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This paper investigates how worker productivity differs in each consecutive work 
period based on tests conducted on a manufacturing company. We first employed a 
two-dimension fixed effect model to unbalanced panel data with 6,117,317 records 
which contain 102 employees and 1680 workdays. We also found that worker 
productivity between two adjacent rest breaks shows a U-shaped trend. This finding 
supplements the previous researches about interruption events, which only explored the 
effect of interruption after its occurrence. Based on our empirical findings, to obtain the 
lowest production system variability, a mathematical model which aims to optimally 
configure work and break scheduling of a production line is then presented. The 
optimal schedule is that one worker either begins their work when another worker from 
the same workstation starts their break immediately or has worked for a half of a 
completed work and break period. Our analysis combines empirical studies and model 
analysis to improve the operations management researches and practices. 
 

Contribution/ Originality: This study is one of very few that finds the U-shaped trend between two adjacent 

rest breaks and builds a model to evaluate its economic value in manufacturing industry. 

 

1. INTRODUCTION 

The manufacturing system is often affected by various factors such as raw materials shortage, 

inventory, setup, maintenance, rework, buffer, machine failures and breaks  which result in process 

variability. As a critical performance index, process variabili ty plays an important role on production lines. 

In general, production variability increases the cost of operational processes and produces a negative effect 

on system performance. That production variability may cause increased process cost is widely  recognized 

(Lee and Billington, 1993). The impact of variability in process management triangles (capacity utilization, 

variability and inventory) on productivity has been an important research topic in operations management (Klassen 

and Menor, 2007). Hopp and Spearman (1996) believe that increasing variability degrades the performance of a 

production system. Although many factors may incur variability in production processes, the assumption in 

previous researches takes people as fixed, unchanging, or exogenous entities (Lee and Tang, 1998; Roubos 

et al., 2012). However, worker productivity can change due to psychological and physiological causes. 

Therefore, human behavior is also a source of production variability. 
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It is well known that modeling human behavior is a difficult task, so empirical research about human 

behavior becomes necessary. However, by analyzing 1,015 papers on the topic of operations management 

published in 2010 to 2015 in three top journals (Management Science (MS), Manufacturing & Service Operations 

Management (M&SOM) and Production and Operations Management (POM)), Ho et al. (2017) found only 18 percent of 

articles contained empirical analysis. The main reason, we think, is the lack of data. In the current manufacturing 

environment, many types of data can be generated during the operation processes of an enterprise, and more and 

more data are recorded by systems such as Manufacturing Execution System (MES), Enterprise Resource Planning 

(ERP) and Cyber-Physical Systems (CPS). The availability of production data, in turn, makes it possible to study 

the effect of human behavior. In recent years, there are some researches that study the productivity effect of 

humans. For example, some scholars study how interruption affects human productivity (Trougakos et al., 2008; 

Pang and Whitt, 2009; Froehle and White, 2013; Kolbeinsson et al., 2014; Lu et al., 2014; Trougakos et al., 2014; 

Sanderson and Grundgeiger, 2015; Hunter and Wu, 2016; Kim et al., 2016; Andreasson et al., 2017; Kolbeinsson et 

al., 2017; Pasquale et al., 2017; Cai et al., 2018). Some scholars study how specialization and variety of tasks affect 

human productivity (Narayanan et al., 2009; Kc and Terwiesch, 2011; Staats and Gino, 2012; Kc, 2013). Some 

scholars study how workload effects productivity (Kc and Terwiesch, 2009; Dietz, 2011; Tan and Netessine, 2014) 

and so on. 

The truth is, the three factors (interruption, task variety and workload) may all affect worker productivity, 

individually or collectively, leading to variability in the production system. In this paper, we do not investigate 

the behavioral factors that affect productivity, but focus on worker performance variability between 

scheduled rest breaks. To the best of our knowledge, there have been few studies of this issue to date. 

We study a production process of a manufacturing enterprise with traits of constant repetition, simple 

operation, single product and short processing time. Using a data-driven method described by Simchi-Levi 

(2014) unbalanced panel data with 6,117,317 records including 102 employees and 1680 workdays was analyzed. It 

was here that we found the U-shaped trend in worker productivity between two adjacent rest breaks.  

The changes of productivity indicate the existence of productivity variability in the production processes. In 

previous studies, the researchers assumed that the production time of one item satisfies a certain distribution, 

usually an exponential or normal distribution because variability of production line is still hard to define (Whitt, 

1995; Wu et al., 2016). However, in this paper we found a specific distribution (U-shaped) of productivity with time 

between two adjacent rest breaks by using realistic data. 

Variability is always the enemy of performance in a production system (Schonberger, 1982; Inman, 1993). 

Therefore, how to deal with productivity variability between two adjacent rest breaks is another critical 

problem. There are many researchers who have provided different methods to ease the stress of process 

variability. Gong et al. (2009) believed that the target of lean manufacturing is to exposure process 

variability which can then be reduced. Lee and Tang (1998) and Kapuscinski and Tayur (1999) reengineered 

the manufacturing process by reversing two consecutive stages. This process reversion reduced the variance 

and improved production performance. Li (2003) utilized simulation research and found that a workplace’s 

performance will be improved by decreasing set-up and processing time variabilities.  

In this study we developed a mathematical model to rearrange rest breaks that can improve process 

variabilities. We assumed that there were two identical workers in each workstation of a production line, hence, 

the two workers can share equal parts of the supplied materials and so be able to pass-on the same product to the 

next workstation. Here, we present a model designed to optimally configure the production and break scheduling 

with the lowest possible variability. 

This paper is organized as follows. We execute an empirical analysis in part 2. In part 3, a system scheduling 

model with two identical workers in each workstation is formulated based on our empirical analysis. This part also 

compares the variability between two production style designs and discusses the optimal conditions of how to 
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arrange work and break intervals. The paper concludes with a discussion of the management implications of our 

main findings. 

 

2. EMPIRICAL ANALYSIS 

In this part, data from a test conducted on a manufacturing company is collected in order to study worker 

productivity change between two adjacent rest breaks. Then, a two-dimensional fixed effect model is utilized for our 

analysis. 

