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The present study seeks to inspect the calendar effects in major service sector indices in 
the Indian securities market. The Banking sector and Information technology sector 
are identified as the prominent service sectors in the Indian economy. BSE Information 
Technology Index and BSE Bankex are considered as a proxy for the Information 
Technology and Banking sector. Period of study is chosen from the year 2010 to 2019 
to examine the impact of calendar anomalies post-recession. Daily index returns are 
considered during the period of study .GARCH family models and OLS regression 
techniques were utilized for the study. Empirical findings indicate the presence of the 
January effect and turn of the month effect on the index returns and volatility. The 
study also suggests the possibility of a weak form of efficiency for the IT sector. 
Significant volatility persistence is observed in both the indices. The study has benefits 
for regulators to understand the price movements of the service sector after the global 
recession and frame their policies accordingly. Investors will benefit from this study for 
effective portfolio management. 
 

Contribution/ Originality: This study is one of very few studies which have investigated the calendar 

anomalies in the Banking sector and Information technology sector indices for the Indian securities market. The 

paper’s primary contribution is  finding the presence of calendar anomalies in index returns and volatility. 

 

1. INTRODUCTION 

The validity of fundamental and technical analysis to forecast the price of securities has been questioned in 

many studies (Malkiel, 2003; Roberts, 1959). These authors argue about prices reflecting all the available 

information. However, Fama (1991) explained that it is not possible to measure the efficiency of markets but 

mentioned certain aspects that can be captured and studied. Calendar anomaly is one such aspect that has a growing 

body of literature for understanding the price response of securities.  

Several studies have discussed the incidence of calendar anomalies in the Indian market (Jaisinghani, 2016; 

Kumar, 2016; Raj & Kumari, 2006). Indian market is developing compared to other emerging markets and has been 

the focus of global investors. Knowledge of different calendar anomalies may help investors to reap gains by timing 

their investments. However, there have been not many studies to test the calendar anomalies in the Banking Sector 

and the Information Technology sector post-recession. The global recession has created a lot of turbulence in the 

Indian equity markets. The service sector has also been affected. Banking and Information Technology are the main 
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facets of service marketing in India. Therefore the importance lies in understanding the anomalies effect on the 

pricing pattern of these two sectors after the recession period from 2008 to 2009.  

The present study attempts to bridge this gap by examining the calendar anomalies in BSE-BANKEX and 

BSE-IT indices. The Bombay stock exchange(BSE) is the oldest and is the major stock exchange in India. BSE-

BANKEX index comprises of select stocks of listed banks from the banking sector. Similarly, the BSE-IT index 

comprises of select stocks of listed Information Technology companies from the Information Technology sector. 

Hence these two indices can be considered as a suitable representation for the Banking and Information Technology 

industry. The next portions of the paper are segregated as follows. Section 2 deals with extant literature, section 3 

is about the sample and research equation, section 4 discuss findings, section 5 provides the conclusion and section 6 

is about the future scope of the study.  

 

2. REVIEW OF LITERATURE  

Several studies have discussed calendar effects in stock markets. The popular calendar effects discussed in 

various papers are Day of the Week (DOW) effect (Narayan, Mishra, & Narayan, 2014; Solnik & Bousquet, 1990) 

and month of the year effect (Roll, 1983; Rozeff & Kinney, 1976). 

 

2.1. Day of the Week Effect (DOW) 

Gibbons and Hess (1981) suggest that returns are always lower on Mondays. Keim and Stambaugh (1984) find 

that for various indices, the returns are negative on Mondays and positive on Fridays. A strand of literature 

explains the absence of Institutional trading behind the Monday effect (Lakonishok & Maberly, 1990; Ritter, 1988). 

Some other studies argue about the scarcity of analyst reports as a possible reason for the negative returns on 

Mondays (Dubois & Louvet, 1996; Solnik & Bousquet, 1990). However, Jaffe and Westerfield (1985) observe that 

Tuesdays have the highest negative returns compared to Mondays. In a striking difference, recent work by Abdalla 

(2012) finds the absence of the day of the week effect in the Sudanese stock market. 

