) and Figure 11(b)). Whereas the forecast error by random walk is observed with higher 

forecast error (MAPE-9.2%) – especially in FY 2015-16 – the modified random walk gave a forecast error of only 

MAPE of 1.8- 1.9% (Figure 8). Furthermore, ITES stocks of Infosys, TCS and Wipro were studied. We can see that 

even though there was stock split on 2 December 2014 for Infosys, a modified random walk model was still able to 

self-correct and follow the actual price movement. It should be noted that we have used the entire year-long data 

without treating the stock price differently before and after the split (Figure 12). 

 

4.2. Managerial Implications 

We adopt a random walk approach to make a predictive model that captures the random nature of the dataset. 

The forecast is stabilised using a proper choice of coefficients in a revised forecasting model and checked for forecast 

accuracy. Forecast accuracy is evaluated by comparing the forecast with actual values and is found to be reasonably 

good in terms of mean absolute percentage error. It could be observed from the discussion of results that the predicted 

value for successive time periods tends to closely follow the actual values over the predicted window period. This is 

unlike the standard random walk model which predicts the next period’s value being the same as current period’s 

value plus the trend value (if any) and the error term added to that. With the revised model, we have been able to 

shadow the actual price in all cases with improved prediction accuracy. A predictive analytics approach, as presented 

in this paper, is wide-ranging in nature and can also be applied to predict uncertainty in stock prices of all equity 

markets, interest rates and even macro-economic indicators. Thus, the suggested approach could be of good utility for 

business traders for predicting daily stock prices even without the knowledge of complex extrapolation models, 

econometric models or alternatives such as technical analysis. 

 

5. CONCLUSION 

We have examined a decision problem related to predicting the stock price for next-day trading. We have shown 

the modified random walk model gives an average accuracy of 1.5% for different stocks of firms that we selected for 

analysis. In the modified random walk model, introduction of stabilisation coefficient essentially helps to simulate the 

errors terms of the random walk model thus improving the prediction accuracy. This simple model and its simplicity 

of application with reasonably good accuracy can provide good utility to ordinary stock traders for the purposes of 

daily trading. Although this concept has been applied only to equity stocks, this model can be extended to any 

stochastic time series data such as exchange rates, futures, and forecasting for supply chain decisions. We observed 

that the strength of this model lies in its flexibility and practical approach. The simple skill in using this model over 

other complex models could be worth applying in various stochastic data series of any normal day-to-day business. 

 

Funding: This study received no specific financial support. 
 

Competing Interests: The authors declare that they have no competing interests. 
 

Contributors/Acknowledgement: All authors contributed equally to the conception and design of the study.  

 

REFERENCES 

Armstrong, S., 1986. Research on forecasting: A quarter-century review. Interfaces, 16(1): 89-103. 



Asian Economic and Financial Review, 2017, 7(3): 279-294 
 

 
288 

© 2017 AESS Publications. All Rights Reserved. 

Au, K.T., M. Raj and D.C. Thurston, 1997. An intuitive explanation of brownian motion as a limit of a random walk. Journal of 

Financial Education: 91-94. View at Google Scholar   

Bacry, E., L. Duvernet and J.F. Muzy, 2012. Continuous-time skewed multifractal processes as a model for financial returns. 

Journal of Applied Probability, 49(2): 482–502. View at Google Scholar | View at Publisher 

Balsara, N.J., G. Chen and L. Zheng, 2007. The Chinese stock market: An examination of the random walk model and technical 

trading rules. Quarterly Journal of Business & Economics: 43-63. View at Google Scholar   

Chen, Y., 1999. Can the star or the EGARCH-M model outperform the random walk model for short run exchange rate forecasts? 

The case of Taiwan and Japan. Dissertation, The University of Hong Kong. 

