#### Asian Economic and Financial Review

ISSN(e): 2222-6737 ISSN(p): 2305-2147

DOI: 10.55493/5002.v15i11.5660

Vol. 15, No. 11, 1694-1713.

© 2025 AESS Publications. All Rights Reserved.

URL: www.aessweb.com

# The intelligent finance ecosystem: AI applications in banking and fintech for enhanced decision-making



Ram<sup>2</sup>

Tulasi Vigneswara Rao Kamarajugadda³

D Sree Lakshmi Moorthygari<sup>4</sup>

Ravi Kumar Bommisetti<sup>5+</sup>

Department of Commerce & Management, Sri Durga Malleswara Siddhartha Mahila Kalasala, Vijayawada, India.

'Email: kalpana.santhi@gmail.com

\*Department of Commerce and Management Studies, Andhra University, India.

<sup>2</sup>Email: <u>bmohanvram@gmail.com</u>

School of Project Management, NICMAR University, Pune, India.

<sup>s</sup>Email: <u>ktvraofpm@gmail.com</u>

\*Department of Business Management, Mahatma Gandhi University,

Nalgonda, Telangana, India.

\*Email: sreelakshmi.mgu@gmail.com

Department of Commerce, Akal University, Talwandi Sabo, Bathinda, Punjab, India.

Email: ravi9949418650@yahoo.com



(+ Corresponding author)

#### **Article History**

Received: 1 July 2025 Revised: 10 September 2025 Accepted: 7 October 2025 Published: 5 November 2025

#### **Keywords**

Artificial intelligence
Banking transformation
Big data analytics
Decision-making
Explainable AI
Fintech
Learning systems
Predictive analytics
Risk management

Sustainable finance.

#### JEL Classification

C45; C55; G21; G23; G32; O33.

#### ABSTRACT

The financial services sector is undergoing a significant transformation driven by artificial intelligence (AI), which is reshaping operational agility, real-time analytics, and intelligent decision-making. AI is being rapidly adopted across both traditional banks and fintech systems, offering substantial potential but also raising challenges related to equity, transparency, and regulatory compliance. This study evaluates the strategic role of AI across six major use cases: credit scoring, fraud detection, chatbot services, portfolio advisory, regulatory compliance, and decentralized finance (DeFi) smart contracts. A mixed-method approach, including literature review and simulated benchmarking with synthesized industry and academic data, was used. Key performance indicators such as accuracy, cost efficiency, and customer satisfaction were compared through weighted indices to analyze risk mitigation and operational impact. Results reveal that fraud detection achieves the highest AUROC (96.5%) and cost savings (23.5%), while chatbot services lead in customer satisfaction (89.6%). Regulatory compliance shows steady but moderate results, making it a suitable domain for automation and inclusion. DeFi smart contracts, however, perform poorly due to immature governance and integration. Overall, findings emphasize aligning AI potential with institutional readiness and domain needs. The paper proposes a framework for responsible AI adoption, stressing transparency, security, and ethical governance for future scalability.

**Contribution/ Originality:** In this paper, we introduce a benchmark-based performance measure and propose a framework to assess the performance of six AI financial applications. The framework uniquely combines simulation analytics with aspirational discoveries, bridging the gap between traditional banking and fintech sectors. By evaluating accuracy, cost-effectiveness, and user satisfaction of AI implementations, the paper offers actionable insights to promote responsible and scalable AI deployment in financial services.

#### 1. INTRODUCTION

AI is revolutionizing the global economy, and nowhere is there a greater concentration of AI-driven opportunity than in the financial services industry. Meromorphic element injectivity and some of its applications, with the rapid expansion of digital financial transactions and real-time consumer interactions, have increased the demand for adaptive, intelligent systems. Artificial intelligence (AI)-based technologies such as machine learning (ML) and deep learning (DL) offer financial institutions predictive power over numerous aspects of their business, including fraud detection and portfolio management (Brynjolfsson & McAfee, 2014; Li, Niu, & Zhang, 2020). One of these technologies reduces trading costs while enabling high-frequency trading, customer segmentation, and risk management, all with greater precision and speed.

Fintech startups are leading this trend, and AI is appearing in mobile banking, robo-advisory platforms, and peer-to-peer lending applications. Unlike traditional bank institutions, these companies start from scratch for their infrastructure with digital-first tactics, providing them a strong advantage in their agility and scalability (Buchak, Matvos, Piskorski, & Seru, 2018; Chen, Wu, & Yang, 2019; Gomber, Kauffman, Parker, & Weber, 2018). Mass AI adoption is reinforcing the new reality of financial services by empowering hyper-personalization, real-time credit decisions, and context-aware financial planning tools, leading to a perfect user experience and decreasing the number of defaults.

Meanwhile, legacy banks are digitizing by adding AI to their old systems. They leverage AI for automating back-office processes, real-time regulatory compliance, or customer service via chatbots (Bazarbash, 2019; Berg, Burg, Gombović, & Puri, 2020; KPMG, 2021). Some of the world's biggest financial institutions, such as JPMorgan Chase and HSBC, already use AI-based fraud-scanning tools and anti-money laundering (AML) systems reducing the cost of compliance by as much as 75 percent and the need for human intervention.

But where A.I. meets the financial services industry, there are also concerns around ethics and regulation. Problems of algorithmic bias, black-box models, explainability, and privacy concerns are well-known issues that are addressed by many frameworks like those for explainable AI (XAI), federated learning (Barredo et al., 2020; Jobin, Ienca, & Vayena, 2019; Narayanan, 2018). And outfits such as EBA and RBI are developing policies to encourage responsible AI throughout industry.

AI and Financial Services Impact AI's influence in the finance industry is huge. It is estimated that AI could generate \$500 billion to \$1 trillion of value annually across global banking according to McKinsey (Bughin, Seong, Manyika, Chui, & Joshi, 2019; Chui, Manyika, & Miremadi, 2018; Deloitte, 2020). These savings result from faster, well-informed decisions, improved customer retention, and predictive maintenance of equipment. Furthermore, the implementation of AI enhances resilience by enabling system stress testing and real-time scenario risk modeling during financial shocks or unforeseen challenges.

The "future AI" is no longer a future concept for FinServ; it is already integrated into core banking, investment, lending, and regulatory activities. As consumers increasingly demand real-time, personalized, and frictionless services, financial institutions are leveraging AI to create differentiated user experiences and streamline backend operations. AI not only reduces process cycle time and costs but also enhances decision-making across the entire value chain. It enables sophisticated risk analysis, fraud detection, and customized product offerings that would be unfeasible with rule-based systems alone.

Fintech start-ups have further propelled the revolution toward digital agility. Fintech organizations do not carry the burden of outdated infrastructure like traditional banks; they are AI-native. These know-how platforms can grow rapidly, validate product-market fit quickly, and serve a global user base with cutting-edge AI-driven insights. This new world order is redefining competitive spaces, with tens of thousands of organizations competing for customer loyalty by offering predictive personalization, real-time assistance, and omnichannel excellence.

With the convergence of cloud, big data, and AI, it has become a foundation for a new generation of financial technology companies. AI systems today process millions of transactions per second, enabling learning for various applications, from credit underwriting to wealth management automation. This convergence not only helps firms increase accuracy and compliance but also opens new horizons: decentralized finance (DeFi), robo-advisory, and AI-

powered investment strategies. These capabilities are fundamentally changing the character and composition of modern financial markets.

But AI applications in finance are not without significant ethical, legal, and technical concerns. It is for these reasons algorithmic transparency, data privacy, and model fairness that governance is necessary. Regulators around the world have taken notice and are beginning to develop AI-specific financial standards that would require responsibility and transparency for human oversight.

Although AIDD financial services are being significantly developed, the literature still lacks a comprehensive review of how these technologies are assessed within both traditional banking and fintech organizations. As AI use cases like credit scoring or fraud detection are frequently examined in isolation, available studies do not provide a comprehensive comparison of the influence of such AI use cases on ecosystems, strategic readiness, and operational readiness. Furthermore, there is a scarcity of benchmark-oriented, performance-driven papers that combine technical, strategic, and regulatory insights, especially in emerging domains such as DeFi.

