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Introduction 

When a bar is hit by a hammer, clear sound can be 
heard because the bar vibrates at resonant frequency. 
If the bar is oscillated at this resonant frequency, it 
will be found that the vibration amplitude of the bar 
becomes very large. Therefore, when a machine is 
designed, it is important to know the resonant 
frequency of the machine. The analysis to obtain the 
resonant frequency and vibration mode of an elastic 
body is called "mode analysis".   The problem of 
vibration of a beam is of intrinsic interest because the 
beam represents the simplest of all engineering 
structural. The subject of vibrations is of fundamental 
importance in engineering and technology. Discrete 
modeling is sufficient to understand the dynamics of 
many vibrating systems; however a large number of 
vibration phenomena are far more easily understood 
when modeled as continuous systems. Dynamics and 
analysis techniques for a wide range of continuous 
systems Present including strings, bars, beams, 
membranes, plates, fluids and elastic bodies in one, 
two and three dimensions.  The vibrations of elastic 
structures such as strings, beams, and plates can be 
described in terms of waves traveling in waveguides 
(Cremer, L., Heckl, M., Ungar, E. E & Graff, K. F). 
Although the subject of wave motions has been 
received more attentions in the fields of acoustics in 

fluids and solids than mechanical vibrations of elastic 
structures, wave analysis techniques have been 
employed to reveal important physical characteristics 
associated with vibrations of elastic structures. One 
advantage of the wave analysis technique is its 
compact and systematic approach to analyze complex 
structures such as trusses, aircraft panels with 
periodic supports, and beams on multiple supports( 
Lin, Y. K. &, Yong, Y). Applying the concept of 
wave reflection and transmission, (Mace, B. R) 
obtains the frequency equations of Euler– Bernoulli 
beams including both propagating and attenuating 
waves. By the phase-closure principle,( Mead, D. J.) 
determined natural frequencies of Euler–Bernoulli 
beams. Based on the same principle, (Tan, C. A., & 
Kang, B.) presented a systematic approach to the free 
vibration analysis of a rotating Timoshenko shaft 
with multiple bearing supports, and (Kang, B., 
Riedel, C. H., & Tan, C. A.)  studied the free 
vibrations of a multi-span, extensional curved beam. 
The classical method, known as the normal mode or 
eigenfunction expansion, of solving the forced 
vibration problem of a distributed parameter system 
involves expansion of the forcing function into the 
eigenfunctions of the associated free vibration 
problem. While this method is theoretically sound 
and powerful, the method is difficult to implement 
when the problem to be solved is a nonself-adjoint 
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system typically due to complicating effects such as 
damping, discontinuities, or nonclassical boundary 
conditions, in which case obtaining the exact 
eigensolutions is not often feasible. As an alternative 
approach to solve forced vibration problems, (Yang, 
B., and Tan, C. A.) presented a method for evaluating 
exact closed form transfer functions for a class of 
one-dimensional distributed parameter systems. 
Applying the energy functional of constrained and 
combined damped systems, (Yang, B.) presented a 
method to obtain a closed-form transient response 
solution in eigenfunction series for a distributed 
damped system. An augmented energy formulation is 
introduced to regain symmetry for the spatial 
differential operator which is destroyed in the 
original equation of motion by the constraints. 

The modeling of a transversely vibrating beam 
includes the effects of shear distortion and bending 
moment, shear distortion effects was first including 
by the modeling by S. Timoshenko (Haym 
Benaroya), and therefore his name is attached to such 
models. The vibration of a beam with an overhang of 
arbitrary length is investigated numerically, an 
approximate formula for small overhang is proposed, 
and the results are compared, The approximation, 
valid for a simply-supported vibrating beam with 
small overhang, can be used to compute a beam’s 
flexural stiffness EI from measured frequency f, 
measured geometry, S, L, and measured weight W 
and would result in a conservative estimate of EI. 
The beam’s modulus of elasticity E can be computed 
if I is known (Murphy J. F). The formulation and 
basic solutions will be studied along with simple 
boundary conditions in this search. The Laplace 
transform has used to solve the exact solution for 
uniform beam with different dimensions and it's 
compare with finite element solution presenting 
Ansys programming and experimental data. 

