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ABSTRACT

The time plot of the series NCOP reveals a peak in 2008 and a depression in early 2009. The
overall trend is horizontal and no seasonality is obvious. Twelve-month differencing yields
SDNCOP exhibiting still a peak in 2008 and a trough in 2009, the overall trend being slightly
positive and seasonality not easily discernible. Nonseasonal differencing of SDNCOP yields
DSDNCOP with an overall horizontal trend and no obvious seasonality. However its correlogram
reveals an autocorrelation structure of a seasonal model of order 12. Moreover it suggests the
product of two moving average components both of order one, one non-seasonal and the other 12-
month seasonal. The partial autocorrelation function suggests the involvement of a seasonal (i.e.
12-month) autoregressive component of order one. A (0, 1, 1)x(1, 1, 1);, autoregressive integrated
moving average model was therefore proposed and fitted. It has been shown to be adequate.

Keywords: Seasonal time series, ARIMA models, Crude oil prices, Nigeria.

INTRODUCTION

Many economic time series are seasonal. Its volatility notwithstanding, Nigerian monthly crude oil
price series tends to exhibit some seasonality. Box and Jenkins (1976), Madsen (2008) and
Boubaker (2011) are a few of authors that have written extensively on seasonal ARIMA models
which are specially articulated for seasonal time series. This paper is focussed on the modelling of
the prices by a multiplicative seasonal ARIMA model. Crude oil being the mainstay of the
Nigerian economy, the modelling of its prices has engaged the attention of many researchers, a few
of whom are Bolton (2012), King et al. (2012) and Salisu and Fasanya (2012).

Seasonal ARIMA Models

ARIMA modelling, proposed by Box and Jenkins (1976) is well known. However for the purpose
of this paper, seasonal ARIMA modelling is briefly highlighted.
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A time series {X} is said to follow an autoregressive moving average model of order (p, q)
(denoted by ARMA(p, q)) if it satisfies the following difference equation

Xt - (Xlxt_l - (szt_z R (prt_p =g+ Blgt—l + Bth-Z +..+ qut—q (1)

Or

A(L)X: = B(L)e 2

Here A(L) =1 - oyl - apl® - ... - oL and B(L) = 1 + ByL + B,L% + ... + BL? where L is the

backward shift operator defined by L*X, = X.x. Moreover the o’s and the B’s are constants such
that the model is stationary and invertible, i.e. A(L) and B(L) have zeros all outside the unit circle
respectively, and {e} is a sequence of uncorrelated random variables each with mean zero and
constant variance called a white noise process.

Most real life time series are non-stationary. Box and Jenkins (1976) proposed that differencing to
an appropriate degree could render such a series stationary. Let V*X; denote the d™ difference of X.
Then V = 1- L. If X, is replaced by V%X, in (1), then the series {X;} is said to follow an
autoregressive integrated moving average of order (p, d, q) designated ARIMA(p, d, q). Suppose
the time series is seasonal of period s. Let D be the degree of seasonal differencing applied to the
series V%X, The resultant series may be denoted by VIV X,

A time series {X} is said to follow a multiplicative (p, d, qQ)x(P, D, Q) seasonal ARIMA model if
it satisfies the following equation

AL)D(L)VVLX, = B(L)O(LY)e, (3)

where ®(L) =1+ ¢,L + ... + ¢pL” and ©(L) =1 + 6,L + ... + 6oL and the ¢’s and s are constants
such that the zeros of ®(L) and ®(L) are all outside of the unit circle for seasonal stationarity and
invertibility, respectively. Box and Jenkins (1976), Priestley (1981), Madsen (2008), Surhatono.
(2011) and Etuk (2012) are a few of the authors that have written extensively on seasonal ARIMA
modelling.

MATERIALS AND METHODS
Data

The data for this work are monthly Nigerian (Bonny Light) crude oil prices in US$/barrel from
2006 to 2011 obtainable from the website of the Central Bank of Nigeria, www.cenbank.org. This

72-point time series shall be referred to as NCOP.

Model Estimation

A knowledge of the theoretical properties of ARIMA models helps a lot in their identification and
estimation. An existent seasonality can be revealed by the time-plot. Where it is not so obvious
from the time plot, the autocorrelation plot or the correlogram shows it up. A significant spike at

334


http://www.cenbank.org/

Asian Economic and Financial Review, 2013, 3(3):333-340

the seasonal lag on the correlogram suggests seasonality. A negative spike at the seasonal lag
suggests the involvement of a seasonal moving average component. A positive spike at the
seasonal lag suggests the involvement of a seasonal autoregressive component. In addition, if the
autocorrelation function cuts off, the cut-off lag is an estimate of the non-seasonal moving average
order, g. If, however, the partial autocorrelation plot cuts off, the cut-off lag is an estimate of the
non-seasonal autoregressive order p. It has been advised that D + d < 3 to avoid undue model
complexity.