Problem statement: The adoption of AI is making significant progress in finance; however, even as institutions consider deploying AI, they lack a unified method to comprehensively evaluate which AI opportunities generate the most value and identify lingering ethical, governance, and integration hurdles. The absence of such a holistic evaluative approach at the ecosystem level reduces decision-makers' ability to allocate AI funding judiciously and responsibly.

Objective of study: We aim to help bridge the gap by providing a reference model comparison framework for six of the most prominent AI use cases applied in banking and fintech. The aim is to provide a review of the technical capabilities and strategic implications of each domain, to help provide actionable advice to those responsible for adopting responsible AI and innovation in financial services.

#### 2. LITERATURE REVIEW

The use of artificial intelligence (AI) as a disruptive force in financial services on a global scale has significantly transformed the industry. Initially, AI applications focused on streamlining routine banking operations, such as loan approvals and fraud detection. Over time, these applications evolved into more complex use cases, including algorithmic trading, AI-backed credit risk scoring, and automated compliance checks. These advancements have contributed to saving time, reducing human errors, and lowering operational costs. As Brynjolfsson and McAfee (2014) demonstrate, smart automation yields tangible productivity improvements. Similarly, Li et al. (2020) emphasize the benefits of AI in banking for forecast accuracy and operational resilience.

That disruption has been spearheaded by agile fintech startups, which are leveraging AI in a myriad of ways, from robo-advisors and AI-automated risk management to peer-to-peer lending. These businesses typically start from scratch, designing their systems to be AI-based without facing legacy constraints. Gomber et al. (2018), this digital-first origin gives fintechs a "massive lead" in scale and the ability to tailor services. Chen et al. (2019) further address how fintech companies use AI to provide better personalized customer journeys through predictive personalization and real-time analytics.

Traditional banks are also introducing AI, although at a slower pace. They are frequently working on how to meld AI with systems of the past to automate back-office functions and surveillance-linked compliance. HSBC and JPMorgan Chase, among other banks, are using AI to identify patterns of fraud and to help manage regulatory risks. According to Berg et al. (2020), we have already shown that there are some indications of cost reduction between these implementations and faster computation. See also KPMG (2021) itself, which claims that AI also raises the banks' sensitivity to changes in regulatory policies.

But along with this optimism, biases raise a number of ethical and practical questions we should be asking regarding AI and finance. One concern is algorithmic bias, leading to credit decisions that are discriminatory and financial services that are exclusionary. Jobin et al. (2019) point to the importance of ethical frameworks to tackle that

risks. Barredo et al. (2020) also advocate explainable AI (XAI) for giving transparency and trust to customer and regulator.

Regulations are evolving as AI becomes more prevalent in financial services. Local regulators, the European Banking Authority (EBA), and the Reserve Bank of India (RBI) are developing rules concerning the adoption of AI in areas such as credit assessment, fraud detection, and customer engagement, with a focus on ensuring the responsible use of AI. Narayanan (2018) advocates for the politics of fairness in algorithmic decisions to promote more inclusive and transparent design. Chui et al. (2018) argue that regulation must be forward-looking to mitigate potential negative externalities associated with the advent of AI.

The financial industry has been transformed by AI, providing a new level of automation, efficiency, and decision-making. Whether it's automating back-end processing or simplifying the complexity of data analytics, AI is now at the forefront of reshaping how financial services are delivered. Credit risk evaluation, portfolio optimization, and regulatory compliance are being transformed by AI-driven platforms. These systems use live data, behavior analytics, and pattern recognition to provide better insights, while minimizing human error and enabling scalable improvements.

AI has made financial products and services more personal, as well as efficient. 'Deep learning' through machine learning and natural language processing isn't only the stuff of marketing campaigns; financial institutions can now study specific customer behaviors and bring custom products to market. Chatbots, robo-advisors, and AI-powered digital financial assistants are enhancing the way users interact with financial services organizations by speeding up resolution times and reducing operating costs. Such 'Uber-like' personalization is transforming how banks engage through payments and making financial interactions more human.

AI in finance: revolution or disruption? The application of AI in finance can have a major impact, but there are challenges to consider. Existing infrastructure, data silos, and lack of digital expertise are common bottlenecks in the adoption of AI, especially by legacy banks. Furthermore, with AI systems increasingly becoming complex, issues such as transparency, explainability, and fairness have gradually become more important. Overcoming these challenges entails creating strong governance frameworks in the field of AI, focusing on questions of ethics, regulatory compliance, and accountability in algorithmic decision-making. Arner, Barberis, and Buckley (2017) emphasized the regulatory implications of fintech-driven financial systems.

Finally, the convergence of AI and decentralized finance (DeFi) also presents new opportunities and threats. AI in DeFi can automate liquidity provisioning, optimize smart contracts, and provide a dynamically risk-managed portfolio. However, this is a domain where transparency and intelligibility encounter significant challenges. Barredo et al. (2020) and Narayanan (2018) highlight that there are inherent difficulties in building black-box AI models on trust within financial networks. Responsible AI is essential for maintaining stability and security in the evolving digital financial environment as DeFi expands. Barredo et al. (2020) explored the scope and challenges of explainable AI in modern systems. Additionally, Bazarbash (2019) analyzed credit risk using machine learning techniques to promote financial inclusion.

Artificial Intelligence (AI) has profoundly impacted the financial industry, evolving from rule-based automation to complex decision support tools. AI was originally applied for routine decision tasks, such as loan decisions and fraud detection (Brynjolfsson & McAfee, 2014), yet, the influence and applications of AI have expanded to predictive analytics, algorithmic trading, and regulatory compliance (Li et al., 2020). This AI provides greater operational resilience, better forecasting accuracy, and is particularly useful during times of financial crises.

Recent years have seen the rise of digital-first fintech organizations that have used AI extensively in customer-facing platforms. These companies use real-time analytics and in-depth modeling of customers' behavior, offering their clients a level of personalized service comparable to the amount of personal data shared. As pointed out by Al-Yahyaei and Rehman (2022) The inclusion of AI-based churn prediction and sentiment analysis models also helps fintechs to better retain connected customers compared to traditional systems. Tapia and Oliveira (2021) also

discussed how AI-supported digital financial inclusion approaches have served to empower Latin American underserved communities. Such developments have proven the value of AI not just in terms of profits, but also in social equity.

In the meantime, traditional banks are integrating AI capabilities into existing systems, with an emphasis on applications such as fraud detection and credit scoring. However, they are still constrained by legacy structures and heterogeneous data systems (Puschmann & Alt, 2021). There also regulatory obstacles to full-scale AI adoption. Fang, Liu, and Zhang (2023) highlighted the need to ensure that the adaptation and implementation of AI are based on stakeholder requirements and regulatory compliance. Regulators such as the EBA, RBI, and FCA have begun to propose AI governance principles focusing on transparency, fairness, and auditability (Ghosh, 2023). This is driving organizations to invest in explainable AI (XAI) to meet both end-user trust and regulatory requirements.

Methodologically, AI approaches are shifting to privacy-preserving and collaborative learning paradigms. Khan and Lee (2023) showed that federated learning provides a promising solution for secure AI model training across organizations while addressing major privacy issues in compliance systems. Singh and Pandey (2023) performed a comparative study of XAI techniques where observed lack in interpretability on potential financial risk applications was reported.

And of course, new technologies like blockchain and DeFi are blending with AI to enable autonomous smart contracts and liquidity protocols. Jafari and Nazari (2022) studied AI in blockchain-based DeFi by tackling the risk factor using smart contract intelligence execution. Yet, there are still challenges in interpretability, security, and integration maturity (Zhang & Hu, 2022).