 

2.1. Data, Variables and Model 

2.1.1. Data Collection and Processing 

This study selects a production line’s test of a manufacturing company during 2017.01.01 to 2017.12.31 as our 

dataset with traits of constant repetition, simple operation, single product and short test time. Worker’s standard 

working hours are from 8:00 am to 20:00 pm. In practice, employees take rest every day at relatively fixed times 

which are morning rest (10:00 am to 10:15 am), lunch break (12:00 pm to 13:00 pm), afternoon rest (15:00 pm to 

15:15 pm) and dinner break (17:00 pm to 18:00 pm). According to responses from firm’s managers and front-line 

employees, the actual rest and meal times are slightly longer than scheduled. Excluding a very small number of 

recording errors and missing data, we selected an unbalanced panel data with 6,117,317 records, 102 employees and 

1680 workdays. Among them, the operator with highest attendance rate worked 110 days while the lowest worked 

only one day. Figure A1 in appendix A indicates its density distribution. Therefore, each operator works about 16 

days on average in this year.  

 

 
Figure-1. Average test time per minute of during 8:10 am-20:00 pm. 

                           Source: Developed by authors according to data sources from the selected manufacturing company. 

 

In order to describe the productivity change roughly, a one minute interval is adopted to capture each worker’s 

average test time. Figure 1 shows the average test time calculated by one minute of all operators during the work 

day. The horizontal axis represents the number of one minute interval, from one to 720. The number ―1‖ is the time 

interval 8:00 am-8:01 am and ―720‖ represents the time interval 19:59 pm-20:00 pm. In Figure 1, the average test 

time during or near the break interruption is apparently larger than in other periods. There are two reasons for 

this: (1) number of actual production tests around break interruption are less than non-interrupted periods; and (2) 

the test time has a larger fluctuation either before or after the interruption because of setup time, work delay or 

other intangible factors. 
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The dayshift is divided into five consecutive stages of work based on break interruptions as shown in Figure 1. 

As indicated, the standard rest time is 15 minutes, however, in practice, employees’ rest time always fluctuates 

around 15 minutes, especially for the short period following rest breaks. This article selects the period 10:00 am 

to10:20 am and 15:00 pm to 15:20 pm as the morning rest and afternoon rest respectively. For meal breaks, the 

tested enterprise adopted a meal-break strategy in which workers have lunch in batches to reduce crowding in 

cafeteria during the Lunch Break. The three batches for lunch are 11:40 am to12:40 pm, 11:50 am to 12:50 pm and 

12:00 pm to13:00 pm, respectively. Generally, the lunch break starts between 11:40 am and 12:00 am. Therefore, 

the period 11:50 am to 13:00 pm is taken as the lunch break in this study. Conversely, for the dinner break, batches 

arrangement is not adopted because the demand at dinner time is relatively light, and the scheduled time is between 

17:00 pm and 18:00 pm. Frequency of other non-rest and non-dining interruptions are very low in this company. 

Therefore, it is feasible to define the interruption in a practical situation. In addition, the timeframe of rest breaks 

and the five stages are shown in Table 1. From Figure 1, it is obvious that the starting and ending of the dayshift 

causes only a small fluctuation in productivity. We excluded the first and last 10 minutes’ data from every dayshift. 

 
Table-1. The definition of interruption and working stages. 

Periods Time Periods Time 

Stage1 8:10-10:00 Afternoon rest 15:00-15:20 
Morning rest 10:00-10:20 Stage4 15:20-17:00 

Stage2 10:20-11:50 Dinner break 17:00-18:00 
Lunch break 11:50-13:00 Stage5 18:00-19:50 

Stage3 13:00-15:00   
Notes: The division of scheduled break interruptions and working stages results from the 
production plan of selected company. 

 

In practice, the test time of this procedure is approximately 7 seconds and some abnormal interruptions may 

affect our analysis. Based on average test time of one every minute, this paper deals with the original data in the 

following steps. Firstly, we find the rest break location of each operator’s workday according to Table 1 which 

includes all the test data with test time of less than 420s between 8:10 am-19:50 pm. Secondly, the mean and 

standard deviation of average test time are calculated in each stage.   principle is employed to remove some 

abnormal test records. Because our test time is positive, we only consider the upper bound of   principle. 1.5  is 

adopted and we obtain the mean ( =10.18s) and upper bound ( +1.5  =34.72s) by adding up all five stages. We 

exclude test records with average test times larger than 34.72s and the detail is shown in Table A1. Because the 

number of total records are large enough and the test records with test time higher than 34.72s occupy only a very 

small proportion in our data, thus regardless of whether is 1.5  or 3
 
it would have little impact on our 

analysis and so our approach is reasonable. 

 

2.1.2. Variables 

2.1.2.1. Dependent Variable 

In this study, we directly take the average test time as the measurement of worker productivity. Our empirical 

study takes one minute as the time interval. The productivity is calculated as 

/productivity Test number Actual test time . Test number  denotes the quantity of test production within one 

minute, and Actual test time  represents the difference between end time of the last production and start time of the 

first production during one minute intervals, which is always equal to or less than 60s. 

 

2.1.2.2. Independent Variable 
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The independent variable in this paper is time. To study worker productivity change over time, the following 

definition is adopted. The meaning of our independent variable n

idTime  is similar to that of the ―Elapsed working 

hours‖ of Lu et al. (2014). Its size represents successive work time stages which measures the time length from the 

beginning of each work stage per minute. Superscript n  represents different stages and its range is  1,2,3,4,5 . 

Subscript i  indicates worker and d  indicates day. Taking stage 2 as an example, this stage locates at 10:20 am to 

11:50 am and has 90 minutes in total, and we define the value of 2

idTime  with one minute interval located 

on  1,2,...,90 . Thus, 2

idTime  equals to ―1‖ which represents the time of test records as between 10:20 am and 10:21, 

and 2

idTime  equal 90 which means the time of test records is between 11:49 am and 11:50 am. In order to explore the 

nonlinear relationship between worker productivity and elapsed time from the beginning of each stage, the 

quadratic term  
2n

idTime  is also employed. 