Similar studies have been done on the Weekend effect (Abraham & Ikenberry, 1994; Boudreaux, Rao, & Fuller, 

2010; Poshakwale, 1996). Jaffe and Westerfield (1985) also find the presence of weekend effects in Australia, 

Canada, Japan, and the UK. However, Demirer and Karan (2002) find no evidence of the weekend effect in Australia, 

Canada, Japan, and the UK. Lauterbach and Ungar (1992) also explain weak evidence of the weekend effect in the 

Israeli stock market.  

 

2.2. Month of the Year Effect 

Many researchers suggest that due to differences in returns in different months, an investor can find 

opportunities for abnormal gains (Floros & Salvador, 2014; Haug & Hirschey, 2006; Rozeff & Kinney, 1976). There 

have been studies that discuss the January effect (Chatterjee & Maniam, 1997; Keim, 1983). Ligon (1997) explains 

about higher turn over having significance with the January effect. Bensman (1997) describes the January effect as 

an outcome of the irrational exuberance of investors. In contrast to these studies, Raj and Thurston (1994) argue 

that there is an absence of the month of the year effect in New Zealand. 

 

2.3. Volatility Clustering 

Volatility has been assumed as a proxy for risk. The risk lies in a change of asset value. Highly volatile stocks 

are expected to have a wider change in value, while for less volatile stocks the change may be marginal. Volatility 

modeling is important for portfolio management and the pricing of securities (Engle & Ng, 1993). Most authors 

have applied GARCH family models to examine the volatility patterns (Corrado & Miller, 2005; Guidi, Gupta, & 

Maheshwari, 2011; Pagan & Schwert, 1990). 
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There have been studies to look into calendar effects on stock return volatility. Tsoukalas (2000) applied the 

autoregressive conditional heteroscedasticity (ARCH) model and discovered the presence of volatility clustering in 

Japan,  the USA, and the UK. In a similar study in India, Karmakar (2007) deploys various GARCH-based models 

and provides evidence of volatility clustering.  

Based on these studies, the research tries to investigate whether Monday has the day of the week effect(DOW) 

and January has the month of the year effect in Banking and IT indices. Further, the research seeks to examine the 

presence of two other calendar anomalies in these indices. Thursday in the Indian stock market has its importance 

due to the settlement of delivery contracts. Most of the derivative contracts expire on Thursdays. The study seeks 

to examine whether its impact on the volatility and returns of these two indices. The second anomaly the research 

tries to examine is the turn of the month effect. For this purpose, the study period is the final trading day of the 

previous month and the next three consecutive trading days of the current month to detect turn of the month 

(TOM) effect.   

 

3. DATA AND METHODOLOGY 

3.1. Dataset and Variable Representation 

The data for indices are downloaded from the BSE website, maintained by the Bombay stock exchange platform 

of India. Daily closing prices of BSE-BANKEX and BSE-IT are selected for the study. The reason behind choosing 

daily data is that daily observations exhibit more volatility than weekly and monthly data (Jebran, 2018). Both the 

indices are a good representative of Banking and Information Technology securities of the Indian capital market. 

The current study examines the various calendar anomalies and volatility clustering for the financial year 2010-

2019. The study period is chosen to examine the effect of anomalies post-recession. Data is available for both the 

indices during the period of study. 

Consistent with prior studies the different calendar anomalies to be applied in this paper have been proxied by 

dummy variables. The different dummy variables mentioned are as follows: 

D1 - Detect the calendar anomaly by considering Monday as day of the week (DOW) effect. 

D2 - Investigate the calendar impact by considering Thursday, when most of the derivative settlement contract 

has expired. 

D3 - Look at the calendar effect by considering the final trading day of the previous month and the next three 

consecutive days of the current month as turn of the month (TOM) effect. 

D4 - Find the presence of calendar effect by taking the month of January as the January effect. 

Table 1 provides a brief description of the different types of anomalies mentioned in this paper. The research 

has considered four different anomalies to study its effect on Banking and Information and Technology industry. 

 
Table-1. Description of different anomalies. 