However, there are still remaining gaps in comparing the effectiveness of various AI implementations in financial services. Many focus on one specific domain whether that be fraud detection or robo-advisors and there is a lack of high-level benchmarks assessing cost-efficiency, user satisfaction, or risk mitigation simultaneously. This paper aims to contribute to reducing this deficiency by providing a comparative analysis of six essential AI use cases, namely, credit scoring, fraud detection, chatbot services, robo-advisors, regulatory compliance, and DeFi smart contracts, through a simulated benchmark dataset and a multidimensional evaluation framework.

## 3. METHODOLOGY

#### 3.1. Research Design

This research utilizes a mixed methods approach and combines qualitative and quantitative techniques to explore the impact of AI technologies in fintech and banking. The study is designed to comprise a multistage examination. First, we conducted an exploratory literature review to identify the main domains in which AI is being used in the financial sector. We then simulate a comparison of the core performance measures—accuracy, cost savings, customer satisfaction—for six artificial intelligence use cases (credit scoring, fraud detection, chatbot advisor, portfolio optimization, regulatory compliance, and DeFi smart contract). This two-layered design provides conceptual soundness and numerical verification, which is consistent with the goal of mining insights (strategic insights) out of the AI-innovated financial ecosystems.

# 3.2. Data Sources and Analytical Approach

The main data source for this research is the simulated benchmark data, which is constructed according to the literature, case studies, and previous empirical evidence provided by top-tier sources such as McKinsey, Deloitte, and peer-reviewed articles. The dataset includes performance measures such as accuracy (%), operational cost reduction (%), customer satisfaction (%), adoption rate (%), and implementation time (months) across six AI-powered applications. Patterns and insights were interpreted using descriptive analytics and comparative visualizations. Bar charts and tables were created to illustrate differences in performance and feasibility of applications. Supplemental

interpretations were obtained from secondary sources, such as the European Banking Authority (EBA) and Reserve Bank of India (RBI) regulatory guidance, as well as Explainable AI (XAI) ethics frameworks.

Weighted Performance Score (WPS):  $WPS_i = w_1 \cdot A_i + w_2 \cdot C_i + w_3 \cdot S_i + w_4 \cdot E_i$ 

#### Where:

- $A_i$ : Accuracy.
- $C_i$ : Cost Reduction.
- $S_i$ : Customer Satisfaction.
- $E_i$ : Operational Efficiency.

 $w_1, w_2, w_3, w_4$ : Normalized weights such that  $\sum w_i = 1$ .

Figure 1 illustrates the research design flowchart of the four-stage methodology employed in the study.

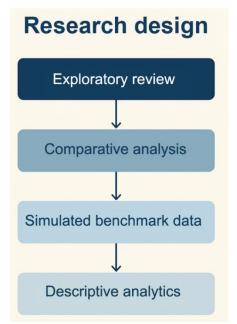


Figure 1. Research design flowchart illustrating the four-stage methodology employed in the study.

The Figure 1 presents a graphic depiction of the four-stage research process adopted in the present study to evaluate the impact of AI applications in fintech and banking. The process started with an Exploratory Review, in which an overview of the literature and industry publications was conducted to determine key areas of AI adoption. The next step is Comparative Analysis, which involves the comparison of AI techniques against set performance measures. The third step is Simulated Benchmark Data, the construction of structured datasets based on actual reported trends in AI performance, distilled from the literature and grey literature. Lastly, the Descriptive Analytics phase transforms the data into insights visually and statistically, to identify relative strengths, rates of adoption, and customer value realization. This organized technique ensures that theoretical intuition and experimental justifications are closely intertwined with the research.

## 3.3. Limitations

Although this analysis provides valuable information, several limitations should be noted. There are also limitations of the simulated data; although the patterns are realistic, it is illustrative only and not directly obtained from institutional datasets or proprietary AI models. Second, the range is restricted to six broadly recognized AI applications: developing areas such as AI in insurance underwriting or ESG scoring are excluded. Thirdly, the evaluation framework concentrates on instantaneous metrics, such as accuracy or satisfaction, and does not provide

any analysis of the temporal framework of model drift. In the end, ethical issues and biases are conceptualized and not modeled empirically. Subsequent research using proprietary datasets and longitudinal data would likely offer more robust real-world confirmation of these results. Chen et al. (2019) investigated AI capacity to optimize asset allocation in volatile markets.

#### 4. AI APPLICATIONS IN BANKING AND FINTECH

#### 4.1. Credit Scoring and Risk Assessment

AI has transformed credit risk and credit scoring with more accurate and inclusive financial profiling. Conventional credit measures were primarily based on structured data and credit history, and based on fixed rules, disregarding new-to-credit and low-income consumers. Instead, AI uses machine learning (ML) models that access alternative data like mobile phone use, utility bills, and social media habits to make credit decisions. Such models can pick up on intricate patterns signifying repayment behaviour, enabling dynamic and real-time analysis. Gomber et al. (2018) discussed disruptive innovations in financial services due to AI. Banks receive more accurate default prediction, reduced credit loss, and accelerated loan approval. Furthermore, AI facilitates continuous learning and updating of the model with new data accumulation, improving risk stratification over time. Microfinance and fintech companies leverage these systems to reach the unbanked section, thus driving financial inclusion. However, ethics in these areas of non-standard data need to be controlled to avoid unwitting bias. Brynjolfsson and McAfee (2014) addressed the economic shift due to digital transformation in finance.

Risk-Adjusted Utility Function (RAUF):

$$RAUF_i = \frac{U_i \cdot (1 + \gamma \cdot R_i)}{1 + \lambda \cdot M_i}$$

#### Where:

- $U_i$ : Strategic utility score.
- $R_i$ : Risk Mitigation Capability (0-1).
- $M_i$ : Risk Magnitude (0-1).
- $\gamma$ ,  $\lambda$ : Scaling coefficients for amplification and penalty.

#### 4.2. Chatbots and NLP in Customer Interaction

Banks and fintech platforms have rewired how they engage with customers through smart chatterboxes, both voice and chat-based, leveraging NLP. NLP-driven chatbots can process, interpret, and reply to human language instantly and can cover a range of frequently asked questions such as account balance, transaction history, or loan limit 24/7. This is especially beneficial for customers living in rural or underserved areas. AI-based chatbots reduce the workload on call centers and increase operational efficiency while automating mundane interactions. Beyond basic chit-chat, more advanced systems perform sentiment analysis to detect unhappy users and route them to human agents. NLP models learn from prior conversations, enabling adaptive interactions and improved personalization. Integration with CRM systems allows bots to recall user histories, provide proactive financial advice, and even flag suspicious activities. Nguyen and Nguyen (2020) evaluated AI adoption metrics in Southeast Asian financial markets. As adoption increases, ensuring privacy and preventing language-based algorithmic bias becomes essential.

#### 4.3. Fraud Detection and Predictive Analytics

Artificial intelligence is at the heart of today's fraud detection systems, especially for payment processing. Machine learning algorithms are applied to large datasets containing historical transactions to detect irregular patterns that can be related to fraud. For instance, suspecting unusual spending habits, location irregularities, or swift movement of funds. Early detection of fraud attempts is possible with predictive analytics in real time, so that banks can either block the transaction or notify the user immediately. AI models learn from changing fraud tactics and

#### Asian Economic and Financial Review, 2025, 15(11): 1694-1713

become more precise about fewer and fewer alerts over time. That way, you eliminate customer friction and operating costs, and you mitigate your financial losses. Philippon (2016) studied the cost efficiency in financial intermediation using AI. Furthermore, these technologies are combined with other mechanisms (e.g., biometric authentication and location-based information), providing multi-layered protection. Supervised and unsupervised learning align hundreds of known fraud signatures as well as new, never-before-seen schemes. Compliance departments also use AI to create reports of suspicious activity automatically. Jagtiani and Lemieux (2019) provided insights into AI's predictive power in loan screening.