 

2.1.3. Model 

To analyses our unbalanced panel data and to control confounders, a two-dimension fixed effect model which is 

able to capture the difference across the workers and dates, is implemented in this part because different workers 

may have inconsistently average productivity levels. Our model explores the productivity trend of each five stages. 

According to our unbalanced panel data, the average test time idproductivity  is taken as the dependent variable 

which measures the worker productivity per minute. The longer the test time, the lower the productivity is. On top 

of that, two fixed effects are captured to control for the confounders. The worker fixed effect, denoted as 
i , 

controls for the difference among workers, which the heterogeneity of date is controlled by date fixed effect d . In 

this paper, the worker level is utilized for cluster standard errors to control for any other serial correlation and 

heterogeneities (Bertrand et al., 2004; Cai et al., 2018). Research from Cai et al. (2018) cluster standard errors at 

machine level, but, there are only two machines in our study. Those two machines which have almost the same 

condition would not affect worker productivity, therefore, we select the cluster standard errors at worker level. One 

minute interval is selected in each work stage. Model (1) is implemented to describe the detail of the n th stage 

 1,2,3,4,5n  . Just like the following Equation 1 in each stage, the dependent variable is still the average test time 

n

idproductivity  of one minute while the independent variable contains linear term n

idTime  and quadratic item 

 
2n

idTime  for exploring the nonlinear relationship between productivity and time. n  and n  are coefficients of 

n

idTime  and  
2n

idTime  respectively. 

 
2n n n n n n

id id id i d idproductivity Time Time                                                       (1) 

Our models are all carried out by the code ―reg2hdfe‖ from Stata which is utilized in the research conducted by 

Cai et al. (2018). 
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2.2. Empirical Findings 

This subpart presents the empirical findings of our model based on test data. We implement model (1) and 

obtain the results for each stage in Table 2 with two-dimension fixed effect model. 

Table 2 reports the results of model (1), with each column reporting the results for a corresponding stage. It is 

apparent that the coefficients of stage1-5 are all statistic significant at 5% level, and the estimation of the 

coefficients indicates that there is a quadratic function relationship between worker productivity and successive 

work time between two adjacent rest breaks. Productivity of stage 1 has a reverse trend compared with other four 

stages. In stage 1, the work time is 90 minutes in total while the vertex of the quadratic function is located at 

1 145idTime  , therefor, worker productivity is going to increase monotonically. 

 
Table-2. Regression conclusions of model (1). 

Variable Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 
n

idTime  -0.007521*** 0.005700*** 0.004138*** 0.003155*** 0.009672*** 

 (0.001) (0.001) (0.001) (0.001) (0.002) 

 
2n

idTime  
0.000026** -0.000070*** -0.000036*** -0.000031*** -0.000062*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) 

Controls      

Worker FE Yes Yes Yes Yes Yes 
Date FE Yes Yes Yes Yes Yes 

Observations 135,551 114,079 154,064 124,447 106,223 
R-squared 0.276 0.394 0.35 0.34 0.15 

Notes: All the regression’s dependent variable is test time index n

idproductivity  and the independent variable is time variable with 1 minute interval 

n

idTime  and its quadratic item  
2n

idTime ,  1,2,3,4,5n  . Worker level is clustered to calculate the standard errors. Robust standard errors in 

brackets *** p<0.01, ** p<0.05, * p<0.1. 

 

This inconsistence between stage 1 and stage 2-5 may arise from many aspects. For example, after an 

overnight rest, it is of little possibility for employees to concentrate on their work at the very beginning of the 

second day. In addition, equipment preparation and worker proficiency accumulation are both time-consuming. 

Therefore, worker productivity shows a decreasing trend over time in this stage. On the contrary, all of the stage 2-

5 have a negative coefficient of  
2n

idTime  but a positive for n

idTime . According to the estimated coefficients, the 

largest value of n

idproductivity  is obtained approximately at the 40th, 57th, 51th and 78th minutes in stage 2-5, 

respectively. Additionally, in stage 2-5, the dependent variable n

idproductivity  follows an inverted U-shaped 

function for n

idTime , indicating a U-shaped trend of worker productivity will decreases first and then increases 

during each of stage 2-5. Considering stage 2-4 are all between two adjacent rest breaks, our empirical finding 

supports that worker productivity displays a U-shaped trend between two adjacent rest breaks.  

 

2.3. Robustness Checks 

To test the robustness of our analysis results of U-shaped productivity trend in Table 2, following checks are 

made. Firstly, we focus on the dependent variable. Our normality tests report that the average test time per minute 

disobeys a normal distribution. Therefore, the natural log of productivity  is taken as new dependent variable, and 

the regression results are presented in Table 3. It is noted that the coefficients are basically consistent and 

significant as with previous findings in Table 2. The sign of all coefficients are also the same as those in Table 2, 
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along with slight differences in magnitude. This test confirms that the form of the dependent variable has little 

effect on our earlier conclusions, demonstrating the robustness of our empirical findings. 

Secondly, we extend the effect of unobservable factors on productivity by enlarging test records with longer 

test times. According to the investigation of front-line employees, the rest time in the morning or afternoon is 

always longer than half of the fixed rest time (15 minutes). We took test records with the test time and the 

outcomes fell into the range of 34s – 420s. As in Table 2, we took the test times which were less than 420s as the 

new dependent variable. Table 4 shows that the other four regressions have the same coefficients sign as those in 

Table 2, except for stage five. We found that only the coefficient of the quadratic item in stage five is significant at a 

level of five percent. Then, a linear regression is employed and the coefficient (0.039922) is positively significant at 

one percent. Two reasons may account for the difference between stage five and stages two to four. At first, more 

interference factors may appear when employees are about to finish their day’s work. In addition, there are 

relatively fewer test records and larger variances in test times at the end of the work day. Therefore, abnormal test 

records are more likely to appear at that time. This means that our earlier analysis is still robust even though we 

enlarged the scope of dependent variable. 

 

Table-3. Regression conclusions of model with  ln productivity . 