Variable Day Purpose of Anomalies  

D1 Monday  Monday effect according to prior studies 
D2 Thursday  Expiry of derivative contracts 
D3 Last trading day of previous month and first three 

consecutive days of current month 
Turn of the month effect 

D4 All days in January January effect according     to prior 
studies 

     

3.2. Methodology 

The daily returns of an Index are estimated as logarithmic differences between current day and previous day 

closing  prices. Therefore Index return at a particular day(t) denoted as Rt  is estimated as follows :    

Rt = Ln(It/It-1) = Ln(It) - Ln(It-1)                          (1) 

It and It-1 refers to the daily closing prices of a particular index on day (t) and day(t-1).Here t indicates time 

period as daily observation. 
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3.2.1. OLS Regression for Calendar Anomalies 

The various dummy regressors as a proxy for various calendar anomalies are embedded into the multiple 

regression model to find their association with returns of indices. The equation similar to that applied by Guidi et 

al. (2011) as a standard methodology for seasonality test is written as follows : 

Rt = β1D1 + β2D2+ β3D3+ β4D4 + et                                              (2) 

Rt is the daily index return estimated as mentioned in Equation 1. 

while D1, D2, D3, and D4 are the dummy predictors which represent the various calendar anomalies. 

Here, 

D1 = 1  when t = Monday,    else 0. 

D2 = 1  when t = Thursday, else 0. 

D3 = 1 when t= last trading day of the previous month and three consecutive trading days during the start of the 

current month, else 0. 

D4=1  when t= trading day is in January, else 0. 

β1,β2,β3,β4 coefficients represent the average daily returns for various anomalies. The coefficients of dummy 

regressors indicate the difference in mean returns from the mean returns observed on a normal trading day. For 

illustration, the coefficient of D1 explains the difference between the mean return on other trading days and the 

mean return on Monday. If the coefficient of a dummy predictor is significant, it means that the mean return due to 

that particular calendar anomaly is different from mean returns on other trading days.   

et is the error term.  

The econometric technique to model volatility clustering employs general autoregressive conditional 

heteroscedastic (GARCH) family equations suggested by Derbali and Hallara (2016) in the Tunisian stock market. 

 

3.2.2. Volatility Clustering 

GARCH(1,1) model (Bollerslev, 1986) suggested the generalized ARCH model(GARCH) for modeling the 

volatility process of an asset return. The GARCH (1,1) model incorporating the calendar anomalies in the form of 

the equation is as follows : 

Rt = atRt-1 + β1D1 + β2D2+ β3D3+ β4D4 + et                                                                                                                                   (3) 

σ2
t = ω1 +   α1a2

t-1 + §1σ2
t-1+β1D1 + β2D2+ β3D3+ β4D4         (4) 

Equations 3 and 4 depict the mean and variance equation.Rt-1 represents the historical information of the mean 

of Rt at time t-1. The four calendar anomalies used in the study are represented by D1,D2,D3,and D4. The β 

parameters capture the mentioned anomalies. Here at  is the innovation captured during time t. 

σt  is a symbol for the conditional variance for the period t.ω1  is the notation for constant. α1 and §1 are referred 

to as the ARCH and GARCH parameters in the model.  

EGARCH(1,1) model 

The conventional GARCH(1,1) does not capture the asymmetries which are also known as leverage effects in 

financial time series analysis. Nelson (1991) introduced the exponential GARCH(EGARCH) model to include the 

asymmetric effects inherent in asset returns. 

The EGARCH(1,1) model incorporating the calendar anomalies can be written as :   

Rt = atRt-1 + β1D1 + β2D2+ β3D3+ β4D4 + et              (5) 

ln(σ2
t) = ω1 + §1ln(σ2

t-1)+α1|∈t-1/σt-1|+γ1(∈t-1/σt-1)+β1D1 + β2D2+ β3D3+ β4D4                               (6) 

Equations 5 and 6 are the mean and variance equation.σ2
t explains the connection between current and previous 

volatility.|∈t-1/σt-1| is a proxy for size effect happening from unexpected disturbances.∈t-1/σt-1 represents leverage 

effect (γ1>0) and the assymetry effects(γ1=  0).∈t is the error distribution as zero mean iid sequences.ω1,α1,§1 and γ1 

represent the  parameters similar to GARCH(1,1) equation to be estimated from the model.β1,β2,β3,β4 capture the 

mentioned anomalies. 
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TGARCH(1,1) model 

The Threshold GARCH model (TGARCH) suggested by Glosten, Jagannathan, and Runkle (1993) takes zero 

as its threshold to segregate the impact of past shocks. The model deals with leverage effects by capturing the 

asymmetries in terms of positive disturbances and negative disturbances.  

