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Effect of Dimension and Supported End on Natural Frequency of Rectangular
Beam

Abstract

Author The effect of natural frequency in dynamic load is an important factor because when
the natural frequency is small or closed to zero the beam goes to failure. In this paper
the theoretical, finite element and experimental models are presented to explain the
effect of dimension and supported end on the beam, when the beam is fixed end the
natural frequency and it's rate are higher than simple supported end and then free end,
and the natural frequency is increase when the dimension, specific mass, and square
Keywords: Natural frequency, Mode, root of flexural stiffness per mass (EI/M) are of the beam increase, so that when the
finite element, Flexural stiffness, end  beam end is fixed and has big size the beam resistant the failure. Experimental results
beams conditions. show the Damping has very little effect on natural frequency of the beam, and hence

the calculations for natural frequencies are generally made on the basis of no damping
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in beam.

Introduction

When a bar is hit by a hammer, clear sound can be
heard because the bar vibrates at resonant frequency.
If the bar is oscillated at this resonant frequency, it
will be found that the vibration amplitude of the bar
becomes very large. Therefore, when a machine is
designed, it is important to know the resonant
frequency of the machine. The analysis to obtain the
resonant frequency and vibration mode of an elastic
body is called "mode analysis". The problem of
vibration of a beam is of intrinsic interest because the
beam represents the simplest of all engineering
structural. The subject of vibrations is of fundamental
importance in engineering and technology. Discrete
modeling is sufficient to understand the dynamics of
many vibrating systems; however a large number of
vibration phenomena are far more easily understood
when modeled as continuous systems. Dynamics and
analysis techniques for a wide range of continuous
systems Present including strings, bars, beams,
membranes, plates, fluids and elastic bodies in one,
two and three dimensions. The vibrations of elastic
structures such as strings, beams, and plates can be
described in terms of waves traveling in waveguides
(Cremer, L., Heckl, M., Ungar, E. E & Graff, K. F).
Although the subject of wave motions has been
received more attentions in the fields of acoustics in

fluids and solids than mechanical vibrations of elastic
structures, wave analysis techniques have been
employed to reveal important physical characteristics
associated with vibrations of elastic structures. One
advantage of the wave analysis technique is its
compact and systematic approach to analyze complex
structures such as trusses, aircraft panels with
periodic supports, and beams on multiple supports(
Lin, Y. K. &, Yong, Y). Applying the concept of
wave reflection and transmission, (Mace, B. R)
obtains the frequency equations of Euler— Bernoulli
beams including both propagating and attenuating
waves. By the phase-closure principle,( Mead, D. J.)
determined natural frequencies of Euler—Bernoulli
beams. Based on the same principle, (Tan, C. A., &
Kang, B.) presented a systematic approach to the free
vibration analysis of a rotating Timoshenko shaft
with multiple bearing supports, and (Kang, B.,
Riedel, C. H.,, & Tan, C. A.) studied the free
vibrations of a multi-span, extensional curved beam.
The classical method, known as the normal mode or
eigenfunction expansion, of solving the forced
vibration problem of a distributed parameter system
involves expansion of the forcing function into the
eigenfunctions of the associated free vibration
problem. While this method is theoretically sound
and powerful, the method is difficult to implement
when the problem to be solved is a nonself-adjoint
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system typically due to complicating effects such as
damping, discontinuities, or nonclassical boundary
conditions, in which case obtaining the exact
eigensolutions is not often feasible. As an alternative
approach to solve forced vibration problems, (Yang,
B., and Tan, C. A.) presented a method for evaluating
exact closed form transfer functions for a class of
one-dimensional distributed parameter systems.
Applying the energy functional of constrained and
combined damped systems, (Yang, B.) presented a
method to obtain a closed-form transient response
solution in eigenfunction series for a distributed
damped system. An augmented energy formulation is
introduced to regain symmetry for the spatial
differential operator which is destroyed in the
original equation of motion by the constraints.