Variable Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 
n

idTime  -0.000866*** 0.000842*** 0.000483*** 0.000339** 0.000848*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) 

 
2n

idTime  
0.000002** -0.000010*** -0.000005*** -0.000003** -0.000004** 

 (0.000) (0.000) (0.000) (0.000) (0.000) 

Controls      
Worker FE Yes Yes Yes Yes Yes 

Date FE Yes Yes Yes Yes Yes 
Observations 135473 114021 153988 124312 105752 

R-squared 0.222 0.314 0.273 0.27 0.136 
Notes: All the regression’s dependent variable is test time index  ln n

idproductivity  and the independent variable is time variable with 1 

minute interval 
n

idTime  and its quadratic item  
2n

idTime ,  1,2,3,4,5n  . Worker level is clustered to calculate the standard 

errors. Robust standard errors in brackets *** p<0.01, ** p<0.05, * p<0.1. 

 

Table-4. Regression conclusions of model with 420productivity s . 

Variable Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 
n

idTime  
-0.034539*** 0.016929*** 0.021935*** 0.028921*** 0.008659 

 (0.006) (0.006) (0.005) (0.007) (0.012) 

 
2n

idTime  
0.000185*** -0.000287*** -0.000179*** -0.000247*** 0.000313** 

 (0.000) (0.000) (0.000) (0.000) (0.000) 

Controls      
Worker FE Yes Yes Yes Yes Yes 

Date FE Yes Yes Yes Yes Yes 
Observations 137269 115386 155879 126008 108069 

R-squared 0.079 0.107 0.088 0.086 0.035 

Notes: All the regression’s dependent variable is test time index  ln n

idproductivity  which is less than 420s and the independent variable is 

time variable with 1 minute interval n

idTime  and its quadratic item  
2n

idTime ,   1,2,3,4,5n  . Worker level is clustered to calculate the 

standard errors. Robust standard errors in brackets *** p<0.01, ** p<0.05, * p<0.1. 

 

Thirdly, we divided each of stages two to five into two sides based on the lowest vertex of the U-shaped trend. 

Coefficients of Table 2 display that the timing for obtaining the worst productivity locates on the 40th, 57th, 51st and 

78th minutes from the beginning of stages two to five. We took these time points as the boundary value and applied 

two linear models for each stage. The upper half of Table 5 demonstrates the regression results of the left side, 
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while the bottom half shows the regression results of right side in stages two to five. We found that coefficients of 

left side are all positive even though stages two and four are not significant at a level of 10 percent, and the 

coefficients of the right side are all negative and significant at 10 percent. This is consistent with U-shaped 

productivity finding in Table 2. 

 
Table-5. Two sides' regression of U-shaped in stage 2-5. 

Stage Stage 2 Stage 3 Stage 4 Stage 5 

Time interval 1-40 minutes 1-57 minutes 1-51 minutes 1-78 minutes 
n

idTime  0.001175 0.001356* 0.001051 0.004852*** 

 (0.001) (0.001) (0.001) (0.001) 

Observations 51670 74239 65871 86305 
R-squared 0.399 0.35 0.366 0.175 

Time interval 41-90 minutes 58-120 minutes 52-100 minutes 79-110 minutes 
n

idTime  -0.003634*** -0.002739*** -0.001955* -0.031809*** 

 (0.001) (0.001) (0.001) (0.003) 

Observations 62409 79825 58576 19918 
R-squared 0.399 0.357 0.324 0.115 

Notes: All the regression’s dependent variable is test time index  ln n

idproductivity  and the independent variable is time variable with 1 

minute interval 
n

idTime ,  1,2,3,4,5n  . Worker 
i  and day 

d  fixed effect are adopted and worker level is clustered to calculate the 

standard errors. Robust standard errors in brackets *** p<0.01, ** p<0.05, * p<0.1. 

 

3. REST SCHEDULING BASED ON “U-SHAPED” PRODUCTIVITY 

3.1. Production Setting and Model Assumptions 

In many manufacturing companies process variability is a critical factor which deteriorates the system’s 

performance (Hopp and Spearman, 1996). How to arrange the production line to mitigate the effect of variability is 

an important consideration. In the company we investigated, there are two workers in each workstation of a 

production line where they share the supply of parts and materials and pass-on the same product to the next 

workstation as described by Figure 2. The circles with solid line represent the workers located on both sides of the 

production line, while circles with dotted line represent the workstations on a conveyor belt. The parts material 

flow step-by-step from workstation one to workstation m . Combining our empirical findings and manufacturing 

practice, a model is thereby built up to determine the optimal work and break plan, and to research the lowest 

variability of the production line. 

 

 
Figure-2. Two production line with joint parts material supply. 

                              Source: Developed by authors according to above empirical conclusion. 

 

In order to abstract and simplify our model, we made several assumptions for our realistic production 

environment. From Figure 2, we defined several parameters with detailed a description in Table 6. Then, we 
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integrated the empirical U-shaped trend of worker productivity between two adjacent rest breaks upon which to 

base the following assumptions. 

 

 

 

 
 

Table-6. Description of model parameters. 

Parameters Description 

s  Consecutive work time between two adjacent rest breaks. 

bT  
Worker fixed break time. 

iT  
Break interval time between two workers from the same workstation. 

t  Elapsed time since the worker begins his/her work after the last break 
interruption. 

p  
The rate of  break time and consecutive work time: /bT s

.
 

E  Worker productivity during a consecutive work time: 0,s . 

a , b  and c  Parameters of  quadratic function with U-shaped productivity trend. 

               Source: Developed by authors according to our theory model. 

 

3.1.1. Assumptions 

1. Two identical operators work in each workstation of production line. The two workers share the supply of 

parts and materials and pass-on the same product to the next workstation. The scheduled break time is bT  

and the successive work time between two adjacent break interruptions is denoted as s . 

2. In each successive work period  0,s , workers have the same U-shaped productivity trend and quadratic 

equation 
2E at bt c    over time, E  represents worker productivity, t  represents elapsed time, and 

a , b  and c  are all positive parameters. Because our productivity is positive, the inequality 
2 4b ac  is 

satisfied. We assume the U-shaped productivity trend is symmetrical which gains the maximum 

productivity in the middle of a consecutive work time, hence, s b a . 