The TGARCH(1,1) model incorporating the calendar anomalies can be written as :  

Rt = atRt-1 + β1D1 + β2D2+ β3D3+ β4D4 + et                       (7) 

σ2
t = ω1 + §1σ2

t-1+ α1μ2
t-1+ γ1μ2

t-1Nt-1+ β1D1 + β2D2+ β3D3+ β4D4                                                                         (8) 

Equations 7 and 8 describe the mean and variance equation. 

Equation 7 is the conditional mean equation where current index return is a function of past index return(Rt-1) and 

calendar anomalies represented by D1,D2,D3,and D4. The coefficients β1,β2,β3,and β4 are the coefficients for these 

anomalies whereas at is the shock of index return at time t.  

Equation 8 is the conditional variance equation where σ2
t  captures the positive and negative shocks by Nt-1.  

Nt-1 separates the positive and negative events where 1 is a proxy for negative shock and 0 for the positive shock. 

Here Nt-1 represents an indicator for negative and positive μt.  It can be written as : 

 

                        1 if   μt-1 < 0 

Nt-1 =  

                0 if   μt-1   ≥ 0 

 

From the model, it is evident that for good news(positive shock), α1μ2
t-1 impact is visible for σ2

t. Similarly, for bad 

news(negative shock), the larger consequence of  γ1μ2
t-1Nt-1 is a contribution to σ2

t for γ1>0. The intensity of shocks 

in this model is tested by using zero as the reference point. β1,β2,β3,and β4 imply the effect of calendar anomaly 

constructed by dummy regressors D1,D2,D3,and D4 in the conditional variance equation. ω1,§1,α1 and γ1 are the 

non-negative constants equivalent to the above-mentioned GARCH models.      

 

4. RESULTS AND ANALYSIS 

Figure 1 exhibits the distribution of BSE-BANKEX returns. It is observed that returns are volatile with the 

existence of volatility clusters. 

 

 
Figure-1. BANKEX returns over the period from 2010 to 2019. 

Source: The graph is plotted in R package by using daily index returns of BSE BANKEX. The returns are estimated with daily closing prices of BSE BANKEX 
retrieved from the website of Bombay Stock Exchange, one of the popular stock exchange in India.     
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Figure 2 reports the distribution of BSE-IT returns. Here also there is a marked presence of volatility clusters. 

 

 
Figure-2. BSE-IT returns over the period from 2010 to 2019. 

Source: The graph is plotted in R package by using daily index returns of BSE-Information Technology. The returns are estimated with daily closing prices of BSE- 
Information Technology retrieved from the website of Bombay Stock Exchange, one of the popular stock exchange in India.     

 

Table 2 reports the various statistical parameters of BSE- BANKEX index returns considered for the study. 

The returns are highest on Mondays (0.0009192) compared to other anomalies. The Lowest return is observed for 

the January effect(0.0001504). Variance is marginally higher for the January effect(0.0002134) compared to other 

anomalies. The kurtosis coefficients point out fat-tailed distribution in their volatilities. 

 
Table-2. Descriptive statistics – BANKEX 

Summary 
statistic 

D1 Monday effect D2 Thursday effect D3 Weekend effect D4 January effect 

Mean 0.0009192 0.0006713 0.0016955 0.0001504 
Median 0.0001896 0.0001974 0.0001990 0.0002134 
Std.Deviation 0.0137712 0.0140496 0.0141082 0.0146074 
Skewness -0.4198759 0.5676533 0.5825522 -0.1293436 
Kurtosis 5.085313 7.256527 6.6312000 3.625663 

Note: The dataset consists of daily index returns estimated with daily closing prices of BSE BANKEX retrieved from the website of Bombay Stock Exchange, one of 
the popular stock exchange in India. The duration is from April 1st,  2010 to March 31st,  2019. 