The modeling of a transversely vibrating beam
includes the effects of shear distortion and bending
moment, shear distortion effects was first including
by the modeling by S. Timoshenko (Haym
Benaroya), and therefore his name is attached to such
models. The vibration of a beam with an overhang of
arbitrary length is investigated numerically, an
approximate formula for small overhang is proposed,
and the results are compared, The approximation,
valid for a simply-supported vibrating beam with
small overhang, can be used to compute a beam’s
flexural stiffness EI from measured frequency f,
measured geometry, S, L, and measured weight W
and would result in a conservative estimate of EIL
The beam’s modulus of elasticity E can be computed
if I is known (Murphy J. F). The formulation and
basic solutions will be studied along with simple
boundary conditions in this search. The Laplace
transform has used to solve the exact solution for
uniform beam with different dimensions and it's
compare with finite element solution presenting
Ansys programming and experimental data.

Theory

Derivation of the Equations of motion for the beam
with shear distortion (the Timoshenko Beam), the
equation governing the transverse vibration of the
beam length L, with the following properties at
section x; m(X) is the mass per unit length, A(x) is the
cross-sectional area, and I(x) is the moment of
inertia, Assume small deflections y(x,t) and rotations

0"}?2/ Az and include the bending My and shear

Q(x,t) effects. Consider a free body of a section of
length dx. For free vibration the external loading
p(x,t) equal to zero. Basic Bernoulli- Euler beam
equation that is used many simplified studies (Haym
Benaroya), and then the equation of motion is

Where I is the moment of inertia and M is the mass
per unit length(specific mass), and let

v, t) =V(x)e™ )

Where @ is the natural frequency, Gives

T AT = 0 3)
Where

-4 M

AT = Top e 4

The solution is approached utilizing the Laplace
transform. Is gotten

T .3 _ _zd¥ie)
[5 A }Y[sjj S2Y(0)— s —

a'vlo) a'vlo) _ o

e e
.......................................... (5)
Thus

1 - d¥ (8]

Y(Ej = I:Ij"d'—-’.-“l] [EEYI:G;I — 5" e —_

a2y . a¥ i)

da> dx® ]
............................................. (6)

Tacking the inverse transformation yields

da¥ig)

¥ (x) = V(0)A(Aix) —i —=B(x) +
L0 00 + 500
............ (7)

Where
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A(Ax) = %(coshix 4 COSAX) o ®)
B(Ax) = (sinh/x + Sinjx)................ )

C(/Ax) = %(cosh&x —COSAX) ... (10)
D(Jx) = > (sinhlx = sinJx)............. (11)

Note that A(0)=1, B(0)=0, C(0)=0, and D(0)=0, for
application to specific boundary conditions, the
derivative of Equation (7), they are given in the
following.

dr;ﬂ AV(0)D(Ax) + g¥{ D}A[ ) +
iddrln} ( j+:_L—dY| C[/:]

........... (12)

g—x Y(0)C(ix) + A2 D]D(/‘ ) +
drn}A( ]-i-idyl B(/x)

................. (13)

ST = Pr(0)B(A) + 2 E 0 (i) +
,dEYI"I}:' d°¥i Ei!'

A~ D ]—i— AlAx)

................ (14)

1. Fixed-Free ends

From Equations ( 5) and (6 ). The boundary
conditions for the clamped end at x=0 as

vix=0,8)=0 ... (15)
Blez0) g (16)
dx

And at the free end (x=L) as

M (x=Lt)=0...cciiieiinn., (17)

Substituting strain-displacement relations and
substituting Equation (2) gives.

Y(x=0)=0 ..., (19)
¥ (x=0)
=0 (20)
dx
d*¥ix=L)
B 1 (21)
e 22)
ax

Substituting Equations (7 ) and (12) to (14) in these
conditions gives

0= dYD}A( Lj+1dYﬁ}B(LLJ @3)
0= i)+ 2 ”:'A[ L) .....(24)
Or
gty

VIGIS I S-1E15] e O B o o9
AD(AL)  A(AL) fﬁ (0) '
Since

gty

— (0)

o E 0 e, (26)
—=(0)
It must be that

- 1 -

AAL) SBUD g 7
AD(AL)  A(AL)
Or
AYALY —D(ALB(ALY =0 ........... (28)

Substituting Equations ( 8 ) to ( 11 ) gives
cosh(AL) cos(AL) +1 =10(29)

The roots of this equation are
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il =1875, i,L =4694, AL =7855

..(30)
from Equation ()
= Usit® o G1)
" T P IR

Where E is young modulus. The natural mode is
given by Equation (7).