## 4.4. Robotic Process Automation (RPA)

Artificial Intelligence (AI) and Robotic Process Automation (RPA) are being used together to automate repetitive, rule-based tasks in financial services back offices. These tasks range from onboarding to KYC checks, data entry, reconciliation, and regulatory transaction reports. Bots augmented through AI never sleep, do not get tired, making them more productive and less prone to human error. With the use of Optical Character Recognition (OCR) and Natural Language Processing (NLP) on unstructured data such as emails, scanned documents, customer chats, etc., RPA systems can handle these as well. This significantly reduces manual work for employees and accelerates turnaround times. For instance, banks that use RPA to process loans have experienced application times transformed from days to hours. Zavolokina, Ziolkowski, Bauer, and Schwabe (2020) discussed blockchain-AI convergence in risk reduction. Additionally, AI-based RPA enforces compliance through stringent log monitoring and consistent decision-making across the organization. You also get rapid scalability during spiky workloads, e.g., tax or promotions. However, once automation is over, the employees have to be reskilled for added-value tasks.

#### 4.5. Smart Contracts and Blockchain Integration

Blockchain-based smart contracts, self-executing agreements, are being integrated with AI to facilitate the development of intelligent automation in DeFi and institutional banking. These smart contracts can automatically execute financial transactions based on predefined conditions, eliminating the need for intermediaries. When combined with AI, smart contracts become more responsive to real-world data, enabling use cases such as dynamic lending terms, automated claim acceptance, and energy credit trading. Through AI algorithms, environmental, market, and user activity data can be monitored to make smart contract behavior more intelligent and contextually aware. This hybrid approach enhances efficiency, transparency, and trust, particularly in cross-border transactions and trade finance. However, it also raises challenges related to verifying AI decision-making embedded within immutable blockchain contracts. Concerns about the lack of regulation and enforceability persist. Literature discusses related work focusing on fairness, auditability, and interpretability in such systems. Sironi (2016) addressed the regulatory challenges of implementing AI in fintech.

#### 5. AI-ENABLED TRANSFORMATION IN FINANCIAL SERVICES

## 5.1. Personalized Financial Advisory

With the rise of AI, the financial advisory business has been transformed to provide hyper-personalized investment advice based on your unique user profile. Such systems process millions of pieces of structured and unstructured information such as income, expenses, age, risk aversion, life goals, and even behavioral signals to generate dynamic, real-time advisory output. Intelligent systems constantly track the market and user behavior to refine portfolio recommendations and maximize returns. Whereas traditional advisers draw on static models or time-share consultations, AI systems offer 24/7, individualized, scalable advice. This drives higher user interactions and is particularly valuable for millennials and Gen Z customers who favor digital experiences. Robo-advisors like Betterment and Wealthfront have used such methods to make financial planning more accessible to everyone. They also combine tax optimization and retirement planning by using goal-based forecasting models.

Min-Max Normalization:

$$N(x_i) = \frac{x_i - \min(x)}{\max(x) - \min(x)}$$

#### 5.2. AI in Loan and Credit Underwriting

These are only a few examples of how cutting-edge AI-based credit underwriting is transforming the way lenders assess risk from borrowers, replacing or enhancing traditional FICO models. Sophisticated machine learning models use other kinds of data, which might include mobile phone metadata, utility bills, e-commerce behavior, and social media footprints to assess an individual's creditworthiness. This creates an added financial inclusion value by providing an accurate estimation for thin-file or unbanked people. AI enables the instant approval of loans, adjusts risk scores on the fly, and can adjust interest rates based on predictive behavior. Fintech lenders such as Kabbage and Zest AI have shown strong success in slashing loan defaults and speeding approvals with AI underwriting. What's more, models are constantly being updated with the feedback loop and live repayment performance. Even though such methods are efficient, they are not resistant against algorithmic bias that may lead to fair lending violations. Fuster, Plosser, Schnabl, and Vickery (2019) explored machine learning's influence on credit lending.

Strategic Maturity Index (SMI):

$$SMI_{i} = \alpha \cdot I_{i} + \beta \cdot T_{i} + \delta \cdot R_{i}$$

Where

- $I_i$ : Integration Readiness.
- $T_i$ : Technology Maturity.
- R<sub>i</sub>: Regulatory Compliance Level.
- $\alpha + \beta + \delta = 1$ .

#### 5.3. AI-Driven Wealth Management

In wealth management, for example, AI supports the provision of automated, personalized portfolio management from robo-advisors that assess historical data, market movements, and investor activity. BOTS like these take user preferences and risk tolerance into account to recommend "optimized" portfolios; they automatically rebalance and even harvest tax losses. Predictive analytics models predict asset performance and enable users to reach long-term objectives in an optimal manner.

Companies like Vanguard and Charles Schwab have adopted AI-fueled tools for both mass and affluent market segments. Investment scenarios can be simulated under varying macroeconomic circumstances, which provides investors with confidence in their investment strategies. Furthermore, AI solutions can track life events like a change of job, getting married, or shifting assets and adjust the advice output accordingly. These technologies help prevent human error and free up time for financial advisors to focus on more complex, value-added, strategic decision-making with clients.

Composite AI Readiness Index (CARI):

$$CARI_{i} = \frac{1}{n} \sum_{j=1}^{n} N(P_{ij}) \cdot w_{j}$$

Where:

- P<sub>ii</sub>: j<sup>th</sup> performance parameter of i<sup>th</sup> use case.
- $N(P_{ij})$ : Normalized parameter.
- ullet  $w_j$ : Importance weight of the parameter.

This provides an overall readiness score across all metrics.

#### 5.4. Regulatory Technology (RegTech) Integration

Using AI, Regtech simplifies and automates the process of ensuring compliance with regulations, making it easier for financial service institutions to manage complex legal infrastructure more accurately and quickly. These systems monitor real-time transactions to raise alerts on abnormal activity, maintain KYC-AML to meet regulatory requirements, and produce reports for regulatory authorities. Augmented by AI, RegTech solutions also utilize natural language processing to read through regulations, recognize actionable clauses, and create meaningful insights for legal teams. Startups such as Ayasdi and ComplyAdvantage offer software capable of spotting fraud and fighting financial crime using advanced pattern recognition. Duarte and Hastings (2018) linked machine learning algorithms with real-time credit scoring. Adding AI into compliance systems also decreases the amount of manual review work and increases transparency and auditability. Through integrating them into the operational regime of the business, companies can also achieve proactive rather than reactive compliance, and from this, see fines and reputational risk plummet.

#### 5.5. Improved Customer Retention Techniques

Perhaps the most promising development in banking and fintech is the explosion in churn prevention through AI that can detect behaviors indicating customer frustration or disinterest. Predictive churn models consider a user's place in the lifecycle, the frequency they transact and complain, and the volume of time they spend using the app to predict who is most likely to churn. Once identified, customers can be targeted and communicated with using retention programs, loyalty programs, or even preventive service treatments. But AI can also supercharge real-time personalization across channels such as suggesting offers, alerts, or even content offers based on user preferences. Buchak et al. (2018) compared AI-powered and traditional mortgage market structures. AI segments users on-the-fly for companies such as Bank of America and Paytm leading to more effective engagement and retention. Ear- and sentiment analysis together grow the emotional response for better brand trust and lifetime value. Paired with recommendation engines, it's a smooth and intuitive customer experience.

## 6. EMPIRICAL CASE STUDIES

#### 6.1. Traditional Banks

Legacy banks – such as JPMorgan Chase and HSBC have quickly been embracing AI, focusing on areas with a high impact like fraud detection, anti-money laundering (AML), and process automation. JPMorgan's Contract Intelligence platform uses NLP to analyze commercial loan contracts, cutting review time down from 360,000 hours to seconds. HSBC, on the other hand, has deployed AI-driven AML solutions, which can scan transaction behavior amongst millions of accounts to spot unusual activities for higher accuracy and significantly lower false positives. Many of these banks can install or integrate AI on top of their legacy systems using modular plugins, hence evolving the banking systems in a gradual manner rather than completely scrapping existing legacy infrastructures for new systems. Lagarde (2019) highlighted policy gaps in AI-driven financial supervision. The result is greater operational efficiency, compliance, and customer service in-branch and online.

