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This study presents robust portfolio selection using cluster analysis of mixed-type data. 
For this empirical study, the daily price data of LQ45 index stocks listed on the 
Indonesia Stock Exchange were employed. First, six stocks clusters are formed by 
using the KAMILA algorithm on a combination of continuous and categorical 
variables. For comparison purposes, weighted k-means cluster analysis was also 
undertaken. Second, stocks that were representative of each cluster, those with the 
highest Sharpe ratios, were selected to create a portfolio. The optimum portfolio was 
determined through classic (non-robust) and the robust estimation methods of fast 
minimum covariance determinant (FMCD) and S estimation. Using a robust procedure 
enables the best-performing portfolio to be created efficiently when selecting assets 
from a large number of stocks, especially as the results are largely unaffected in the 
presence of outliers. This study found that the performance of the portfolio developed 
with the KAMILA clustering algorithm and robust FMCD estimation outperformed 
those created by other methods. 
 

Contribution/Originality: This study presents robust portfolio selection using cluster analysis of mixed-type 

data, with the possible presence of outliers. The results reveal the portfolio developed with the KAMILA clustering 

algorithm and robust FMCD estimation outperformed portfolios created by other methods. 

 

1. INTRODUCTION 

Portfolio management is one issue that attracts the interest and attention of financial researchers, mainly in 

relation to developing portfolios of the best securities to maximize investors’ profits. The fundamental theory of 

portfolio optimization can be traced back to the Markowitz (1952), who advised the selection and allocation of 

investments based on mean–variance analysis.  

More recently, practitioners seek efficient time and cost management in creating the optimum portfolio, which 

can be achieved by first applying such techniques as cluster analysis to selecting securities. This technique has been 

undertaken by several researchers (e.g., Guan and Jiang, 2007; Tola, Lillo, Gallegati, and Mantegna, 2008; Chen 

and Huang, 2009; Nanda, Mahanty, and Tiwari, 2010; Long, Wisitpongphan, Meesad, and Unger, 2014), using 

different methods of cluster analysis and for selecting securities, although all adopting the Markowitz mean–
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variance (MV) portfolio model. All the studies reported that cluster analysis to be very efficient in creating an 

optimum portfolio when there is a large number of securities are available for selection. 

However, the MV portfolio model depends on mean vectors and variance–covariance matrices being estimated 

from highly volatile data, while there were a range of parameter estimation techniques available, which inevitably 

contain estimation errors. As an important factor in forming the MV portfolio model, estimation errors will 

therefore affect portfolio optimization significantly. Several studies have been conducted on the relationship 

between estimation errors and portfolio optimization (Best and Grauer, 1991; Broadie, 1993; Chopra and Ziemba, 

1993; Bengtsson, 2004; Ceria and Stubbs, 2006), concluding that although the MV portfolio model had a strong 

theoretical basis and was relatively easy to compute, it contained weaknesses. For instance, the optimum portfolios 

created were not well diversified but concentrated within a specific sector. In addition, the model is highly sensitive 

to changes in mean vectors and variance–covariance matrices. 

Therefore, some researchers have investigated robust portfolios, which reduce the effect of outliers on the 

estimated vector means and the variance–covariance matrices. Several studies have adopted the standard robust 

estimation approach to developing an optimum robust portfolio is (Victoria-Feser, 2000; Lauprete, 2001; Vaz De 

Melo and Camara, 2003; Zhou, 2006; Welsch and Zhou, 2007; DeMiguel and Nogales, 2008; Hu, 2012; Kusch, 2012; 

Supandi, 2017). These studies have used different robust estimates to optimize the portfolio, but all reported that 

robust portfolios perform better than the classical one in the presence of outliers. However, there has been no 

research into combining cluster analysis and robust estimation in creating an optimum portfolio. In addition, cluster 

analysis uses only continuous data, stock return data, excluding categorical data such as sector, listing board, and 

market capitalization of stocks.  

This study bridges this gap in the literature, therefore, by applying the KAMILA algorithm to cluster analysis 

of mixed data: continuous and categorical, the results of which are combined with robust estimation to create the 

optimum portfolio. Fast minimum covariance determinant (FMCD) and S estimation were used to calculate the 

mean and covariance of the mixed data.  

The rest of this paper is organized as follows: Section 2 we explains concepts necessary to the discussion; 

Section 3 presents the empirical results; Section 4 discusses these results; and Section 5 details the conclusions 

reached. 