 

Table 3 reports the various statistical parameters of BSE- IT index returns considered for the study. It is 

observed that the returns are highest on Mondays (0.0008256) compared to other anomalies. Negative return is 

observed for the Thursday effect(-0.0002441). Variance is marginally higher for the January effect(0.0002090) 

compared to other anomalies. The kurtosis coefficients point out fat-tailed distribution in their volatilities. 

 
Table-3. Descriptive statistics - BSE-IT. 

Summary statistic D1 Monday effect D2 Thursday effect D3 Weekend effect D4 January effect 

Mean 0.0008256 -0.0002441 0.0010533 0.0006928 
Median 0.0001470 0.0001488 0.0001094 0.0002090 
Std.Deviation 0.0137712 0.0140496 0.0141082 0.0146074 
Skewness -0.2706330 -0.6590055 0.1530208 0.8943419 
Kurtosis 4.864066 5.525175 3.762374 11.300480 

Note: The dataset consists of daily index returns estimated with daily closing prices of BSE-Information Technology retrieved from the website of Bombay Stock 
Exchange, one of the popular stock exchange in India. The duration is from April 1st,  2010 to March 31st,  2019. 

 

Table 4 presents the OLS regression estimates of various anomaly effects on returns of both the indices. Turn 

of the month effect has a positive statistical significance with Bank index returns. Further, findings confirm that 

there is no effect of the calendar anomalies understudy on the Information Technology index. The results support 
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the findings of Raj and Kumari (2006) where the authors discuss the absence of the Monday effect and January 

effect in India. Overall findings indicate the turn of the month as a seasonality pattern in BSE-BANKEX. 
 

Table-4. Results of estimated OLS models. 

Variable 
BANKEX BSE-IT 

Coefficient p-value Coefficient p-value 

D1 Monday effect 0.0004876 0.497 0.0004487 0.491 
D2 Thursday effect 0.0001748 0.811 - 0.000884 0.181 
D3 Weekend effect 0.0014399** 0.050 0.0007234 0.278 
D4 January effect - 0.0004147 0.691 0.0002452 0.796 

Notes: *significance at 10% level; **significance at 5% level; ***significance at 1% level. 

. 

Table 5 reports the empirical findings of the GARCH family models applied to BSE-BANKEX. From the mean 

equation is observed that one lagged return (t-1) has a positive effect on volatility at a significance of 1% and is 

consistent across al GARCH models. This possibly suggests that the index exhibits weak form inefficiency. There is 

an absence of statistical significance for the mentioned anomalies with stock returns. The variance equation depicts 

significant evidence of volatility clustering and leverage effects. There is a significant positive turn of month effect 

for the EGARCH(1,1) model. However, the results are not in conformity with the other two GARCH statements. 

 
Table-5. Results of estimated GARCH models for BANKEX. 

Mean equation GARCH(1,1) EGARCH(1,1) TGARCH(1,1) 

Variable Coefficient p-value Coefficient p-value Coefficient p-value 

Rt-1 0.078641*** 0.000 0.080943*** 0.000 0.081169*** 0.000 
D1 Monday effect 0.000620 0.321 0.000570 0.220 0.000605 0.279 
D2 Thursday effect 0.000268 0.672 0.000222 0.788 0.000205 0.703 
D3 Turn of month 0.000626 0.356 0.000553 0.321 - 0.000581 0.305 
D4  January effect 0.000767 0.440 - 0.000237 0.810 - 0.000063 0.944 
Variance equation    

ω1 0.000002 0.934 -0.123212*** 0.000 0.000195*** 0.000 

α1 0.057057 0.780 - 0.048122** 0.000 0.046446*** 0.000 

§1 0.931121*** 0.001 0.985383** 0.000 0.950174*** 0.000 

γ1   0.090593*** 0.000 0.558503*** 0.000 

D1 Monday effect 0.000590 0.351 0.000813 0.15
 0.000822 0.137 
D2 Thursday effect 0.000322 0.724 0.000581 0.305 0.000559 0.497 
D3 Turn of month 0.000637 0.371 0.000817*** 0.008 0.000824 0.270 
D4  January effect - 0.000781 0.613 - 0.000179 0.835 0.000057 0.981 

Notes:*significance at 10% level; **significance at 5% level; ***significance at 1% level . 