Y(x) =
) d=¥ ol
1d1flu 1 5
= €U + S D ()
T
32

From Equation (25), is gotten

aS}rD:I - - - -
G - Aq DUdg L) - A AlAn L)

42 ¥l AlinL) B{iyL)
e

.............. (33)

Thus

Y[x] zéd‘ﬂ"u} [C[inxj A4, L}D[ﬁ ]]

ox®
.(34)

The mode shape is determined by the bracketed
quantity. The magnitude of the coefficient

1 a*v(n)
isodx?
is arbitrary as far as the mode shape is concerned and
is a function of the excitation.

2. Fixed-Fixed ends

From Equations (5) and (6). The boundary conditions
for the clamped ends at x=0, and x=L as

Vix=0,t)=0 ... (36)

e 37)
Bx

Vx=0,L)=0.......cccccciiiiiin (38)

Bulx=0.L) _
ek

Substituting strain-displacement relations and
substituting Equation (2) gives.

Yx=0)=0 . i, (40)
d¥ix=0) _

P O (41)
Y(x=L)=0.....cooccciiiiiiin, (42)
d¥ (x=L)

G e (43)

Substituting Equations ( 7 ) and ( 12 ) in these
conditions gives

0= j = Y'D}c[ L)+ > 2 ”}D(AL] (44)
iddi"'l}}g( ij+ 1 a3l D}C( L)
....... (45)

ey Zon (£
ZB(AL) = CCAL)||EE (o)
e I de
...(46)

Since

It must be that

=C(AL) $D(AL)

................... 48

ZB(AL) =C(iL) @
Or

j—,,cz (AL)— %D[&L]B(&L] =0, (49)
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The roots of this equation are

AL =4.730, i,L =7.853, A;L=
10.995
(50)

The natural mode is given by Equation (7).

Y(x) =
} d=¥ ol
1 a'vlo
R C(A,x ]+__a T nc-D(f’ x)

T T

(51)
From Equation (46)
d=¥le) ) )

s _ _ imClpl) _  igBligl)
d=¥To] - DiigL) € (i, L)
A
................ (52)

Thus

V() = 222 [0 - ZE2 D (2,
(53)

The mode shape is determined by the bracketed
quantity.

3. Hinged-Hinged ends.

From Equations (7) and (13). The boundary
conditions for the clamped end at x=0 as

Vix=0,)=0 .., (54)
vix=Lt) =0 ... (55)
And at the free end (x=L) as

M (x=0,t)= 0. (56)
M (x=Lt)=0. .., (57)

Substituting strain-displacement relations and
substituting Equation (2) gives.

Yx=0)=0 ., (58)
V{x=L)=0 i, (59)
g ¥lx=0)

= O (60)
g2 ¥ix=L)

o O (61)

Substituting Equations (7 ) and (13) in these
conditions gives

15!1"&} 14 Yln-}

0= A[ L]+ DALY ........ (62)
0= ;3¥E D:'D( Lj_i_id YID]A( L)

......... (63)

Or

%B(EL] 3—55[2@ % (0)

" =0...(64)
JD(AL)  SAGAL) [|Z5(0)
Since
= (0)
= 0 (65)
—( )
It must be that
1B(iL) X D(AL)
” 1 =0 (66)
AD(AL) ;B[},L]
Or
iz [B2(iL)—D2(AL)]=0 ... . (67)
Or
sinh(AL)sin(AL)=Q ................. (68)
Since A= 0
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This equation reduces to sin( AL) = 0

Or A,L = nmw (n=1,23,.......)