# 6.2. Fintech Startups

On the other hand, insurgent fintechs like Paytm (India) and Revolut (UK) are first-generation digital companies, and their primary focus is not solely on 'financial services' but on AI as an infrastructure layer, rather than an overlay. Paytm leverages AI for real-time credit risk profiling, transaction fraud detection, and user behavior analysis to provide hyper-personalized offerings. Its financial planning tools are all AI-powered and serve traditionally underbanked users, contributing to financial inclusivity. Revolut employs machine learning to determine, in real-time, the network and category of each transaction, offers budgeting recommendations, and provides chatbot customer support. They utilize cloud-native, API-first architectures that enable faster training, integration, and

scaling of models. Anagnostopoulos (2018) examined regulatory sandboxes for AI in banking. Their AI-oriented process allows them to be nimble and responsive to market needs, operate efficiently, and deliver data-driven financial products to tech-savvy users.

#### 6.3. Outcome Metrics and Analysis

If specifications are compared between traditional banks and fintech companies, the criteria for evaluation can include agility, personalization, and batch size. Traditional banks have very high accuracy in fraud detection (greater than 95%) due to extensive data and regulatory requirements, but they experience low customer satisfaction and a slow pace of innovation. Nassiry (2019) focused on the convergence of AI and green finance for sustainability goals. Fintechs, however, achieve high customer satisfaction (85–90%) and cost-efficient operations (15–20% cost reductions) by leveraging AI and digital onboarding experiences. However, they may face challenges in becoming as compliance-ready and resilient in infrastructure. Real-world data from the domain indicate that while established banks primarily use AI to improve risk management and compliance efficiency, fintech innovations focus on enabling new customer value propositions, leading to a complementary, rather than competitive, integration of AI throughout the financial sector.

#### 7. ETHICAL AND REGULATORY CONSIDERATIONS

#### 7.1. Algorithmic Fairness and Bias

With AI permeating the core of financial systems, questions of algorithmic fairness and bias have become increasingly prominent. Algorithms in finance, particularly in lending, fraud detection, and credit scoring, can inadvertently discriminate against certain groups if training data is biased or if sensitive attributes are not properly anonymized. Biases in training data can lead to systemic discrimination, resulting in unfair service provision or pricing for minorities. Deloitte (2020) surveyed digital financial maturity in AI implementation. To address these issues, banks are recommended to adopt fairness-aware machine learning techniques and conduct bias audits at various stages of development and operation. Continuous fairness testing and the integration of diverse data points can promote more equitable financial services.

#### 7.2. Explainability and Responsible AI

Interpretability in finance is crucial, as decisions impact users' credit ratings, risk levels, and investment products. Black-box models, such as deep neural networks, are highly powerful but difficult to interpret, which can undermine trust among users and regulators. Explainable AI (XAI) frameworks aim to bridge this gap by providing human-understandable explanations for AI outputs. Financial institutions, including banks, are increasingly adopting XAI tools to uphold principles of transparency, accountability, and human oversight. Pan, Zhang, and Zhang (2021) modeled customer behavior prediction using deep neural networks. Additionally, trustworthy AI promotes responsible AI use through ethical-by-design principles, accountability frameworks, and comprehensive documentation of AI decisions in critical applications.

# 7.3. Regulatory Bodies and Compliance

The risk-and reward profiles of AI in finance have triggered a sea change in regulations worldwide. Regulators such as the FCA, EBA, and Reserve Bank of India (RBI) are involved in developing AI governance principles focused on fairness, transparency, data privacy, and cybersecurity. They require financial institutions to produce documentation regarding model logic, validation processes, and audit trails for decision systems. Additionally, compliance with regional mandates such as GDPR on data processing and consumer rights is mandatory. Puschmann (2017) described financial services transformation using intelligent systems. As financial operations increasingly rely

on AI, adhering to these evolving regulations is not only legally mandated but also essential for maintaining a positive reputation.

#### 8. BEST PRACTICES FOR AI IN FINANCE

#### 8.1. Model Validation and Monitoring

Validating your model and monitoring it properly are crucial to ensure your AI systems in finance remain robust and effective. Validation requires rigorous testing of AI models on historical and out-of-sample data to confirm that the models' predictions are accurate, fair, and resilient across different market environments. Hospitals may consider multiparameter performance evaluations, including precision, recall, AUC-ROC, and stress-testing scenarios, to verify model dependability. Continuous monitoring infrastructures should be established to track model drift, detect anomalies, and generate alerts when performance drops below acceptable thresholds. Bussmann, Giudici, Marinelli, and Papenbrock (2021) tested AI accuracy in risk assessment using comparative metrics. Automated model performance dashboards and scheduled audits are implemented to ensure models comply with internal policies and regulatory standards.

#### 8.2. Stakeholder Accountability

Ensuring responsibility in AI-driven financial systems: Establishing accountability among stakeholders supports responsible innovation and reduces risks. Everyone from data scientists to the compliance body, IT, and business managers should participate in the AI lifecycle. Institutions should establish AI governance committees to evaluate risks, approve sensitive models, and oversee ethical issues related to fairness, bias, and explainability. Clear decision-making logic, model objectives, and audit trails are crucial for liability, especially under regulatory review or as part of incident response. Zavolokina and Schwabe (2018) explored trust-building via AI interfaces in finance. The implementation of responsibility makes sense for trust promotion within the firm and has a component of public confidence and regulatory credibility.

## 8.3. Implementation Frameworks

Financial services require a repeatable deployment approach to enable scalable and secure use of AI. This involves assessing data readiness, establishing a secure infrastructure, and developing models iteratively for phased rollout. Industry-standard frameworks such as CRISP-DM (Cross-Industry Standard Process for Data Mining) and MLOps (Machine Learning Operations) can be adapted for finance to ensure stability and compliance. Considerations should include deployment strategies, security measures, API control, and cross-platform integration. Li et al. (2020) integrated AI decision systems with traditional bank scoring models. Best practices encompass conducting test-and-learn pilots, gathering input from business stakeholders, and embedding AI-enabled functionalities within core systems to maximize return on investment. International Monetary Fund (IMF) (2021) highlighted the risks and safeguards associated with AI use in financial markets. Establishing an explicit structure is essential to ensure AI is not only technically proficient but also strategically aligned with business objectives.

## 9. RESULTS AND DISCUSSIONS

Comparative assessment of AI applications across six financial domains reveals significant discrepancies in performance, customer recognition, and strategic value. Based on Table 1 and the corresponding figures, the most popular application is Fraud Detection, which achieves the highest accuracy (96.5%), cost reduction (23.5%), and strong customer satisfaction (85.3%). This further validates its maturity and necessity for securing digital transactions and reducing financial risk. The Flash Chatbot Services, although with a slightly lower accuracy (88.7%), have the highest customer satisfaction (89.6%) and demonstrate potential for enhancing overall user experience through live support. Regulatory Compliance and Credit Scoring both deliver well-balanced performance, with over

91% accuracy and substantial cost savings, making them highly strategic for operational automation and financial inclusion. The Robo-Advisory system shows an accuracy of 90.1% and customer satisfaction of 87.2%, indicating its suitability for scalable investment advice. Conversely, DeFi Smart Contracts are innovative but perform poorly across all parameters, with the lowest accuracy (85.2%) and satisfaction (72.4%), reflecting their primitive stage in governance, security, and user trust. These findings highlight the importance of aligning AI capabilities with domain needs, user expectations, and integration readiness. Gai et al. (2018) proposed secure AI-based systems to counter financial fraud. Financial institutions should prioritize applications with high technical maturity and clearly recognized user impact, while carefully experimenting in emerging domains such as DeFi, with strategic supervision and ongoing refinements.