Chitenderu, T.T., A. Maredza and K. Sibanda, 2014. The random walk theory and stock prices: Evidence from Johannesburg stock 

exchange. International Business & Economics Research Journal, 13(6): 1241. View at Google Scholar | View at Publisher 

Cochrane, J.H., 1988. How big is the random walk in GNP? Journal of Political Economy, 96(5): 893-920. View at Google Scholar | 

View at Publisher 

Eckbo, B.E. and J. Liu, 1993. Temporary components of stock prices: New univariate results. Journal of Financial & Quantitative 

Analysis, 28(2): 161–176. View at Google Scholar | View at Publisher 

Jabbari, B., Y. Zhou and F.S. Hillier, 2001. A decomposable random walk model for mobility in wireless communications. 

Telecommunication Systems, 16(3-4): 523–537. View at Google Scholar   

Jarrett, J.E., 2008. Random walk, capital market efficiency and predicting stock returns for Hong Kong exchanges and clearing 

limited. Research News, 31(2): 142–148. View at Google Scholar | View at Publisher 

Kim, J. and B. Seo, 2015. Transaction costs and nonlinear mean reversion in the EU emission trading scheme. Hitotsubashi 

Journal of Economics: 281–296. View at Google Scholar   

Kung, J.J. and A.P. Carverhill, 2012. A bootstrap analysis of the Nikkei 225. Journal of Economic Integration, 27(3): 487–504. 

View at Google Scholar | View at Publisher 

Lai, M.M., K.G. Balachandher and F.M. Nor, 2002. An examination of the random walk model and technical trading rules in the 

Malaysian stock market. Quarterly Journal of Business & Economics: 81–104. View at Google Scholar   

Lakshmi, V.D. and B. Roy, 2012. Testing the random walk model in Indian stock markets. IUP Journal of Applied Finance, 18(2): 

63. View at Google Scholar   

Levy, R.A., 1967. Random walks: Reality or myth. Financial Analysts Journal, 23(6): 69–77. View at Google Scholar | View at Publisher 

Lim, K.P. and R.D. Brooks, 2010. Why do emerging stock markets experience more persistent price deviations from a random 

walk over time? A country-level analysis. Macroeconomic Dynamics, 14(S1): 3–41. View at Google Scholar | View at Publisher 

Lo, A.W. and A.C. MacKinlay, 1988. Stock market prices do not follow random walks: Evidence from a simple specification test. 

Review of Financial Studies, 1(1): 41–66. View at Google Scholar | View at Publisher 

Rashid, A., 2006. Do exchange rates follow random walks? An application of variance-ratio test. Pakistan Economic & Social 

Review: 57–79. View at Google Scholar   

Rossi, B., 2013. Exchange rate predictability. Journal of Economic Literature, 51(4): 1063–1119. View at Google Scholar  

Schnarrs, S. and J. Bavuso, 1986. Extrapolation models on very short-term forecasts. Journal of Business Research, 14(1): 27-36. 

View at Google Scholar | View at Publisher 

Tanrıöver, B. and D.A. Çöllü, 2015. Analysis of forecasting performance of investors in Turkey within framework of the random 

walk model (Türkiye’de Yatırımcıların Öngörü Performanslarının Rassal Yürüyüş Modeli Çerçevesinde Analizi). 

Business & Economics Research Journal, 6(2): 127–139. View at Google Scholar   

Vanderbei, R.J., M.Ç. Pınar and E.B. Bozkaya, 2013. Discrete-time pricing and optimal exercise of American perpetual warrants 

in the geometric random walk model. Applied Mathematics & Optimization, 67(1): 97–122. View at Google Scholar | View at 