 

2. MATERIALS AND METHOD  

Following the literature review, it became evident that the problem of selecting the best securities can be 

resolved more efficiently by clustering stocks and then selecting stock clusters to optimize the portfolio.  

In the current study, the KAMILA algorithm was first applied to a combination of continuous—stock prices 

and trading volumes—and categorical—sector, listing board, and market capitalization of stocks—data to produce 

several clusters of stocks. Thereafter, the returns and risk are calculated for each stocks cluster from the historical 

data, followed by the Sharpe ratio to determine the performance of every stock within each cluster. Those stocks 

with the highest Sharpe ratio are then selected to represent each cluster in creating the optimum portfolio. Finally, 

FMCD and S estimation were used to determine the weighting of each stock in the portfolio by providing a robust 

estimation of the mean and variance of those stocks.  

A comparison was undertaken between the performances of the portfolios produced by both the KAMILA 

algorithm and weighted k-means clustering, which both employed the same robust estimation method, to determine 

the advantages of the former.  

The subsequent subsections summarized other concepts related to this study. 
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2.1. Mean-Variance Portfolio 

Markowitz's portfolio theory is based on the mean–variance approach, in which the mean measures the level of 

the expected return and variance measures the level of risk (Markowitz, 1952); thus, Markowitz's mean–variance 

(MV) was produced, emphasizing the maximization of expected returns and minimization of risk in developing the 

optimum portfolio. According to Supandi (2017), the mean–variance portfolio can be created by resolving the 

following optimization problems: 

         (1) 

           (2)  

where w indicates the weighting of the portfolio,  the mean vector,  the covariance matrix, e the column matrix 

(all being 1), and  the risk-aversion parameters, or the relative size of risk avoidance. Investors select a MV 

portfolio based on utility function criteria, which reflect their risk–averse attitudes and wish for the maximum 

expected utility E(U). Thus, the MV portfolio can be expressed as: 

          (3) 

           (4)  

Given an initial capital of , in a portfolio with a weight vector of w, the capital at the end of the period 

becomes , where  denotes portfolio returns (Supandi, 2017). The utility function of  

is , which according to Supandi (2017),  can be expanded using Taylor’s second-order 

approximation:  

   

    (5)  

Taking the expected value of Equation 5, the following approximation can be calculated:  

     

       (6)  

Based on Equation 6, maximizing the expected utility function is equivalent to maximizing:  
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          (7) 

where   expresses the relative size of risk aversion  (Supandi, 2017). 

Since  and , Equation 7 can be rewritten as: 

          (8) 

Therefore, Equation 1 is equivalent to Equation 8, with the constraint of .  

Nevertheless, every investor accepts a certain amount of risk to obtain a certain level of return. As profits 

compensate for risks, investors should balance the profits and risks by choosing the right . There are two extreme 

situations. First, where investors wish to increase returns (profits) and reduce risk (losses), ; Equation 1 

provides the maximum rate of return without regard to the risk. Second, where investors opt for the minimum 

amount of risk regardless of the level of return,  . 

The optimization problems shown in Equations 1 and 2 can be resolved through the Lagrange method 

(Winston & Goldberg, 2004). First, the Lagrange function is formed:  

       (9)  

Based on the Kuhn–Tucker theorem (Winston & Goldberg, 2004), the necessary conditions for the optimal of 

Equation 9 are:  

            (10) 

           (11) 

From Equations 9–11, the following is derived:  

          (12)  

and  

           (13)  

Substituting Equation 12 into Equation 13 gives:  

       (14)  

Then, substituting Equation 14 into Equation 12 produces:  
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     (15)  

Consequently, Equation 15 shows that the optimum portfolio w depends on inputs  and , and also assumes 

multivariate normality.  

 

2.2. Cluster Analysis  

Cluster analysis is a statistical method that groups together data objects sharing similar characteristics, aiming 

for within-group homogeneity, or at least as small a variation between the data objects as possible. A brief overview 

of the two types of cluster analysis, or segmentation, used in this study is now provided. 

 

2.2.1. KAMILA Algorithm  

KAMILA is actually the acronym for k-means for mixed large data sets, meaning that the KAMILA algorithm 

is a development of the k-means clustering method for use with a mixture of continuous and categorical data. There 

are several other clustering methods capable of dealing with mixed-type data, but there are drawbacks with each: 

strong parametric assumptions, such as the Gaussian multinomial mixture models (Foss and Markatou, 2018); 

cannot minimize or maximize the contribution of individual variables, such as Modha–Spangler weighting (Foss, 

Markatou, Ray, and Heching, 2016); or based on arbitrary weighting to determine the contribution of continuous 

and categorical variables, such as dummy coding and Gower's distance (Foss and Markatou, 2018).  