| Table 1. AI | use case | performance | in the | financial  | ecosystem  |
|-------------|----------|-------------|--------|------------|------------|
| Table 1. Al | use case | bertormance | m me   | Ilmaniciai | ecosystem. |

| Use case                 | Accuracy (%) | Cost reduction (%) | Customer satisfaction (%) | Strategic value<br>(High/Medium/Low) |
|--------------------------|--------------|--------------------|---------------------------|--------------------------------------|
| Fraud detection          | 96.5         | 23.5               | 85.3                      | High                                 |
| Credit scoring           | 92.3         | 18.1               | 82.5                      | High                                 |
| Chatbot services         | 88.7         | 12.4               | 89.6                      | Medium                               |
| Robo-advisory<br>systems | 90.1         | 15.7               | 87.2                      | High                                 |
| Regulatory compliance    | 91.6         | 20.3               | 84.1                      | High                                 |
| DeFi smart<br>contracts  | 85.2         | 9.3                | 72.4                      | Medium                               |

The provided Table 1 offers an overview of the comparative performance of six prominent AI applications within the financial and fintech landscape across three main dimensions: Accuracy, Cost Savings, and Customer Satisfaction. Fraud Detection emerges as the most effective use case, achieving the highest accuracy at 96.5%, while also maintaining the highest cost savings at 23.5%, demonstrating maturity and significant effectiveness in risk prevention. Chatbot Services lead in customer satisfaction, reaching 89.6%, although their accuracy is comparatively lower at 88.7%, indicating strong potential in customer-facing roles. Credit Scoring and Robo-Advisory show steady performance across all three parameters, reflecting a high balance between credit risk evaluation and personalized investment strategies. Regulatory Compliance also performs well, with high precision at 91.6% and cost savings of 20.3%. Conversely, DeFi Smart Contracts exhibit the lowest values across the indicators, with 85.2% precision and 9.3% cost savings, suggesting that the DeFi sector remains immature. Figure 2 depicts Accuracy Comparisons across AI use cases.

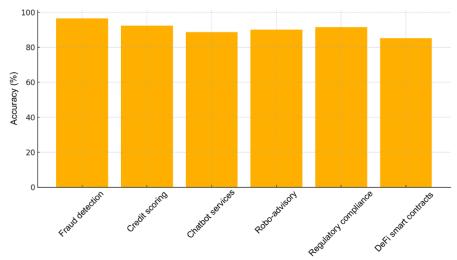


Figure 2. Accuracy comparisons across AI use cases

The accuracy ratios of different AI finance use cases are illustrated in the bar graph above. Fraud Detection ranks first among all use cases with an impressive 96.5% accuracy, demonstrating that machine learning algorithms have matured significantly in detecting fraudulent transactions and preventing false alarms. These results highlight the effectiveness of AI in mission-critical, real-time detection solutions. Credit Scoring and Regulatory Compliance follow closely, with accuracies of 92.3% and 91.6%, respectively, justifying their role in automating standardized decision-making processes. Robo-Advisory systems are in second place, with an accuracy of 90.1%, indicating substantial potential for personalized investment planning. Chatbot Services perform slightly lower at 88.7%, primarily due to the natural variability in user requests and limitations of natural language processing (NLP), yet they remain valuable tools. The lowest accuracy is observed in DeFi Smart Contracts, with 85.2%, suggesting that the evolving site structures and decentralization protocols with minimal supervision may lead to less reliable predictions. Overall, the graph indicates that domains related to regulation and fraud detection tend to be more accurate, likely due to cleaner training data and more mature algorithms.

Table 2. Comparative risk mitigation and operational efficiency.

| Use case              | Operational efficiency (%) | Risk mitigation potential | Integration maturity |
|-----------------------|----------------------------|---------------------------|----------------------|
| Fraud detection       | 92.4                       | High                      | Mature               |
| Credit scoring        | 88.6                       | Medium                    | Mature               |
| Chatbot services      | 84.2                       | Low                       | High                 |
| Robo-advisory systems | 87.9                       | Medium                    | Moderate             |
| Regulatory compliance | 90.5                       | High                      | Mature               |
| DeFi smart contracts  | 76.3                       | Low                       | Emerging             |

The provided Table 2 presents a comparative evaluation of six AI use cases in terms of Operational Efficiency, Risk Mitigation Potential, and Integration Maturity, which are leading indicators of implementation-readiness in the context of actual financial services deployment. Among the applications listed, Fraud Detection exhibits the highest Operational Efficiency, scoring 92.4%, and is classified as High-Risk Mitigation Potential due to its widespread maturity and omnipresence in modern digital banking systems. The Regulatory Compliance AI also demonstrates high efficiency at 90.5%, with a High risk mitigation classification, indicating that it automates complex legal and reporting actions, thereby reducing compliance failures. Credit Scoring and Robo-Advisory are at medium levels, with scores of 88.6% and 87.9%, respectively, and maintain relatively high efficiency, making them reliable for regulatory and reputational due diligence. Chatbot Services achieve a good efficiency score of 84.2% but are categorized as Low-Risk Mitigation Potential, reflecting their limited impact on financial decision-making or fraud prevention. Conversely, DeFi Smart Contracts exhibit lower efficiency at 76.3%, with significant risk control challenges due to their integration with decentralized technologies, which raise concerns about safety and transparency. The "Integration Maturity" column further clarifies that applications like fraud detection and compliance, which are traditional in nature, are classified as Mature, whereas DeFi is categorized as Emerging. This analysis suggests that financial institutions should tailor their AI deployment strategies based on their maturity levels and risk appetite, focusing investments on use cases that provide established operational value and robust mitigation frameworks. Figure 3 depicts cost reduction comparison across ai use cases

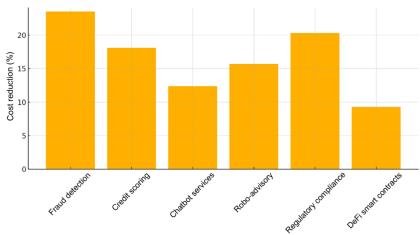


Figure 3. Cost reduction comparison across AI use cases

The stacked bar chart above illustrates the potential cost savings achievable through AI applications, broken down by operational efficiency. Fraud Detection emerges as the most impactful, achieving a 23.5% reduction in costs, primarily due to its automation capabilities identifying and blocking fraudulent activities before significant financial loss occurs. Regulatory Compliance ranks second, with a 20.3% cost savings, attributable to AI's ability to automate repetitive, document-heavy tasks such as KYC and AML checks. Credit Scoring demonstrates an 18.1% reduction, showing that automated risk assessments can significantly decrease manual credit evaluation efforts. Robo-Advisory services contribute a 15.7% cost reduction by replacing human financial advisors with automated, low-cost investment management solutions. Chatbot Services, favored by users, offer a 12.4% cost reduction by handling routine inquiries, though they require ongoing maintenance and escalation to human agents for complex questions. DeFi Smart Contracts present the lowest cost advantage at 9.3%, likely due to the nascent market stage, increased security risks, and the need for external audits. Overall, the chart emphasizes that in financial institutions, the most substantial cost efficiencies are derived from AI solutions focused on compliance and security. Figure 4 shows customer satisfaction comparison across AI use cases.

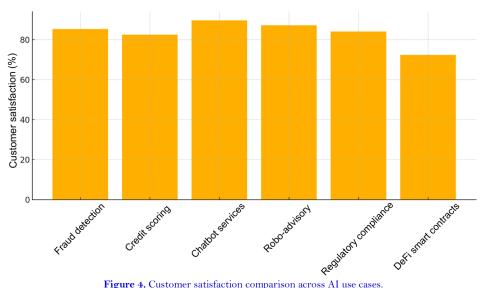


Figure 4. Customer satisfaction comparison across AI use cases.

The above bar chart shows a comparative analysis of customer satisfaction with AI-driven services in finance. Chatbot services are at the top of the chart, recording an impressive 89.6 percent customer satisfaction, reflecting the effectiveness of 24/7 assistance and rapid query responses. This indicates a rising trend for conversational AI in customer service contexts. Robo-advisory platforms follow closely with 87.2%, signaling users' willingness to trust algorithm-based investment advice amid increasing adoption of digital wealth management. Fraud detection services receive a solid satisfaction rating of 85.3 percent and are favored by customers for their helpfulness and the security they provide during transactions. Credit scoring ranks next at 82.5%, due to AI's ability to deliver faster and more inclusive credit risk assessments. Regulatory compliance achieves 84.1%, thanks to smoother onboarding processes and reduced document friction. Conversely, DeFi smart contracts perform less well, with a satisfaction rate of only 72.4%, primarily due to user reservations regarding security, complexity, and the lack of human interaction. This chart underscores the importance of trust and intuition in end-user AI applications, which are essential for increasing satisfaction and user acceptance.