Once the model orders have been estimated, the model parameters may be estimated. Optimization
criteria like the least error sum of squares criterion, the maximum likelihood criterion, the
maximum entropy criterion, etc. may be used. Involvement of the white noise process in the
definition of an ARMA process necessitates the application of non-linear optimization techniques
for their estimation. Such a process involves iterations after an initial estimate has been made, each
iteration being an improvement on the previous one until the process converges to an optimal
solution. However, efforts have been made with some measure of success to use linear optimization
techniques to estimate ARMA models (See for example, Oyetunji (1985), (Etuk, 1987; Etuk,
1998). In this work, the software Eviews, which is based on the least squares approach, shall be
used.

Diagnostic Checking

A fitted model must be checked for goodness-of-fit to the data. Eviews has facilities for such
purposes. In particular, some residual analysis shall be performed. Under the hypothesis of an
adequate model, the residuals should be uncorrelated with zero mean and should follow a Gaussian
distribution.

RESULTS

The time plot of the original series NCOP in Figure 1 reveals a peak in 2008 and a trough in 2009.
A twelve-month differencing yields the series SDNCOP with a deep trough in 2009 (See Figure 2).
A non-seasonal differencing of SDNCOP vyields the series DSDNCOP which exhibits an overall
horizontal trend with no obvious seasonality (See Figure 3). Its correlogram in Figure 4 shows
significant spikes at lags 1, 11, 12 and 13, with autocorrelations at lags 11 and 13 fairly
comparable. That can be interpreted as the autocorrelation structure of the product of two moving
average components, each of order one: one seasonal (i.e. 12-month) and the other nonseasonal.
Moreover the partial autocorrelation function, PAC, has a significant spike at lag 12, indicating the
involvement of a seasonal autoregressive component of order one. The following (0, 1, 1)x(1, 1,
1);, multiplicative seasonal model is hereby proposed. That means the model is

DSDNCOP; = 0;,DSDNCOP, 15 + B +B12€r12 + P13€r13 4)

An estimate of (4) is given in Table 1 as
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DSDNCOP; + 0.3523DSDNCOP, 1, = 0.1241g;; + 0.5349¢ 1, + 0.4621¢; 15 + & (5)
(+0.1043) (+0.1169) (+0.0846) (+0.0866)

In the model (5), only the MA(1) coefficient is not statistically significant, being less than twice its

standard error. As much as 55% of the variation in DSDNCOP is explained by the model. The

fitted model has been shown to agree closely with observations (See Figure 5). The residuals

follow a fairly normal distribution with zero mean(except for two outliers between 20 and 30)(See

Figure 6) and they are uncorrelated (See Figure 7). Therefore the model is adequate.

CONCLUSION

The Nigerian monthly crude oil price series has been shown to follow a (0, 1, 1)x(1, 1, 1)
seasonal ARIMA model. This has been shown to be adequate by various techniques.
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Table-1. Model Estimation

Dependent Variable: DSONCOP

Method: Least Squares

Date: 10/07112 Time: 17:21

Sample(adjusted): 2008:02 2011:12

Included observations: 47 after adjusting endpoints
Convergence achieved after 26 iterations
Backcast: 2007:01 2008:01

Variable Coefficient  Std. Error  t-Statistic  Prob.
AR(12) -0.352279 0104337 -3.376370  0.0016
MA(T) 0124116 0116935 1.061370  0.2944
MA(12) 0.534889  0.084587  6.323545  0.0000
MA(13) 0462138  0.084657 5458953  0.0000
R-squared 0.548421 Mean dependent var -0.430426
Adjusted R-squared 0516916 S.0. dependent var 12.80220
S.E. of regression 8.898074 Akaike info criterion 7.290812
Sum squared resid 3404 556  Schwarz criterion 7448271
Log likelihood -167.3341  F-statistic 1740717
Durbin-Watson stat 2470250 Prob(F-statistic) 0.000000
Inverted AR Roots B9+ 241 B9-24i _BA+ GBS .65 - B5i
244891 24 -89 -24 -89 - 24+ 89
- B5+.B5I  -.B5+.B5I - 89+ 24i -89 - 24i
Inverted MA Roots 96+.261 96 -.250 71+ 68 71 -68i
29-941 29+.94i - 20+ 95i -.20 - 95
-B1+ 71 -61 -1 -79 - 82+ 32
-.82 -32i
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Figure-6. Histogram of the Residuals

Series: Residuals
Sample 2008:02 2011:12
Observations 47

Mean 0.739599
Median -1.067020
Maximum 29.39499
Minimum -13.61436
Std. Dev. 8.570483
Skewness 0.970070
Kurtosis 4.557809
Jarque-Bera  12.12387

Probabilty ~ 0.002330

Figure-7. Correlogram of the Residuals
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