The KAMILA algorithm, however, combines the two best clustering methods for large mixed-type data: k-

means clustering method and Gaussian multinomial mixture models. KAMILA and k-means are similar in not 

needing parametric assumptions for continuous data; however, KAMILA holds the advantage because it can deal 

with different levels of overlap for individual variables, unlike 𝐾-means that relies on arbitrary weighting to 

calculating the Euclidean distance at different overlap levels.  

 

2.2.1.1. Model  

Supposing a data set of  independent and identically distributed (i.i.d.) observations of a 

dimensional vector of random variables , which may be dependent, in a finite mixture 

distribution with G components, where  is a dimensional vector of the  continuous random variable and  a  

vector of the categorical random variable, and where the qth element of  has  categorical levels, with 

.  

Given cluster membership in the th cluster, Foss and Markatou (2018) state that, under the local 

independence assumption, the joint density of  is:  
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while overall density not dependent on cluster membership is: 

     (16)  

where  denotes the previous probability of observing the th cluster. 

 

2.2.1.2. Radial Kernel Density Estimation  

Foss et al. (2016) states that if  is in a spherically symmetric distribution with center µ, then:  

         (17)  

where , , and  is the probability density of .  

Foss and Markatou (2018) proceeded to construct  using (univariate) kernel density estimation, which then 

substitutes  in Equation 17. Univariate kernel density estimation avoids the drawbacks of being too expensive to 

calculate and tending to overfit data points (Foss & Markatou, 2018) found in multivariate kernel density 

estimation (Scott, 1992). 

 

2.2.1.3. Algorithm Description    

KAMILA introduces an iterative process to estimate the unknown parameters in Equation 16 (Foss et al., 

2016). Foss and Markatou (2018) explained that the iterative process consisted of two stages: partition and 

estimation. Partition assigns each observation to a cluster, while estimation re-estimates the parameters of interest 

using these new clusters.  

At the tth iteration of the algorithm,  denotes the estimator for the centroid (center) of population , and 

 denotes the estimator for the multinomial distribution parameters corresponding to the th discrete random 

variable drawn from population . The parameter estimates are initialized using either uniformly random samples 

from the observed data points or centroids selected through another mechanism (e.g., a preliminary clustering 

round).  
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Given , g, and  at the tth iteration, Foss and Markatou (2018) defined the Euclidean distance from 

observation i to each  as . The minimum distance for the ith observation is 

then calculated as . Finally, the kernel density estimation of that minimum distances is 

expressed as: 

       (18)  

where  is the kernel function and  the corresponding bandwidth at iteration t. Foss and Markatou (2018) 

used the Gaussian kernel with a bandwidth of , where , in which  is the 

sample standard deviation and  the sample interquartile range. The  function here is used to construct 

 as described in Section 2.2.1.2.  

Foss and Markatou (2018) assumed that the  categorical variables are independent within a given population 

 (i.e., local independence), and calculated the probability of observing the ith vector of categorical variables within 

a given population as , where  is the multinomial probability mass function. 

The ith object was thus assigned to population , which maximized the function as follows: 

       (19)  

In each iteration , the latest partition of the  observations was used to calculate  and  for , and 

. If  denotes the index set of observations assigned to population  at iteration , then the parameters are 

estimated: 

,  
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where  denotes the indicator function and  the cardinality of set A. 

The KAMILA R package applies the simple rule of stopping once group membership remains unchanged 

between iterations.  

 

2.2.2. Weighted K-Means Clustering    

Weighted k-means clustering develops k-means clustering by adding a weight parameter (Kerdprasop, 

Kerdprasop, & Sattayatham, 2005) and assigning a different weight to each data point. Similar to k-means, weighted 

k-means clustering partitions  samples into k clusters, in which centroid  minimizes the number of squares in 

the cluster, the within-cluster sum of squares (WCSS), which is defined as:  

      (20)  

where   is the Euclidean distance between the sample and centroid—the center, or sample mean—of 

the cluster  and   the weight of the sample  (Kerdprasop et al., 2005).  