Publisher 

 

https://scholar.google.com/scholar?hl=en&q=An%20intuitive%20explanation%20of%20brownian%20motion%20as%20a%20limit%20of%20a%20random%20walk
https://scholar.google.com/scholar?hl=en&q=Continuous-time%20skewed%20multifractal%20processes%20as%20a%20model%20for%20financial%20returns
http://dx.doi.org/10.1017/s0021900200009220
https://scholar.google.com/scholar?hl=en&q=The%20Chinese%20stock%20market:%20An%20examination%20of%20the%20random%20walk%20model%20and%20technical%20trading%20rules
https://scholar.google.com/scholar?hl=en&q=The%20random%20walk%20theory%20and%20stock%20prices:%20Evidence%20from%20Johannesburg%20stock%20exchange
http://dx.doi.org/10.19030/iber.v13i6.8918
https://scholar.google.com/scholar?hl=en&q=How%20big%20is%20the%20random%20walk%20in%20GNP?
http://dx.doi.org/10.1086/261569
https://scholar.google.com/scholar?hl=en&q=Temporary%20components%20of%20stock%20prices:%20New%20univariate%20results
http://dx.doi.org/10.2307/2331284
https://scholar.google.com/scholar?hl=en&q=A%20decomposable%20random%20walk%20model%20for%20mobility%20in%20wireless%20communications
https://scholar.google.com/scholar?hl=en&q=Random%20walk,%20capital%20market%20efficiency%20and%20predicting%20stock%20returns%20for%20Hong%20Kong%20exchanges%20and%20clearing%20limited
http://dx.doi.org/10.1108/01409170810846858
https://scholar.google.com/scholar?hl=en&q=Transaction%20costs%20and%20nonlinear%20mean%20reversion%20in%20the%20EU%20emission%20trading%20scheme
https://scholar.google.com/scholar?hl=en&q=A%20bootstrap%20analysis%20of%20the%20Nikkei%20225
http://dx.doi.org/10.11130/jei.2012.27.3.487
https://scholar.google.com/scholar?hl=en&q=An%20examination%20of%20the%20random%20walk%20model%20and%20technical%20trading%20rules%20in%20the%20Malaysian%20stock%20market
https://scholar.google.com/scholar?hl=en&q=Testing%20the%20random%20walk%20model%20in%20Indian%20stock%20markets
https://scholar.google.com/scholar?hl=en&q=Random%20walks:%20Reality%20or%20myth
http://dx.doi.org/10.2469/faj.v23.n6.69
https://scholar.google.com/scholar?hl=en&q=Why%20do%20emerging%20stock%20markets%20experience%20more%20persistent%20price%20deviations%20from%20a%20random%20walk%20over%20time?%20A%20country-level%20analysis
http://dx.doi.org/10.1017/s1365100509090397
https://scholar.google.com/scholar?hl=en&q=Stock%20market%20prices%20do%20not%20follow%20random%20walks:%20Evidence%20from%20a%20simple%20specification%20test
http://dx.doi.org/10.1093/rfs/1.1.41
https://scholar.google.com/scholar?hl=en&q=Do%20exchange%20rates%20follow%20random%20walks?%20An%20application%20of%20variance-ratio%20test
https://scholar.google.com/scholar?hl=en&q=Exchange%20rate%20predictability
https://scholar.google.com/scholar?hl=en&q=Extrapolation%20models%20on%20very%20short-term%20forecasts
http://dx.doi.org/10.1016/0148-2963(86)90054-8
https://scholar.google.com/scholar?hl=en&q=Analysis%20of%20forecasting%20performance%20of%20investors%20in%20Turkey%20within%20framework%20of%20the%20random%20walk%20model%20(Türkiye’de%20Yatırımcıların%20Öngörü%20Performanslarının%20Rassal%20Yürüyüş%20Modeli%20Çerçevesinde%20Analizi)
https://scholar.google.com/scholar?hl=en&q=Discrete-time%20pricing%20and%20optimal%20exercise%20of%20American%20perpetual%20warrants%20in%20the%20geometric%20random%20walk%20model
http://dx.doi.org/10.1007/s00245-012-9182-0
http://dx.doi.org/10.1007/s00245-012-9182-0


Asian Economic and Financial Review, 2017, 7(3): 279-294 
 

 
289 

© 2017 AESS Publications. All Rights Reserved. 

BIBLIOGRAPHY 

Ming, L.M., F. Nor and B. Guru, 2000. Technical analysis in the Malaysian stock market: An empirical evidence. 