 

Table 6 reports the empirical findings of the GARCH family models applied to BSE-IT. From the mean 

equation is seen that there is no statistical significance of one lagged return(t-1) on volatility. This provides a 

possible explanation of the weak form of market efficiency. There is also no evidence about the statistical 

significance of the mentioned anomalies with stock returns except the January effect. Findings provide evidence of 

seasonality pattern for January. The variance equation provides evidence of significant positive turn of the month 

effect and January effect. EGARCH (1,1) and TGARCH(1,1) analysis confirm the turn of month effect and January 

effect. The GARCH (1,1) model also depicts a positive term for the turn of the month effect and January effect, 

though not significant. The variance equation of all models, it is observed that all the volatility parameters are 

highly significant at a 1% level. Overall findings suggest that the BSE-IT index has a favorable reaction to turn of 

the month and January effect.  
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Table-6. Results of estimated GARCH models for BSEIT. 

Mean equation GARCH(1,1) EGARCH(1,1) TGARCH(1,1) 

Variable Coefficient p-value Coefficient p-value Coefficient p-value 

Rt-1 0.042248** 0.000 0.080943*** 0.000 0.081169*** 0.000 
D1 Monday effect 0.000471 0.321 0.000570 0.220 0.000605 0.279 
D2 Thursday effect - 0.000541 0.672 0.000222 0.788 0.000205 0.703 
D3 Turn of month 0.000391 0.356 0.000553 0.321 - 0.000581 0.305 
D4  January effect 0.000281 0.440 - 0.000237 0.810 - 0.000063 0.944 
Variance equation    

ω1 0.000001 0.974 -1.067432** 0.000 0.001658*** 0.000 

α1 0.004284*** 0.000 - 0.067650*** 0.000 0.105191*** 0.000 

§1 0.994489*** 0.000 0.877182*** 0.000 0.790829*** 0.000 

γ1   0.175117*** 0.000 0.405254*** 0.002 

D1 Monday effect 0.000760 0.193 0.000777 0.169 0.000747 0.183 
D2 Thursday effect - 0.000229 0.697 0.000581 0.551 - 0.000359 0.500 
D3 Turn of month 0.000622 0.371 0.000817*** 0.057 0.001065* 0.058 
D4  January effect 0.000492 0.593 - 0.000179 0.010 0.002084*** 0.008 

Notes:*significance at 10% level; **significance at 5% level; ***significance at 1% level. 

 

5. CONCLUSION AND IMPLICATIONS 

5.1. Conclusion 

The findings suggest that Day of the week effect is not observed in the Banking and Information Technology 

sector. However, the Thursday effect has a negative relationship with volatility, although not significant. This 

implies that the derivative settlement possibly reduces the index volatility. The January effect and turn of the 

month effect are observed in the Information Technology sector. Turn of the month affects index returns in the 

Banking sector. This study is quite different from extant literature in detecting the presence of different anomalies 

in the service industry. 

 

5.2. Implications 

This study has several implications. Findings from this study will benefit the investors in understanding the 

pricing pattern of these sectors. Regulators and analysts may seek to identify the causes behind the month effect in 

these indices. Finally, the study is a valuable contribution to the current studies on calendar effects in the Indian 

securities market. 

 

6. FUTURE SCOPE OF STUDY  

The scope of the work was limited to the Indian securities market. The study can be extended in a cross 

country approach for understanding the volatility patterns and the nexus with different anomalies. Further, a firm-

specific study on different anomalies in Banking and Information Technology sector can be carried out relying on 

the findings from this study. 
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