The weighted k-means and k-means algorithms are the same, as follows (Kerdprasop et al., 2005): 

1. Determine the desired number of k clusters.  

2. Initialize k cluster centroids. 

3. Allocate data objects to the nearest cluster based on the centroid produced by Equation 21: 

       (21)  

4. Reallocate each data point after every iteration until the centroid no longer changes  (i.e., Equation 20 is 

satisfied), at which point cluster analysis is complete. 

 

2.3. Sharpe Ratio 

Once the clusters are formed, the performance of every stock within each cluster is assessed using the Sharpe 

ratio, also known as the Sharpe index, which measures excess return (or risk premium) per unit risk in an asset 

(Sharpe, 1994): it characterizes how well asset returns compensate investors for the risks they have taken. The 

Sharpe ratio (SR) is calculated by comparing the difference between stock returns (R) and risk return free rate ( ) 

with a standard deviation of stock return ( ), which is expressed as follows: 

             (22) 

In general, the higher the value of a stock’s Sharpe ratio, the better the stock’s performance.  
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2.4. Outlier Detection   

Outliers are data points that are a significant distance from the majority of other observations and the cluster 

centroid, or deviate from the general pattern of data in some way. The higher the value of an outlier, the greater its 

distance from the centroid—outliers typically lie at large distances (Filzmoser, Garrett, & Reimann, 2005). 

However, not only the distance between an observation and the centroid but also the overall shape of the data 

should be considered with multivariate data.   

The shape and size of multivariate data are quantified by the covariance matrix, which the Mahalanobis 

distance measure accommodates. For a p-dimensional multivariate sample , the Mahalanobis distance is 

defined as:  

   for     (23) 

where  is the estimated multivariate location and  the estimated covariance matrix (Filzmoser et al., 2005); 

usually,  is the multivariate arithmetic mean, and  the sample covariance matrix. For normally distributed 

multivariate data, the  values indicate the approximate chi-square distribution with  degrees of freedom 

( ). By setting the (squared) Mahalanobis distance as equal to a certain constant (i.e., a certain quantile of ), it is 

possible to define ellipsoids with the same Mahalanobis distance from the centroid (Gnanadesikan, 1977). 

Multivariate outliers are those observations with a large (squared) Mahalanobis distance; moreover, with 

multivariate data, a quantile of the chi-squared distribution (e.g., the 98% quantile  ) can also be considered 

an outlier (Filzmoser et al., 2005).  

 

2.5. Portfolio Selection Using Robust Estimation 

In this study, the robust FMCD and robust S estimation methods were used to determine the weighting of the 

stocks selected for the optimum portfolio. Both methods will now be briefly described. 

 

2.5.1. Robust FMCD Estimation 

Minimum covariance determinant (MCD) provides robust estimates based on   observations from a total of  

observations, where the covariance matrix has the smallest determinant. The MCD estimation comprises a pair of 

 and , where  is a symmetric (positive definite) matrix with a dimension of  from a sample of the h 

observations, where  with:  

           (24) 

Thus, the covariance matrix can be estimated by solving the following equation: 
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             (25) 

However, MCD estimation becomes complicated as data dimensions increase, due to all possible subsets of h 

observations from a total of n observations being examined. Therefore, Rousseeuw and Driessen (1999) developed a 

faster algorithm, FMCD, which is based on the C-step theorem. In this theorem, if  is the set of size h from the 

data of size n, the sample statistics would be: 

         (26) 

      (27)  

Here, if , then distance . Then, specify  as a subset containing the observation with 

the smallest distance : , where  is a 

sequential distance. Based on , Equations 25 and 26 produces:  

            (28)  

Equation 28 will be the same as though  and  .  

The C-Step theorem is conducted repeatedly until  or .  

2.5.2. Robust S-Estimation 

Robust S estimation was first introduced by Rousseeuw and Yohai (1984), and later developed by Davies (1987)  

and Lopuhaa (1989). Davies’ (1987) definition stated that given  is the data set in  and  is a 

set of symmetric matrices of size , the S estimation for location  and dispersion  is a 

pairing of  and  that minimizes  with the following condition:  

    (29)  



Asian Economic and Financial Review, 2020, 10(10): 1169-1186 

 

 
1179 

© 2020 AESS Publications. All Rights Reserved. 

where  is the loss function and  the constant. The constant must be determined precisely because its value 

affects the estimation result; therefore, if the distribution of the data is unknown, then the constant is set as 

. 