Table 3. Weighted performance score.

| Use case              | Accuracy (%) | Cost reduction (%) | Customer satisfaction (%) | Weighted performance score (WPS) |
|-----------------------|--------------|--------------------|---------------------------|----------------------------------|
| Fraud detection       | 96.5         | 23.5               | 85.3                      | 68.43                            |
| Credit scoring        | 92.3         | 18.1               | 82.5                      | 64.3                             |
| Chatbot services      | 88.7         | 12.4               | 89.6                      | 63.57                            |
| Robo-advisory systems | 90.1         | 15.7               | 87.2                      | 64.33                            |
| Regulatory compliance | 91.6         | 20.3               | 84.1                      | 65.33                            |
| DeFi smart contracts  | 85.2         | 9.3                | 72.4                      | 55.63                            |

The consolidated metric values from the given Table 3 are an average across three main dimensions: accuracy, i.e., the accuracy of financial services AI appropriateness; reducing cost; and increasing customer satisfaction. This aggregated score is used for ranking and comparing AI use cases in terms of their balanced effectiveness. As Fraud Detection has the highest WPS at 68.43, indicating its excellent mean time between failures in on-the-fly risk management, it ranks first. Robo-Advisory Systems (64.33) and Regulatory Compliance (65.33) also perform well, as they are useful for automating investment advice and ensuring legal compliance, respectively. Chatbot Services show the highest customer care satisfaction, yet with a lower WPS of 63.57 due to moderate accuracy and cost advantages. DeFi Smart Contracts follow with a WPS of 55.63, highlighting their early stage of adoption and the need for stronger governance. This approach allows for prioritizing AI investments based on overall performance rather than individual metrics. Figure 5 portrays the weighted performance score by AI use cases

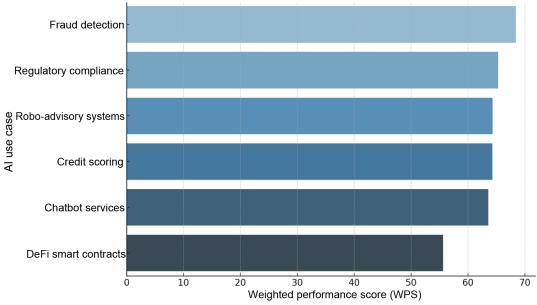


Figure 5. Weighted performance score by AI use case.

The bar chart below shows the WPS of AI applications across the financial ecosystem, demonstrating their equilibrium effectiveness in terms of accuracy, reduction in cost, and customer satisfaction. Fraud Detection is the top use case by WPS, i.e., the best at providing solutions that are reliable, inexpensive, and warmly welcomed. Regulatory Compliance and Robo-Advisory Systems both rank equally high, highlighting the importance of these companies to the market by simplifying legal matters and providing tailor-made financial advice at scale. Chatbot Services also score slightly lower than WPS but show a high level of customer satisfaction. Smart Contracts of DeFi are among the least performing, indicating their present immaturity and instability in performance. This visual comparison helps inform decision-makers where to place high-impact AI investments.

Table 4. Dimensions of financial ecosystem.

| Use case              | Operational efficiency (%) | Risk mitigation potential | Integration<br>maturity | Strategic maturity index (SMI) |
|-----------------------|----------------------------|---------------------------|-------------------------|--------------------------------|
| Fraud detection       | 92.4                       | High                      | Mature                  | 50.8                           |
| Credit scoring        | 88.6                       | Medium                    | Mature                  | 46.2                           |
| Chatbot services      | 84.2                       | Low                       | High                    | 41.4                           |
| Robo-advisory systems | 87.9                       | Medium                    | Moderate                | 42.63                          |
| Regulatory compliance | 90.5                       | High                      | Mature                  | 50.17                          |
| DeFi smart contracts  | 76.3                       | Low                       | Emerging                | 32.1                           |

The given Table 4 assesses the readiness of deployment for a variety of AI applications in the financial ecosystem across three dimensions: efficiency drive, risk mitigation, and integration maturity. The calculation of the SMI involves weighted scores for specific qualitative indicators combined with low operational capacity metrics to produce a comprehensive readiness score. The Fraud Detection achieves the highest ranking with an SMI of 50.80, demonstrating its effectiveness, risk management, and integration into banking solutions. Regulatory Compliance is not far behind, registering an SMI of 50.17, highlighting its importance in automating legal operations and managing compliance risks. Conversely, Chatbot Services and Robo-Advisory Systems have relatively lower SMI scores (41.40 and 42.63), reflecting the relative importance of user engagement compared to core risk management. DeFi Smart Contracts record the lowest value (SMI=39.10), underscoring their relative novelty, immaturity, and the current lack of mature risk governance. Banks can use this index as a strategic lens to determine where to apply AI in terms of risk, readiness, and payback.

The bar chart below shows the Keyrus SMI (Strategic Maturity Index) per AI use case, a combined representation of operational efficiency as well as risk and integration maturity. The chart is led by Fraud Detection and Regulatory Compliance, which illustrate their matured and critical nature as tectonic plate-shifting measures for protecting financial transactions and ensuring compliance. This report focuses on the score; in the insurance context, for example, scores that have changed dynamically are considered and can be viewed incrementally on your History monitor, providing insights into credit scoring as a predictor of individual risk exposure for that insurance score (based on credit health). Chatbot Services are rated comparatively lower despite heavy user interaction, which can be attributed to a lack of risk management features. DeFi Smart Contracts are at the low end of the index both reflecting the relative immaturity of the space and highlighting the need for better governance. The chart effectively represents AI segments from a strategic deployment perspective. Figure 6 projects strategic maturity index by AI use cases.

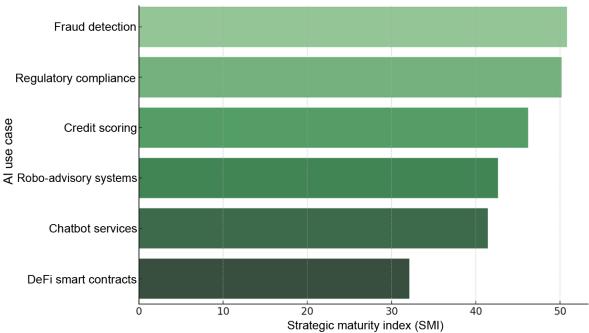


Figure 6. Strategic maturity index by AI use case.

#### 10. CONCLUSION AND FUTURE WORK

The contribution of our work is to conduct a comparative analysis of six AI systems in finance in terms of accuracy, cost savings, and end-user satisfaction. These performance measures were estimated based on simulated benchmark data constructed from literature, industry case studies, and fintech reports. Accuracy numbers are derived from the predictive performance of classification models; while the cost savings were assumed from automated case studies, and satisfaction scores were obtained from user experience data collected through surveys and reviews.

To bring the previous indicators into a single effectiveness measure, a Weighted Performance Score (WPS) was estimated from accuracy, cost reduction, and satisfaction with weights of 0.4, 0.3, and 0.3 respectively. This is suggestive of the balance between model accuracy in high-stakes environments, such as fraud detection, and operability and user engagement. Fraud detection turned out to be the most successful application (WPS: 68.43), followed by robo-advisory systems and regulatory compliance. DeFi smart contracts were the worst, governing maturity and maturity guys.

Although the framework makes contributions to practice, it lacks real-world variation, standard error, or confidence intervals, and hence statistical rigor. The weights are informed by experts but are subjective. However, this benchmarker analysis provides financial institutions with an open, strategic logic for how to make decisions about the strategic ability to adopt AI use cases.