3. Two different production style designs are considered in Figure 2. The first style is mainly based on 

current practice which two workers at each workstation have the same work and break rhythms. Keeping 

the total work and break time constant, the second style arranges a worker of one workstation to begin 

their work and break with a fixed interval time iT  compared to another one. 

4. We assume bT  and iT  are both less than s  and b iT T . Additionally, the rate of break time and 

successive work time is p  (  0,1p , bT
p

s
 ). 

Based on above four assumptions, we can describe parameters in Table 6 and find Equation 2 and Equation 3 as 

follows. Those two equations show the relationships among parameters in Table 6. 

 0 , 0,1b i

b b
T p T s p

a a
                                                           (2) 
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2 4b ac                                                        (3) 

 

3.2. Variability of Two Different Production Styles 

This subsection discusses two production style designs based on Figure 2 with the same productivity trend but 

different production and break plans.  

Production style 1: Same work and break rhythms for workers of each workstation. 

 

 
Figure-3. Same work and break rhythms of each workstation. 

                              Source: Developed by authors according to different condition of parameters in our model. 

 

Figure 3 depicts the current manufacturing setting. The solid and dashed lines represent productivity change 

of two workers from each side of a workstation, and those two workers have same work and break rhythms. The 

horizontal axis is elapsed time calculated from the beginning of the work and the vertical axis represents worker 

productivity. One completed cycle period ( bs T ) is considered, as shown in rectangle of Figure 3. In this 

circumstance, each of the two workers from one workstation satisfy the same productivity change 

2

1 2E E at bt c     during the period  0,t s  and there are no production activities in their joint break 

time  , bs s T . In this paper, we mainly concentrated on the productivity variability of workers and considered 

the productivity variance of an entire production line as our variability. This is consistent with He et al. (2007) who 

took variance of test time as the variability. Thus, mean ( SameE ) and variance ( SameVar ) of production style one can 

be obtained as the following Equation 4 and Equation 5. 

   1 2 1 2
0 0

1 1
2 2

bs T s

Same

b b

E E E dt E E dt
s T s T



   
                           (4) 

  

     

2

1 2
0

2 2

1 2
0

1

1
2 + 0

b

b

s T

Same Same

b

s s T

Same Same
s

b

Var E E E dt
s T

E E E dt E dt
s T





  


   




 
                                      (5) 

Production style 2: Different work and break rhythms with interval iT  for each worker of a workstation. 
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Figure-4. Different work and break rhythms of each workstation. 

                                Source: Developed by authors according to different condition of parameters in our model. 

 

Similar to what was presented in Figure 3, one cycle period ( bs T ) with same productivity trend, as shown in 

rectangle of Figure 4 is selected. There is a work and break interval between workers from the same workstation 

which means one worker always starts their work and break iT  lagged than another one. During the selected 

period  ,i i bT s T T  , three of the same productivity trends with different function forms ( 1E  and 3E   belong to 

one worker and 2E  belongs to another worker from the same workstation) are gained overtime:  

 2

1 , ,iE at bt c t T s    ,      
2

2 , ,i i i iE a t T b t T c t T s T        and 

   
2

3 b bE a t s T b t s T c       ,  ,b b it s T s T T    . Therefore, mean ( IntervalE ) and variance 

( IntervalVar ) of production style 2 can be obtained as the following Equation 6 and Equation 7. 

   1 2 3 1 2 3

1 1b i i b i

i i i b

s T T s s T s T T

Interval
T T T s T

b b

E E E E dt E dt E dt E dt
s T s T

    


     

                               (6) 

 

   

   

2

1 2 3 1,2,3

2 2

1 2 1,2,3 2 1,2,3

2 2

2 3 1,2,3 3 1,2,3

1

1

b i

i

b

i

i i b

b i

s T T

Interval
T

b

s s T

T s

s T s T T
b

s T s T

Var E E E E dt
s T

E E E dt E E dt

s T
E E E dt E E dt

 



  

 

   


 
    

  
       

 



 

 

        (7) 

In this paper, the unique difference between production styles one and two is the starting work and break 

interval time iT . It is realized that, for the two workers from the same workstation, at least one of them would work 

continuously for the entire time period. In other words, each workstation must keep running during a complete 

shift. This arrangement not only mitigates the crowding of materials supply, but also makes the workstation 
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productivity more stable than that in production style one, with the same work and break rhythms. It is apparent 

that the average productivity of those two production style designs are equivalent. Does variability make a 

difference during the successive work and break time ( bT s )? The following theorem one compares workstation 

variability difference measured by variance of worker productivity between production style one and production 

style two. 

Theorem 1: In a successive work and break period bT s , workstation of production style 2 has the same productivity 

mean but lower variability compared with production style 1: Interval SameE E  and Interval SameVar Var . 

In terms of keeping the output of a production line constant, theorem one demonstrates that a workstation of 

production style two experiences a lower process variability. Keeping the production line running provides a useful 

guidance to firms that enables managers to reduce a production line’s variability by rearranging the staggered 

break times. In practice, this finding may provide a simple and feasible method for firms to utilize the U-shaped 

trend of workers’ productivity sufficiently to reduce their production variability. 

As for production style two with different rhythms, we take the interval time iT  between two workers from the 

same workstation as the decision variable to explore how the variability of a production line fluctuates. According 

to Equations 5 and 6, we can obtain the following theorem: 

Theorem 2: In a successive work and break period bT s  with work and break interval  ,i bT T s , the variance of 

workstation IntervalVar  has only one extremum at  1
2i bT T s   when parameters satisfy the condition 

 2 3 20 24 3 1 3b acp p p p     ; there are three extremums at 

     3 2 2 21
2

3 1 3 24 4 1i bT T s p p p b acp a p             or  1
2i bT T s   when parameters 

satisfy the condition  3 2 224 3 1 3 4acp p p p b ac     .  

Theorem 2 shows the relationship between workstation’s variability IntervalVar  with different rhythms and 

interval iT  in production style two. Our calculations show that IntervalVar  is a fourth-order polynomial function in 

iT , and the interval time iT   has a relatively complicated effect on IntervalVar . In our special context  ,i bT T s , 

there are either one extremum or three extremums, and IntervalVar  has a symmetrical property about the midpoint 

of bT s . Based on the conclusions obtained in theorem two, the optimal conditions of the minimum variability 

that the production line gains are further explored in theorem three. 