S estimation is calculated iteratively by the following equations: 

     (30)  

   (31)  

where , , , while 

.  

According to Hardin (2000) the algorithm for S estimation is: 

1. Determine the initial estimation of the mean vector  and covariance matrix .  

2. Calculate .  

3. Determine  so that .  

4. Calculate .  

5. Determine  and .  

6. Repeat steps 2–3 until  and  converge. 

 

3. RESULTS AND DISCUSSION   

3.1. Stocks Clustering  

The current study used the daily prices of all stocks in the LQ45 index for the Indonesia Stock Exchange (see 

e.g., https://finance.yahoo.com). For the weighted k-means clustering, the weightings of the continuous and 

categorical variables was varied: first, combining (0.8, 0.5, 0.2) for the continuous variables, and then, (0.2, 0.5, 0.8) 

for the categorical variables. The kamila and wkmeans functions in the R package (R Core Team, 2020) revealed 

that the LQ-45 index stocks could be grouped into six clusters, which are presented in Tables 1–4.  

 

 

 

 

https://finance.yahoo.com/
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Table-1. Stocks clusters using KAMILA algorithm. 

Cluster Stocks 

1 AALI AKRA BMTR LPPF LSIP MNCN SSMS    

2 ADRO ANTM BSDE BUMI INCO MYRX PTBA PWON WSKT  

3 BBCA GGRM UNTR UNVR       

4 ASII EXCL HMSP ICBP JSMR PGAS TLKM    

5 ADHI BBNI BBRI BBTN BJBR BMRI LPKR PPRO PTPP SCMA 
 SMRA SRIL WIKA        

6 BRPT INDF INTP KLBF SMGR      
 

 
Table-2. Stocks clusters using weighted k-means 0.8 : 0.2. 

Cluster Stocks 

1 LPKR AKRA AALI MNCN PPRO LSIP ADHI PTPP SSMS WIKA 
 SMRA LPPF BMTR SRIL BJBR      

2 BUMI TLKM PWON MYRX       
3 BBTN INDF KLBF BSDE SMGR JSMR INTP EXCL SCMA PGAS 

 WSKT BRPT         
4 UNVR GGRM UNTR        
5 ASII BMRI BBNI ICBP BBRI HMSP BBCA    
6 ADRO ANTM PTBA INCO       

 

 
Table-3. Stocks clusters using weighted k-means 0.5 : 0.5. 

Cluster Stocks 

1 LPKR AKRA AALI MNCN PPRO LSIP ADHI PTPP SSMS WIKA 
 SMRA LPPF BMTR SRIL BJBR      

2 BUMI PWON MYRX        
3 INDF KLBF         
4 BSDE SMGR JSMR INTP EXCL SCMA PGAS BBTN WSKT BRPT 
 ADRO          

5 ASII TLKM UNVR BMRI BBNI ICBP BBRI GGRM HMSP UNTR 
 BBCA          

6 ANTM PTBA INCO        
 

 
Table-4. Stocks clusters using weighted k-means 0.2 : 0.8. 

Cluster Stocks 

1 LPKR AKRA AALI MNCN PPRO LSIP ADHI PTPP SSMS WIKA 
 SMRA LPPF BMTR SRIL BJBR      

2 PWON MYRX         

3 INDF KLBF BSDE JSMR EXCL SCMA PGAS BBTN WSKT ADRO 
4 SMGR INTP BRPT        

5 ASII TLKM UNVR BMRI BBNI ICBP BBRI GGRM HMSP UNTR 
 BBCA          

6 BUMI ANTM PTBA INCO       
 

 

3.2. Representative Stocks from Clusters  

Following the formation of the six clusters, the Sharpe ratio was calculated for every stock in each cluster, 

using the latest Bank Indonesia rate of 5.25% per year as the risk return free rate. Based on these calculations, 

stocks that were representative of each cluster were identified to create the optimum portfolio, as presented in 

Tables 5–8. 
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Table-5. Representative stocks from clusters using KAMILA algorithm. 

Cluster Representation Return Risk Sharpe Ratio 

1 BMTR -0.000164 0.029596 -0.010416 
2 INCO 0.002580 0.026729 0.091156 
3 BBCA 0.000878 0.012855 0.057126 
4 HMSP 0.000664 0.021462 0.024240 
5 BBRI 0.000311 0.018511 0.009023 
6 BRPT 0.000425 0.022963 0.012221 

 

 
Table-6. Representative stocks from clusters using weighted k-means 0.8 : 0.2. 