And
=Zz = 69
" = "ql e (69)
Y(x) =
1 ario) 1 £ } Iil
o - B(A,x) +—= YT —D(A,x)
Ex%
(70)
And
From Equation ( 66 )
d= ¥l . .
dxf _ _ AmBUApL) ARG L)
a7ra) D(inL) B( iyl
pra
-3 Zinhnw -3
—Ay = =—A
sinhnr
............... (67)

V(x) = i . T (68)

4. Fixed-Hinged ends

From Equations (7), (12) and (13). The boundary
conditions for the clamped end at x=0 as

Vx=0,t)=0 ... (69)
a:';‘—;“'ﬂ =0 e, (70)

And at the free end (x=L) as

vix=Lt) =0 ... (71)
M (x=Lt)=0...ccoocvi, (72)

Substituting strain-displacement relations and
substituting Equation (2) gives.

Y(x=0)=0...................... (73)
d¥ (x=0)
=0 (74)
dx
d¥ (x=L) _
e D (75)
R (76)
ax*

Substituting Equations (7 )and (12 )to ( 13 )in
these conditions gives

ri'YD]' 1:11*&]'

0=—"—A(4 L]+

B(AL) ... (77)

15! rnu}c( Lj—i—id ¥Fio

'D(AL)...(78)
Or
%C(AL] %D[},Lj £X(0)
- 1 - 2
A(AL)  SB(AL) :_Y(nj
Since
'y
:.ex_‘(ﬂj
d5¥
—=(0)
It must be that
2C(il) =D(iL)
A(AL)  ZB(AL)
Or

C(AL)B(ALY — D(AL)A(AL) = 0

Substituting Equations () to () gives

sin(AL) cosh{AL) — cos(AL)sinh (AL) =0
(83)
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The roots of this equation are

AL =3926, i,L =7.068, i;L = 10.210

(84)
from Equation (4)

— g L™ |E 85
(d,, I "'«il e (85)

Y(x) =
. d&¥¥(ed

1 g ¥ . e

P c( -nx:)__vaz,:;nm D(/nxj
: T

86)

From Equation ( )

dEj Dj . ] £ . ] £
dvE _ ipdldgl) A Gl D)

AZvio) 5.:_,‘_\1_[:. - oi -".-‘1‘[:'
dxt ' ’

............... 87

Thus

From above equations, the effect of dimension (b/a),
specific mass (M)( Kilogram per length Kg/m) and
flexibly per mass (EI/M)( Pascal meter to power five
per kilogram pa.m’/Kg) on the natural frequency for
Al- beam are studied, proprieties and dimension of
Al- beam is shown in table (1)

Finite element

It is said that there are two methods for mode
analysis. One is the theoretical analysis and the other
is the finite element method (FEM). Theoretical
analysis is usually used for a simple shape of an
elastic body, such as a flat plate and straight bar, but
theoretical analysis cannot gives us the vibration
mode for complex shape of an elastic body. FEM
analysis can obtain the vibration mode for it.

In FEM analysis, it is important to select a proper
element type which influences the accuracy of
solution, working time for model construction, and

CPU time, the two dimensional elastic beam is
selected for the following reasons, (a) vibration mode
is constrained in the two dimensional plane, (b)
Number of elements can be reduced; the time for
model construction and CPU time are both shortened
(Zienkiewicz O.C., CBE, FRS).

Two-dimensional elastic beam has three degree of
freedom at each node (i, j), which are translator
deformations in x and y directions and rotational
deformation around the z axis. This beam can be
subjected to extension or compression bending due to
its length and the magnitude of the area moment of
inertia of its cross section.

A mapped mesh consisting of beam (ANSYS element
type 2D elastic) is used two dimensional modeling of
solid structures Figure (1). The numbers of divisions
are equal to 20. To study natural frequency,
Aluminum alloy have taken with four boundary
conditions. Figures from (2) to (5) are shown the
natural frequency and modes of the Al alloy.

Experimental Setup

Free vibration takes place when a system oscillates
under the action of forces inherent in the system itself
due to initial disturbance, and when the externally
applied steady-state forces are absent.