West Malaysia: Multimedia University. 

 

 
Figure-1. Scatter plot of ACC Stock Price of FY 2014-15 

Source: Bloomberg 

 

 
Figure-2. Scatterplot of Difference Series from Time series from figure 1. 

 

 
Figure-3. Autocorrelation of time series data of the ACC stock price. Standard Error =0.0642. Correlations is significant up to Lag 25 (0.137) >2 

times of Standard Error (0.1284). 
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Figure-4. Autocorrelation of Difference Series of the ACC stock price 

 

 
Figure-5. Random Walk Prediction of Last 44 days- Randomised prediction, Mean, Spread Window with confidence intervals  

 

 
Figure-6. Modified Random Walk Shadowing the Actual Price Movement (zoomed view of prediction window of figure 5 ) 
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Figure-7. Predicted Values with Different Values of Smoothening/Stabilisation coefficient 

 

 
Figure-8. Forecast Error Comparison of Random Walk Model (RMW) vs Modified Random Walk (RMW_Mod) 

 

 
Figure-9. Stock price prediction by both methods show convergence of the values at the end of the prediction window. The modified random walk 

model, however, shadows actual price movement. 
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Figure-10(a). Stock Price Prediction of HUL   

                                                               Source: Bloomberg 

 

 
Figure-10(b). Zoomed View of prediction window of HUL stock. 

                                                                  Source: Bloomberg 

 

 
Figure 11(a) Increasing Stock Price. 

                                                           Source: Bloomberg 

 

825

875

925

975

1025

26-Jan-15 15-Feb-15 7-Mar-15 27-Mar-15

St
o

ck
 P

ri
ce

,I
N

R
 

SunPharma FY 14-15  

Actual Price

RMW_Prediction

Modified RMW_Prediction



Asian Economic and Financial Review, 2017, 7(3): 279-294 
 

 
293 

© 2017 AESS Publications. All Rights Reserved. 

 
Figure-11(b) Decreasing Price Trend In FY 2014-15 in FY 2015-16 

                                                           Source: Bloomberg 

 

 
Figure-12. Stock Price Prediction of Infosys with Stock Split Scenario 

Source: Bloomberg 

 

Table-1. Autocorrelations of Difference Series 

Autocorrelation Table Data Set #1   

Number of Values 242   

Standard Error 0.0643   

Lag #1 0.0230 Lag #17 0.0407 

Lag #2 -0.0556 Lag #18 0.0193 

Lag #3 0.0385 Lag #19 0.0854 

Lag #4 -0.0391 Lag #20 -0.0407 

Lag #5 0.1292 Lag #21 -0.0690 

Lag #6 -0.0756 Lag #22 0.0295 

Lag #7 -0.0354 Lag #23 -0.0401 

Lag #8 -0.1068 Lag #24 -0.0422 

Lag #9 -0.1182 Lag #25 -0.0288 

Lag #10 0.0109 Lag #26 -0.0881 

Lag #11 0.0023 Lag #27 -0.0400 

Lag #12 0.0024 Lag #28 -0.0234 

Lag #13 0.0089 Lag #29 -0.0054 

Lag #14 0.0418 Lag #30 0.0616 

Lag #15 -0.1052 Lag #31 0.0574 

Lag #16 -0.0237 Lag #32 0.0734 
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Table-2. Run Test of Randomness in Difference Series 

Runs Test for Randomness Data Set #1 

Observations 242 

Below Mean 126 

Above Mean 116 

Number of Runs 126 

Mean 0.84 

E(R) 121.7934 

StdDev(R) 7.7487 

Z-Value 0.5429 

P-Value (two-tailed) 0.5872 

 

Table-3. MAPEs for Different Values of α 

 With Alpha=0 With Alpha=0.2 With Alpha=0.5 With Alpha=0.8 With Alpha=1 

MAPE 3.9% 3.3% 2.4% 1.6% 1.4% 
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