Cluster Representation Return Risk Sharpe Ratio 

1 BJBR 0.000225 0.022459 0.003619 
2 MYRX 0.000428 0.032915 0.008622 
3 BRPT 0.000425 0.022963 0.012221 
4 UNTR 0.000805 0.022303 0.029621 
5 BBCA 0.000878 0.012855 0.057126 
6 INCO 0.002580 0.026729 0.091156 

 

 
Table-7. Representative stocks from clusters using weighted k-means 0.5 : 0.5. 

Cluster Representation Return Risk Sharpe Ratio 

1 BJBR 0.000225 0.022459 0.003619 
2 MYRX 0.000428 0.032915 0.008622 
3 KLBF -0.000857 0.018216 -0.054946 
4 ADRO 0.000490 0.028072 0.012363 
5 BBCA 0.000878 0.012855 0.057126 
6 INCO 0.002580 0.026729 0.091156 

 

 
Table-8. Representative stocks from clusters using weighted k-means 0.2 : 0.8. 

Cluster Representation Return Risk Sharpe Ratio 

1 BJBR 0.000225 0.022459 0.003619 
2 MYRX 0.000428 0.032915 0.008622 
3 ADRO 0.000490 0.028072 0.012363 
4 BRPT 0.000425 0.022963 0.012221 

5 BBCA 0.000878 0.012855 0.057126 
6 INCO 0.002580 0.026729 0.091156 

 

 

3.3. Detection of Outliers in Representative Stocks from Clusters   

The Mahalanobis distance, introduced in Section 2.4, was used to determine the outliers in in the representative 

stocks. The mahalanobis and qchisq functions in the R package were used, with a 97.5% threshold for the distance, 

on 260 daily return data of the LQ45 index stocks for the period August 2017–July 2018. Table 9 presents the 

number of outliers for the representative stocks identified by the four clustering methods, while Figure 1 depicts the 

outliers from KAMILA clustering.   

 
Table-9. Number of outliers in representative stocks from clusters. 

Clustering Method Number of Outliers Percentage 

KAMILA 16 6.15 

Weighted k-means 0.8 : 0.2 15 5.77 

Weighted k-means 0.5 : 0.5 18 6.92 

Weighted k-means 0.2 : 0.8 18 6.92 
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Figure-1. Outliers of Stocks Representation with KAMILA Clustering. 

 

3.4. Portfolio Weightings and Comparison of Portfolio Performance  

The optimum portfolio in this study was determined by the MV portfolio model based on both robust FMCD 

( ) and S  estimations. The first stage is to set the portfolio weightings in each estimation model for 

various risk aversion values , using the CovMcd and CovSest functions in the R package. For comparison 

purposes, the same procedure was undertaken for the optimum portfolio determined by the classic MV portfolio 

model ( ). The optimum portfolio comprised the stocks that were representative of each cluster, as 

presented in Tables 1–4, and the resulting portfolio weightings are presented in Tables 10–13.  

 
Table-10. Portfolio weight of MV classic and robust portfolio using KAMILA algorithm. 

Model 
 

BMTR INCO BBCA HMSP BBRI BRPT 

 0.5 -2.169794 5.180605 3.730208 -0.081726 -3.980619 -1.678674 

 1 -1.048586 2.647133 2.134911 0.019339 -1.966693 -0.786105 

 

2 -0.487982 1.380397 1.337263 0.069873 -0.959730 -0.339821 

 5 -0.151619 0.620355 0.858674 0.100193 -0.355553 -0.072050 

 10 -0.039498 0.367008 0.699144 0.110299 -0.154160 0.017207 

 0.5 -12.892920 8.580200 -2.769171 4.651188 3.405259 0.025444 

 1 -6.441513 4.295077 -1.020066 2.364864 1.756319 0.045319 

 

2 -3.215808 2.152516 -0.145514 1.221703 0.931849 0.055256 

 5 -1.280387 0.866979 0.379217 0.535805 0.437167 0.061218 

 10 -0.635246 0.438467 0.554128 0.307173 0.272273 0.063206 

 0.5 -6.369058 8.047326 -0.269468 3.788822 -2.865004 -1.332618 

 1 -3.168092 4.048475 0.152108 1.934055 -1.349535 -0.617010 

 

2 -1.567609 2.049049 0.362896 1.006671 -0.591801 -0.259207 

 5 -0.607319 0.849394 0.489368 0.450241 -0.137160 -0.044524 

 10 -0.287222 0.449509 0.531526 0.264764 0.014387 0.027036 
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Table-11. Portfolio weight of MV classic and robust portfolio using weighted k-means 0.8 : 0.2. 