Theorem 3: In a successive work and break period bT s  with work and break interval  ,i bT T s , IntervalVar  gets 

its the minimum at  1
2i bT T s   when 
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3 23 5 5 1 0p p p     and 

    3 2 2 248 3 5 7 1 24 2 2acp p p p b acp p p p        ;  

IntervalVar  gets the minimum at i bT T  or iT s when 

3 23 5 5 1 0p p p     or 
3 23 5 5 1 0p p p     and 

   3 2 2 3 224 3 1 3 48 3 5 7 1acp p p p b acp p p p          or 

 2 3 20 24 3 1b acp p p p      . 

Theorem 3 shows the optimal schedule of work and break which gains the lowest workstation variability. Two 

optimal work and break arrangements appear when the work and break interval are  1
2i bT T s   and 

i bT T or s , respectively. Figure 5 displays those two cases which have the lowest variability of our workstation. 

The left subfigure represents the case that minimum variability is obtained when the starting work and break 

interval time is half of a completed cycle period (break time plus a consecutive work time: bT s ). The right 

subfigure shows another case with lowest variability when the starting work and break interval is same as the break 

time bT  or a consecutive work time s . The practice implication of Figure 5 suggests that the manager should 

layout their production line design with the following methods. In order their work when another worker from the 

same workstation starts their break immediately, or has worked for a half of a completed work and break period. 

This conclusion is very simple and feasible to implement in practice, and is able to help manufacturing companies 

reduce their production variability. 

 

 
Figure-5. Two optimal designs with lowest variability of production style 2. 

                               Source: Developed by authors according to different condition of parameters in our model. 

 

4. CONCLUSION 

In this paper, we explored two critical questions. Firstly, utilizing a production test procedure with constant 

repetitions, simple operation, single product, and short test time from a manufacturing enterprise, the productivity 

trend between two adjacent rest breaks was analyzed by employing the two-dimension fixed effect model. Empirical 

findings show that the trend of productivity between two adjacent break interruptions has a U-shaped form. To 
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best of our knowledge, it is the first time that a U-shaped trend of worker productivity during successive work time 

between two adjacent rest breaks has been discovered within a selected manufacturing environment. Secondly, 

based on the findings from empirical research, we concentrated on a special production line application where each 

workstation has two identical workers. The two workers have the same ―U-shaped‖ productivity trend and each 

worker has totally equal work and break time. Dividing the system into two production style designs by a work and 

break interval between two workers of a same workstation, a mathematical model was constructed to compare the 

variability of those two production style designs, and to optimally configure the production and break scheduling 

with lowest variability. Additionally, theorems one to three rising from model analysis demonstrate that production 

style with a work and break interval will have smaller a variability than a production style design with the same 

work and break rhythms. To obtain the lowest variability, it is optimal for manufacturers to arrange their 

production line as follows: one worker either begins their work when another worker from the same workstation 

starts their break immediately, or has worked for a half of a completed work and break period.  
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APPENDIX 

Appendix A 

 

 
Figure-A1. Density distribution of working days. 

                                                 Source: Developed by authors according to data sources from the selected manufacturing company. 

 

Table-A1. The mean and standard deviation from data cleaning under 1.5  principle. 

Stages Mean Std Mean+1.5std 

Stage 1 9.805785276 14.90138151 32.15785753 
Stage 2 9.601312061 15.53169801 32.89885907 

Stage 3 9.877705694 15.84673547 33.6478089 
Stage 4 10.06244439 16.5711442 34.91916069 
Stage 5 11.5406807 18.94914722 39.96440153 
Mean 10.17758562 16.36002128 34.71761755 

                 Source: Developed by authors according to data sources from the selected manufacturing company. 

 

Appendix B 

Proof of Theorem 1 

In view of the difference of workstation variability between production style 1 and 2, our proof shows that all of 

the maximum point of IntervalVar  are less than the value of SameVar . Two cases in our model are described in 

theorem 2 and 3 and the corresponding Figure A2 and Figure A3 are utilized to describe the Case 1 and Case 2, 

respectively. 

Case 1 Figure A2: When 
2

3 2

24
0

3 1 3

acp
b

p p p
 

  
, IntervalVar  is a concave function in iT  and its maximum 

can be obtained at 
1

2
i b

b
T T

a

 
  

 
. 
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Figure-A2. The difference of workstation variability between production style 1 and 2 of Case 1. 

                                       Source: Developed by authors according to our theory model. 
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We define the numerator as a quadratic function  2w b  of 
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Let   6 5 4 3 27 15 30 +30 +15 15z p p p p p p p     and we find that  z p  is either less than or equal to zero 

when  0,1p . In addition, the quadratic item coefficient of  z p  is 
5 4 3 25 10 10 25 5p p p p p      is 

positive under  0,1p . Thus, we can get that  2 0w b  and Interval SameVar Var  in case 1. 

Case 2 Figure A3: When 
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Figure-A3. The difference of workstation variability between production style 1 and 2 of Case 2. 

                                          Source: Developed by authors according to our theory model. 
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25 4 3 2 2 3 2 2

2 2 2 2

600 120 40 160 120

6 5 20

6 5 20 40 160 120

600 120

w b a c p a c ab cp ab cp ab cp

b p b p b p b p

p p p p b acp acp acp b

a c p a c

    

   

      

 

 

Because
5 4 3 26 5 20 0p p p p     holds when  0,1p ,  2w b  reaches its maximum at 

 
 23 2

2

4 3 25 4 3 2

20 3 440 160 120

6 5 202 6 5 20

ac p pacp acp acp
b

p p p pp p p p

  
  

    
. 