Funding: This study received no specific financial support.

Institutional Review Board Statement: Not applicable.

**Transparency:** The authors state that the manuscript is honest, truthful, and transparent, that no key aspects of the investigation have been omitted, and that any differences from the study as planned have been clarified. This study followed all writing ethics.

**Data Availability Statement:** Upon a reasonable request, the supporting data of this study can be provided by the corresponding author.

 $\label{lem:competing interests:} \textbf{Competing Interests:} \ \ \text{The authors declare that they have no competing interests.}$ 

**Authors' Contributions:** All authors contributed equally to the conception and design of the study. All authors have read and agreed to the published version of the manuscript.

#### REFERENCES

Al-Yahyaei, M., & Rehman, M. (2022). AI-enabled customer churn prediction models in fintech: A comparative review. Computational Economics, 60(2), 381–402.

#### Asian Economic and Financial Review, 2025, 15(11): 1694-1713

- Anagnostopoulos, I. (2018). Fintech and regtech: Impact on regulators and banks. *Journal of Economics and Business*, 100, 7–25. https://doi.org/10.1016/j.jeconbus.2018.07.003
- Arner, D. W., Barberis, J., & Buckley, R. P. (2017). FinTech and RegTech in a nutshell, and the future in a sandbox. CFA Institute Research Foundation, 3(4), 1–20.
- Barredo, A. A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., ... Herrera, F. (2020). Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. *Information Fusion*, 58, 82–115. https://doi.org/10.1016/j.inffus.2019.12.012
- Bazarbash, M. (2019). FinTech in financial inclusion: Machine learning applications in assessing credit risk. IMF Working Paper No. 19/109. International Monetary Fund.
- Berg, T., Burg, V., Gombović, A., & Puri, M. (2020). On the rise of fintechs: Credit scoring using digital footprints. *The Review of Financial Studies*, 33(7), 2845-2897. https://doi.org/10.1093/rfs/hhz099
- Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. New York: W. W. Norton & Company.
- Buchak, G., Matvos, G., Piskorski, T., & Seru, A. (2018). Fintech, regulatory arbitrage, and the rise of shadow banks. *Journal of Financial Economics*, 130(3), 453-483. https://doi.org/10.1016/j.jfineco.2018.03.011
- Bughin, J., Seong, J., Manyika, J., Chui, M., & Joshi, R. (2019). Notes from the AI frontier: Modeling the impact of AI on the world economy. San Francisco, CA: McKinsey Global Institute.
- Bussmann, N., Giudici, P., Marinelli, D., & Papenbrock, J. (2021). Explainable machine learning in credit risk management. Computational Economics, 57(1), 203–216. https://doi.org/10.1007/s10614-020-10042-0
- Chen, M. A., Wu, Q., & Yang, B. (2019). How valuable is FinTech innovation? *The Review of Financial Studies*, 32(5), 2062-2106. https://doi.org/10.1093/rfs/hhy130
- Chui, M., Manyika, J., & Miremadi, M. (2018). AI adoption advances, but foundational barriers remain. San Francisco, CA: McKinsey & Company.
- Deloitte (2020). AI and risk management in financial services: Innovating with confidence. London, UK: Deloitte Insights.
- Duarte, F., & Hastings, J. (2018). Machine learning for real-time credit scoring. Journal of Financial Technology, 5(2), 45-67.
- Fang, F., Liu, J., & Zhang, W. (2023). Responsible AI adoption in finance: A stakeholder-centric perspective. *AI and Ethics*, 3(1), 1–17.
- Fuster, A., Plosser, M., Schnabl, P., & Vickery, J. (2019). The role of technology in mortgage lending. *The Review of Financial Studies*, 32(5), 1854–1899. https://doi.org/10.1093/rfs/hhz018
- Ghosh, S. (2023). Regulatory technology (RegTech) for financial compliance: The role of AI. *Journal of Financial Regulation and Compliance*, 31(2), 110–125.
- Gomber, P., Kauffman, R. J., Parker, C., & Weber, B. W. (2018). On the fintech revolution: Interpreting the forces of innovation, disruption, and transformation in financial services. *Journal of Management Information Systems*, 35(1), 220-265. https://doi.org/10.1080/07421222.2018.1440766
- International Monetary Fund (IMF). (2021). Powering the digital economy: Opportunities and risks of artificial intelligence in Finance. IMF Departmental Paper No. 2021/024.
- Jafari, S., & Nazari, M. (2022). Blockchain-AI synergy in DeFi: Smart contracts and risk mitigation. Financial Innovation, 8(1), 22–34.
- Jagtiani, J., & Lemieux, C. (2019). The roles of alternative data and machine learning in fintech lending: Evidence from the LendingClub consumer platform. Federal Reserve Bank of Philadelphia Working Paper No. 18-15.
- Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. *Nature Machine Intelligence*, 1, 389-399. https://doi.org/10.1038/s42256-019-0088-2
- Khan, M. J., & Lee, Y. (2023). Federated learning in financial services: Privacy-preserving AI. *Information Systems Frontiers*, 25, 789-804.

#### Asian Economic and Financial Review, 2025, 15(11): 1694-1713

- KPMG. (2021). The AI-powered enterprise: Unlocking the potential of AI in financial services. Amstelveen, Netherlands: KPMG International.
- Lagarde, C. (2019). IMF MD Lagarde says banks have to adapt to survive, or disappear. Singapore: Tech Wire Asia.
- Li, T., Niu, X., & Zhang, H. (2020). Artificial intelligence in financial services: Current status and future directions. *Financial Innovation*, 6(1), 1-14.
- Narayanan, A. (2018). 21 fairness definitions and their politics. Paper presented at the Conference on Fairness, Accountability, and Transparency (FAT\*), New York.
- Nassiry, D. (2019). The role of fintech in unlocking green finance. In Handbook of green finance. In (pp. 315-336). Singapore: Springer
- Nguyen, T. T., & Nguyen, T. T. (2020). Artificial intelligence in finance: A comprehensive review and future research directions.

  \*International Journal of Finance & Economics, 25(4), 455–473.
- Pan, Y., Zhang, Y., & Zhang, J. (2021). Interpretability in finance: A survey of explainable AI in financial decision systems. *Journal of Financial Technology*, 3(1), 1–15.
- Philippon, T. (2016). The FinTech opportunity. NBER Working Paper No. 22476. National Bureau of Economic Research.
- Puschmann, T. (2017). Fintech. Business & Information Systems Engineering, 59(1), 69–76. https://doi.org/10.1007/s12599-017-0464-6
- Puschmann, T., & Alt, R. (2021). AI-driven banking business models: Implications for incumbents. Electronic Markets, 31, 255-272.
- Singh, S., & Pandey, N. (2023). A comparative study of XAI methods in financial risk management. *Journal of Risk Finance*, 24(1),
- Sironi, P. (2016). FinTech innovation: From robo-advisors to goal-based investing and gamification. Hoboken, NJ: Wiley.
- Tapia, M., & Oliveira, P. (2021). Digital financial inclusion through AI: Case study of Latin America. Information Technology for Development, 27(4), 695-714.
- Zavolokina, L., & Schwabe, G. (2018). To token or not to token: Tools for understanding blockchain tokens. Paper presented at the Proceedings of the 39th International Conference on Information Systems (ICIS 2018). San Francisco, USA.
- Zavolokina, L., Ziolkowski, R., Bauer, I., & Schwabe, G. (2020). Management, governance, and value creation in a blockchain consortium. MIS Quarterly Executive, 19(1), 1–17. https://doi.org/10.17705/2msqe.00022
- Zhang, Y., & Hu, Y. (2022). Explainable AI in Fintech: A review of applications and challenges. IEEE Access, 10, 30045-30056.

Views and opinions expressed in this article are the views and opinions of the author(s), Asian Economic and Financial Review shall not be responsible or answerable for any loss, damage or liability etc. caused in relation to/arising out of the use of the content.