Model 
 

BJBR MYRX BRPT UNTR BBCA INCO 

 0.5 -2.486973 -0.543940 -2.232721 -1.622755 1.852398 6.033991 

 1 -1.151905 -0.243585 -1.065875 -0.772379 1.184499 3.049245 

 

2 -0.484370 -0.093408 -0.482452 -0.347191 0.850550 1.556872 

 5 -0.083850 -0.003301 -0.132399 -0.092079 0.650180 0.661448 

 10 0.049657 0.026734 -0.015714 -0.007041 0.583390 0.362974 

 0.5 -11.310331 -6.042790 -2.089360 6.315137 6.636202 7.491142 

 1 -5.492350 -2.983140 -1.019847 3.182170 3.566533 3.746633 

 

2 -2.583359 -1.453315 -0.485091 1.615686 2.031699 1.874379 

 5 -0.837964 -0.535419 -0.164237 0.675796 1.110799 0.751026 

 10 -0.256166 -0.229454 -0.057286 0.362499 0.803832 0.376575 

 0.5 -8.918575 -10.173089 -0.645023 4.678080 9.867617 6.190990 

 1 -4.308953 -5.028871 -0.271714 2.348799 5.161014 3.099725 

 

2 -2.004142 -2.456762 -0.085059 1.184159 2.807713 1.554092 

 5 -0.621256 -0.913497 0.026934 0.485374 1.395733 0.626712 

 10 -0.160294 -0.399075 0.064265 0.252446 0.925072 0.317585 
 

 
Table-12. Portfolio weight of MV classic and robust portfolio with weighted k-means 0.5 : 0.5. 

Model 
 

BJBR MYRX KLBF ADRO BBCA INCO 

 0.5 -0.727967 -0.002456 -11.693996 -2.334734 8.864260 6.894892 

 1 -0.273182 0.028654 -5.782720 -1.164226 4.697497 3.493977 

 

2 -0.045789 0.044209 -2.827081 -0.578973 2.614116 1.793519 

 5 0.090646 0.053542 -1.053698 -0.227820 1.364087 0.773244 

 10 0.136125 0.056653 -0.462571 -0.110770 0.947411 0.433153 

 0.5 -14.226208 -10.046229 9.691180 0.234813 8.346215 7.000230 

 1 -6.981442 -4.968158 4.846326 0.115790 4.479496 3.507989 

 

2 -3.359060 -2.429122 2.423899 0.056278 2.546136 1.761868 

 5 -1.185630 -0.905701 0.970443 0.020571 1.386120 0.714196 

 10 -0.461154 -0.397894 0.485958 0.008669 0.999448 0.364972 

 0.5 -12.823344 -10.459752 2.031370 3.270296 12.501207 6.480223 

 1 -6.265823 -5.164758 1.048243 1.635188 6.488352 3.258797 

 

2 -2.987062 -2.517261 0.556679 0.817635 3.481925 1.648084 

 5 -1.019806 -0.928763 0.261741 0.327103 1.678069 0.681656 

 10 -0.364054 -0.399263 0.163428 0.163592 1.076783 0.359514 
 

 
Table-13. Portfolio weight of MV classic and robust portfolio with weighted k-means 0.2 : 0.8. 

Model 
 

BJBR MYRX ADRO BRPT BBCA INCO 

 0.5 -2.502745 -0.449469 -2.233956 -2.397207 2.392938 6.190438 

 1 -1.155284 -0.194802 -1.115651 -1.142252 1.470317 3.137671 

 

2 -0.481554 -0.067468 -0.556498 -0.514774 1.009006 1.611288 

 5 -0.077316 0.008933 -0.221007 -0.138288 0.732220 0.695458 

 10 0.057430 0.034399 -0.109176 -0.012792 0.639957 0.390181 

 0.5 -10.543469 -11.993346 2.789438 3.930087 11.139218 5.678072 

 1 -5.124550 -5.947702 1.423867 1.993446 5.805781 2.849158 

 