 2

4 3 2 3 2

5 4 2

7 6 5 4 3 2

20 3 4 24

6 5 20 3 1 3

4 4 40 100 60

9 20 24 81 55 20

ac p p acp

p p p p p p p

p p p p
ac

p p p p p p p

 


     

   


     

 

Under  0,1p , we find that 
7 6 5 4 3 29 20 24 81 55 20 0p p p p p p p       and 

5 4 24 4 40 100 60 0p p p p     , so ,
 2

4 3 2 3 2

20 3 4 24

6 5 20 3 3 1

ac p p acp

p p p p p p p

 


     
 and  2w b  

decreases under 
2

3 2

24
4

3 3 1

acp
b ac

p p p
 

  
.  
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 
 

2

3 2max: 0,1

24

3 1 3p

acp
w b w

p p p

 
  

   
 

 

2

3 2

7 6 5 4 3 2
2 2

2
3 2

24

3 1 3

9 9 75 115 25 15 5 5
24 0

3 3 1

acp
w b

p p p

p p p p p p p
a c

p p p

 
 

   

       
  

   

 

Thus, we can prove that  2 0w b   and Interval SameVar Var  under case 2. 

Proof of Theorem 2 

From Figure 4, we can calculate productivity’s mean and variance of production line by Equation 5 and 6. 

 

   

1 2 3

2

1 2 3

1

1 6

3 1

b i

i

i b i

i i b

s T T

Interval
T

b

s s T s T T

T T s T
b

E E E E dt
s T

ac b
E dt E dt E dt

s T a p

 

  



  



   

 



  

 

 

   

   

2

1 2 3 1,2,3

2 2

1 2 1,2,3 2 1,2,3

2 2

2 3 1,2,3 3 1,2,3

1

1

b i

i

b

i

i i b

b i

s T T

Interval
T

b

s s T

T s

s T s T T
b

s T s T

Var E E E E dt
s T

E E E dt E E dt

s T
E E E dt E E dt

 



  

 

   


 
    

  
       

 



 

 

 

We derivate the variance IntervalVar  in the decision variable iT . 

 

  

 

  
 

  
 

 

2 22 2 2
3 2

22 3 2 2

2 3 2 2

2
3 2

2 3 2 2

2 24 4 4 8 4

3 3 3 3 3 1

2 4 22 6 24

3 3 3 1

3 12

3 1

4
2 1

3

2 6 24

Interval

i

i i

i

i i

Var

T

a p a b bpa p a abp abp ab
T T

p p a p

b bp abp abp abb p b p acp
T

p a p

b bp b p b p acp

a p

a
T ab p T

b p b p ac






    
   
   
 

    
   
  
 

  




   

 
 

 
   2 2 3 2 22 3 122 1

3 1 3 3
i

b b p b p acpb pp
T

p a

   
  

  
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We solve the equation 
 

0Interval

i

Var

T





 to obtain three solutions  

1

2
i bT T s   and 

 
 

 

3 2 2

2

3 1 3 241

2 4 1
i b

p p p b acp
T T s

a p

   
  


.Let 

24

3
A a ,  2 1B ab p   and 

 
 

222 3 2 2 2 12 6 24

3 1 3

b pb p b p acp
C

p

 
  


 , we can get the following equation to find the solution number 

of 
 

0Interval

i

Var

T





. 

  
 

 

 
 

2

222 2 3 2 2
2

2 3 2

2

4 12

2 14 2 6 24
4 2 1 12

3 3 1 3

1 3 3 24
16

3 1

B AC

b pa b p b p acp
ab p

p

b p p p acp
a

p

  

    
          

    
 
 
 

 

2 2

3 2

24
4 12 0

3 3 1

acp
B AC b

p p p
    

   
 

Because  0,1p , thus, the denominator 
3 23 3 1 0p p p     . The following conclusions are obtained: 

when 
2

3 2

24
0

3 1 3

acp
b

p p p
 

  
, 

 Interval

i

Var

T




is a monotonic function and IntervalVar  get the unique 

extremum at  
1

2
i bT T s  ; when

2

3 2

24
4

3 1 3

acp
b ac

p p p
 

  
, 

 Interval

i

Var

T




 has three monotonic 

intervals and its solutions can be obtained at  
 

 

3 2 2

2

3 1 3 241
1

2 4 1
i

p p p b acpb
T p

a a p

   
  


or  

 
1

2
i bT T s  . Additionally, other two extremum points is symmetrical about  

1

2
i bT T s   and IntervalVar  

gets the same value in those two points. In our context, the interval time between two production lines has special 

restriction,  ,i bT T s . Then, we must discuss whether all solutions of 
 Interval

i

Var

T




 fall into the range of 

 ,bT s . We know that  
1

2
bT s  is lie in the midpoint of  ,bT s . 

Let  
 

 

3 2 2

2

3 1 3 241
+

2 4 1
i b

p p p b acp b
T T s

a p a

   
  


, we can get  
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 
 

 

 
 

 

 

3 2 2

2

3 2 2 2
2

2 2

2

2

3 1 3 24 1
1

4 1 2

3 1 3 24 1
1

4 1 4

24

2 2

p p p b acp b
p

a p a

p p p b acp b
p

a p a

acp
b

p p p

   
 



   
  



 
 

 

Let      3 2 23 1 3 2 2g p p p p p p p        

        

 

3 2 2 2

3 2 2

3 1 3 2 2 1 1 0

3 1 3 2 2

g p p p p p p p p p

p p

p p p p p p

          

 
    

 

 
2

2

24

2 2

acp
b

p p p


 
 does not exist because 

 
2

2

24
4

2 2

acp
b ac

p p p
 

 
. Therefore, there are three 

solutions when the condition
2

3 2

24
4

3 3 1

acp
b ac

p p p
 

   
 is satisfied. 

Above all, we can get that, during the period  ,bT s , the variance of production line IntervalVar  has only one 

extremum at  
1

2
i bT T s   when the parameters satisfy the condition of 

2

3 2

24
0

3 1 3

acp
b

p p p
 

  
; there 

are three extremums at  
 

 

3 2 2

2

3 1 3 241

2 4 1
i b

p p p b acp
T T s

a p

   
  


and  

1

2
i bT T s   when the 

parameters satisfy the condition 
2

3 2

24
4

3 1 3

acp
b ac

p p p
 

  
. 

Proof of Theorem 3 

Next, we focus on analyzing each theorem to capture the minimum variance of IntervalVar . 

Firstly, we analyses the case that IntervalVar  have only one extremum at  
1

2
i bT T s   with condition 

2

3 2

24
0

3 1 3

acp
b

p p p
 

  
. We take the second derivative of Equation 6 with parameter iT  from equation. 