The experimental setup is consists of an Aluminum
beams. Different combinations of beam geometries
for each of the beam material are used with supported
condition. Transducers (strain gauge, accelerometer),
a data-acquisition system and a computer with signal
display and processing software. Accelerometer is a
sensing element (transducer) to measure the vibration
response  (i.e., acceleration, velocity and
displacement). Data acquisition system takes
vibration signal from the accelerometer and encode it
I digital form. Computer acts as a data storage and
analysis system, it takes encoded data from data
acquisition system and after processing it display on
the computer screen by using analysis software and
then Determine at least the three experimental natural
frequencies from the frequency-domain plot

Results and Discussion

Figure (6, 7, 8, 9) show the comparison between
theoretical solution, finite element and experimental
solution with different support conditions, Fixed-Free
ends, Hinged-Hinged ends, Fixed-Fixed ends, and
Fixed-Hinged ends respectively for Al- alloy beam
with different size b/a ( where b is the height of beam
and a is a width) equal to (1, 1.5, 2, 2.5, 3) with
constant length equal to (0.254m). It can be seen
from comparison that the natural frequency is high
when the beam is fixed end than hinged end than
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free end and the natural frequency is increase with
increase the ratio (b/a). Figures (10, 11, 12, and 13)
show the effect of specific mass (M)(Kg/m) of beam
on the natural frequency. It can be seen from
comparison that the natural frequency is higher when
the beam is fixed end than hinged end than free end
and the natural frequency is increase with increase
the specific mass of beam. The effects of square root
of flexural stiffness per mass (EI/M)( pa.m’/Kg) on
the natural frequency are shown in Figures (14, 15,
16, and 17). It can be seen from comparison that the
natural frequency is higher when the beam fixed end
than hinged end than free end and the natural
frequency is increase with increase the square root of
flexural stiffness (EI) per mass (M). The rate of
increase of natural frequency is higher in fixed end of
the beam than hinged end than free end of the beam
with increase the dimension of the beam. Results of
theoretical solution, finite element, and Experimental
are much closed. It can be seen theoretical results are
higher than finite element results, and finite element
results are higher than Experimental results because
the beam, in actual practice, there is always some
damping.
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Appendix

Figure (1) two-dimensional beam element
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Figure (2) Natural frequency for fixed-Free ends Al-Alloy beam, (a) Model, (b) Mode2, (c) Mode3.
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Figure (3) Natural frequency for Hinged-Hinged ends Al-Alloy beam, (a) Model, (b) Mode2, (c) Mode3.
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Figure (4) Natural frequency for Fixd-Fixd ends Al-Alloy beam, (a) Model, (b) Mode2, (c) Mode3.
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(@)

Figure (5) Natural frequency for Fixed-Hinged ends Al-Alloy beam, (a) Model, (b) Mode2, (c) Mode3
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Figure (6) Effect (b/a) on natural frequency (Fixed-Free ends)
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Figure (7) Effect (b/a) on natural frequency (Hinged-Hinged ends)
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Figure (8) Effect (b/a) on natural frequency (Fixed-Fixed ends)
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Figure (9) Effect (b/a) on natural frequency (Fixed-Hinged ends)
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Figure (10) Effect specific mass on natural frequency (Fixed-Free ends)
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Figure (11) Effect specific mass on natural frequency (Hinged-Hinged ends)
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Figure (12) Effect specific mass on natural frequency (Fixed-Fixed ends)
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Figure (13) Effect specific mass on natural frequency (Fixed-Hinged ends)
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Figure (14) Effect square root of flexural stiffness per mass (EI/M) on natural frequency (Fixed-Free ends)
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Figure (15) Effect square root of flexural stiffness per mass (EI/M) on natural frequency (Hinged-Hinged ends)
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Figure (16) Effect square root of flexural stiffness per mass (EI/M) on natural frequency (Fixed-Fixed ends)
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Figure (17) Effect square root of flexural stiftness per mass (EI/M) on natural frequency (Fixed-Hinged ends)
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Table (1) properties and dimension of Aluminum beam

a L N P E M

m | 2| @y [ ko) | vpa) | Keg/m)
110.01 1 0.254 8.33 2700 70 0.27
21001 1.5 |0.254 28.1 2700 70 0.405
310.01 2 0.254 66.7 2700 70 0.54
41001 25 |0.254 130 2700 70 0.675
510.01 3 0.254 225 2700 70 0.81
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