2 -2.415091 -2.924881 0.741082 1.025126 3.139062 1.434702 

 5 -0.789415 -1.111188 0.331410 0.444134 1.539031 0.586028 

 10 -0.247523 -0.506624 0.194853 0.250469 1.005688 0.303136 

 0.5 -10.905638 -10.208993 4.415846 1.437402 9.354582 6.906801 

 1 -5.301508 -5.046395 2.208353 0.765807 4.907432 3.466311 

 

2 -2.499443 -2.465096 1.104607 0.430009 2.683856 1.746066 

 5 -0.818204 -0.916316 0.442359 0.228531 1.349711 0.713919 

 10 -0.257791 -0.400056 0.221610 0.161371 0.904996 0.369870 
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Based on the portfolio weightings, as well as the mean vectors and covariance matrices, the Sharpe ratio was 

calculated for the three portfolio models, as presented in Table 14.  

 
Table-14.  The Sharpe ratio of MV classic portfolio and robust portfolios with KAMILA algorithm and weighted k-means. 

 

KAMILA Weighted k-means 

Weight = (0.8 : 0.2) Weight = (0.5 : 0.5) Weight = (0.2 : 0.8) 

            
0.5 0.0883 0.1967 0.1356 0.0855 0.1574 0.1588 0.1316 0.1914 0.1873 0.0886 0.1755 0.1773 

1 0.0921 0.1946 0.1349 0.0890 0.1556 0.1568 0.1333 0.1887 0.1855 0.0921 0.1734 0.1754 

2 0.0986 0.1901 0.1330 0.0948 0.1519 0.1526 0.1360 0.1830 0.1817 0.0980 0.1689 0.1713 

5 0.1081 0.1751 0.1244 0.1037 0.1392 0.1383 0.1394 0.1648 0.1686 0.1071 0.1542 0.1573 

10 0.1062 0.1468 0.1051 0.1022 0.1151 0.1115 0.1337 0.1324 0.1434 0.1058 0.1269 0.1310 
 

 

4. DISCUSSIONS  

Having formed six stocks clusters from the LQ45 index through KAMILA and weighted k-means clustering 

algorithms, shown in Tables 1–4, the Sharpe ratio was calculated for every stock in each cluster to identify the 

stocks that were representative of each cluster, presented in Tables 5. Those representative stocks with the highest 

Sharpe ratios, those identified as the best performing in the cluster, were selected for inclusion in the portfolio. 

Thus, following KAMILA clustering algorithm,  Table 5 shows that BMTR stocks, with a Sharpe ratio of –

0.010416, were chosen from Cluster 1, and INCO, BBCA, HMSP, BBRI, and BRPT stocks for Clusters 2, 3, 4, 5, 

and 6, respectively. The same process was followed for the weighted k-means clusterings, the results of which can 

be seen in Tables 6–8.  

Table 9, and Figure 1 in relation to KAMILA clustering, indicates the number of outliers found for each 

clustering method: 16 (6.15%) using KAMILA clustering, and 15 (5.77%), 18 (6.92%), and 18 (6.92%) for weighted 

k-means 0.8 : 0.2, 0.5 : 0.5, and 0.2 : 0.8 clustering, respectively. Based on these results, it is reasonable to employ a 

robust estimation method to create optimum portfolios.  

 All the clustering methods produced stocks with negative returns (e.g., Table 10 shows negative weighting for 

BMTR stock), denoting short selling, in all four portfolio models, across every risk aversion value γ (see Tables 11–

13). In contrast, stocks with large returns are always shown with positive weightings in all four portfolio models 

(e.g., INCO stocks in Table 10). Table 10 also illustrates that the greater the  value, the smaller the weightings of 

the stocks.  

When assessing portfolio performance, though, the risks taken by the investor should also be considered. One 

way to measure both returns and risks is to calculate the Sharpe ratio, which is shown in Table 14 for all four 

portfolio models developed through KAMILA and weighted k-means clusterings. These results reveal that the MV 

portfolio based on KAMILA clustering and robust FMCD estimation outperformed the other alternatives in this 

empirical study. 

 

5. CONCLUSIONS 

The current study demonstrated how to integrate clustering techniques for mixed-type data—continuous and 

categorical—into portfolio management and create an optimum portfolio. To establish the advantages of this 

proposed method, the performance of the optimum portfolio was compared to that of the optimum portfolio created 

through weighted k-means clustering, which can also be applied to mixture-type data. The final results revealed 

that the best portfolio performance was obtained by combining KAMILA clustering with robust FMCD estimation. 
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