 
 

 
 

22 22 3 2 2
2 2

2

2 12 6 24
4 4 1

3 1 3

Interval

i i

i

Var b pb p b p acp
a T ab p T

T p

   
       

   
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 

 

     

 
 

 
 

22

2

2
1

2

222 3 2 2

2 3 2

1 1
4 1 4 1 1

2 2

2 12 6 24

3 1 3

1 3 3 24

3 1

i b

Interval

i T s T

Var b b
a p ab p p

T a a

b pb p b p acp

p

b p p p acp

p

 

  
      

  

  
   
  

   




 

When 
2

3 2

24

3 3 1

acp
b

p p p

   

, we get 
 

 

2

2
1

2

0

i b

Interval

i T s T

Var

T
 





 (not exist); when 

2

3 2

24

3 3 1

acp
b

p p p

   

, we get 
 

 

2

2
1

2

0

i b

Interval

i T s T

Var

T
 





. IntervalVar  obtains its maximum at 

 
1

2
i bT T s   when 

2

3 2

24
0

3 3 1

acp
b

p p p
 

   
, therefore, production system will get the minimum 

variability at i bT T  or iT s  when 
2

3 2

24
0

3 3 1

acp
b

p p p
 

   
. 

Then, we analyze the case that IntervalVar  have three extremums at  
1

2
i bT T s   and 

 
 

 

3 2 2

2

3 1 3 241

2 4 1
i b

p p p b acp
T T s

a p

   
  


with condition

2

3 2

24
4

3 3 1

acp
b ac

p p p
 

   
. We also take 

the second derivative of Equation 6 with parameter iT . As for the extremum  
1

2
i bT T s  , we know that 

 

 

2

2
1

2
i b

Interval

i T s T

Var

T
 




 must be larger than zero under this case. So,  

1

2
i bT T s   is a minimum point. For 

other two extremum points, we have the following proof. 

 

 
 

 

 
 

 

   
 

 

 
 

3 2 2

2

2
3 2 22

2

2 23 1 3 241
1

2 4 1

3 2 2

2

222 3 2 2

2 3

3 1 3 241
4 1

2 4 1

3 1 3 241
4 1 1

2 4 1

2 12 6 24

3 1 3

2 3 1

i

Interval

p p p b acpb
i T p

a a p

p p p b acpVar b
a p

T a a p

p p p b acpb
ab p p

a a p

b pb p b p acp

p

b p p

   
  



         
  
 

    
   
 
 

  
   
  

  


  
 

23 24

3 1

p acp

p

 


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Under the condition
2

3 2

24
4

3 3 1

acp
b ac

p p p
 

   
, inequality 

 

 
 

 

3 2 2

2

2

2 3 1 3 241
1

2 4 1

0

i

Interval

p p p b acpb
i T p

a a p

Var

T    
  







 holds and the above two points are both maximum points. 

Above all, it is obvious that the minimum of IntervalVar  must be obtained at  
1

2
i bT T s   or other two points 

( i bT T  or iT s ). Next, we discuss the difference between IntervalVar  and 
 

1
1

2
i

Interval b
T p

a

Var
 

, 
i

Interval b
T p

a

Var


 or 

i

Interval b
T

a

Var


. 

   

   
 

    
 

1 1
1 1

2 2

22 2 3 2 2 2 2

2

22 3 2 2

2

=

1 3 5 7 48

48 1

1 3 5 7 1 48
=

48 1

i i i i

Interval b Interval b Interval b Interval b
T p T p T p T

a a a a

Var Var Var Var

b p b p b p b p b acp

a p

b p p p p b acp

a p

     
 

    




    



 

Let    2 3 2 23 5 7 1 48w b p p p b acp     , we know that
3 23 5 7 1 0p p p     when  0,1p ,  we 

can obtain the following inequality of  2w b :    2 2 2

3 2

24
4

3 1 3

acp
w b ac w b w b

p p p

 
    

   
. 

   

 

3 2

3 2

4 3 5 7 1 4 48

4 3 5 5 1

w ac p p p ac acp

ac p p p

    

   
 

When 
3 23 5 5 1 0p p p    ,  4 0w ac  , otherwise,  4 0w ac  . 

 3 2

3 2 3 2

3 2

3 2

24 24
3 5 7 1 48

3 1 3 3 1 3

1
24 0

3 1 3

acp acp
w p p p acp

p p p p p p

p p p
acp

p p p

 
     

      

  
 

  

 

Thus, when 
3 23 5 5 1 0p p p    ,    20 4w ac w b  ; When 

3 23 5 5 1 0p p p    ,  2 0w b   

will have a solution 
2

3 2

48

3 5 7 1

acp
b

p p p

   

which falls into the range of 
3 2

24
,4

3 1 3

acp
ac

p p p

 
 

   
. In the 

end, we can have the conclusions: when 
3 23 5 5 1 0p p p     or 

3 23 5 5 1 0p p p     
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and
2

3 2 3 2

24 48

3 1 3 3 5 7 1

acp acp
b

p p p p p p
 

      
,  2 0w b  , that is to say 

 
1

1
2

i i

Interval b Interval b
T p T p

a a

Var Var
  

 ; when 
3 23 5 5 1 0p p p     and

2

3 2

48
4

3 5 7 1

acp
b ac

p p p
 

   
, 

 2 0w b  , that is to say 
 

1
1

2
i i

Interval b Interval b
T p T p

a a

Var Var
  

 . 

In summary, under  ,i bT T s , IntervalVar  will get the minimum at  
1

2
i bT T s   when 

3 23 5 5 1 0p p p     and

 
2

3 2 2

48 24

3 5 7 1 2 2

acp acp
b

p p p p p p
 

     
; IntervalVar  will get the minimum 

at i bT T  or iT s when 
3 23 5 5 1 0p p p     or 

3 23 5 5 1 0p p p     

and
2

3 2 3 2

24 48

3 3 1 3 5 7 1

acp acp
b

p p p p p p
 

       
 or 

2

3 2

24
0

3 1

acp
b

p p p
 

   
. 
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