Theory 

Derivation of the Equations of motion for the beam 
with shear distortion (the Timoshenko Beam), the 
equation governing the transverse vibration of the 
beam length L, with the following properties at 
section x; m(x) is the mass per unit length, A(x) is the 
cross-sectional area, and I(x) is the moment of 
inertia, Assume small deflections y(x,t) and rotations 

, and include the bending M(x,t) and shear 

Q(x,t) effects. Consider a free body of a section of 
length dx. For free vibration the external loading 
p(x,t) equal to zero. Basic Bernoulli- Euler beam 
equation that is used many simplified studies (Haym 
Benaroya), and then the equation of motion is 

…………………...(1) 

Where I is the moment of inertia and M is the mass 
per unit length(specific mass), and let 

………………………….(2) 

 Where    is the natural frequency, Gives 

………………………………..(3) 

Where 

 ……………………………   ……(4)    

The solution is approached utilizing the Laplace 
transform. Is gotten 

……………………………….…..(5) 

Thus 

…………………………………..….(6) 

Tacking the inverse transformation yields 

………...(7)   

Where 
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A( ……..…….(8) 

B( (sinh ……………..(9) 

C( …………..(10) 

D( ……..…….(11) 

Note that A(0)=1, B(0)=0, C(0)=0, and D(0)=0, for 
application to specific boundary conditions, the 
derivative of Equation (7), they are given in the 
following. 

`  

 ………..(12) 

 ……………..(13) 

 …………….(14) 

 

1. Fixed-Free ends 

From Equations ( 5 )  and (6 ). The boundary 
conditions for the clamped end at x=0 as 

 …………………………(15) 

 …………………………….(16) 

And at the free end (x=L) as 

 ……………………….(17) 

 ………………………..(18) 

Substituting strain-displacement relations and 
substituting Equation (2) gives. 

 …………………………..(19) 

 ……………………………..(20) 

 ……………………………(21) 

 ……………………………(22) 

Substituting Equations (7 ) and (12) to (14) in these 
conditions gives 

 …..  (23) 

 ……(24) 

Or 

 …. (25) 

Since 

 …………………………(26) 

It must be that 

 ……………..(27) 

Or 

 …………(28) 

Substituting Equations ( 8 ) to ( 11 ) gives 

 (29) 

The roots of this equation are 
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..(30) 
from Equation () 

  ………………………(31) 

Where E is young modulus.  The natural mode is 
given by Equation (7). 

 32 

From Equation (25), is gotten 

  

…………..(33) 

Thus 

 

..(34) 

The mode shape is determined by the bracketed 
quantity. The magnitude of the coefficient 

  …………………………………….(35) 

is arbitrary as far as the mode shape is concerned and 
is a function of the excitation.  

2. Fixed-Fixed ends 

From Equations (5) and (6). The boundary conditions 
for the clamped ends at x=0, and x=L as 

 …………………………(36) 

 …………………………….(37) 

 …………………………(38) 

 …………………………….(39) 

Substituting strain-displacement relations and 
substituting Equation (2) gives. 

 …………………………..(40) 

 ……………………………..(41) 

 …………………………..(42) 

 …………………………………..(43) 

Substituting Equations ( 7 ) and ( 12 ) in these 
conditions gives 

 ….(44) 

 

…….(45) 

Or 

 

..….(46) 

Since 

 ……………………………(47) 

It must be that 

 ……………….(48) 

Or 

 ………..(49) 
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The roots of this equation are 

 .(50) 

 

The natural mode is given by Equation (7). 

(51) 

From Equation (46) 

  

…………….(52) 

Thus 

 

(53) 

The mode shape is determined by the bracketed 
quantity. 

3. Hinged-Hinged ends. 

From Equations (7) and (13). The boundary 
conditions for the clamped end at x=0 as 

  …………………………..(54) 

 ……………………………(55) 

And at the free end (x=L) as 

 ………………………….(56) 

 ………………………….(57) 

Substituting strain-displacement relations and 
substituting Equation (2) gives. 

  …………………………….(58) 

  …………………………….(59) 

   …………………..…………(60) 

   …………………………….(61) 

Substituting Equations (7 ) and (13) in these 
conditions gives 

 ……..(62) 

 

………(63) 

Or 

 …(64) 

Since 

 ………………………(65) 

It must be that 

 ……………(66) 

Or 

  ………….(67) 

0r 

   ………………(68) 

Since      λ  
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This equation reduces to   

Or  

And 

    ……………………..(69) 

 

 (70) 

And 

From Equation ( 66 ) 

  ……………( 67) 

And equation (67 ) becomes 

  …………………. (68) 

 

4. Fixed-Hinged ends 

From Equations (7), (12) and (13). The boundary 
conditions for the clamped end at x=0 as 

  ……………………….. (69) 

  ………………………… (70) 

And at the free end (x=L) as 

 ………………………..(71) 

 ……………………..(72) 

Substituting strain-displacement relations and 
substituting Equation (2) gives. 

 ………………………..(73) 

  ………………………….(74) 

 …………………………..(75) 

  …………………………(76) 

Substituting Equations ( 7 ) and ( 12 ) to (  13 ) in 
these conditions gives 

  …….(77) 

 …..(78) 

Or 

  ….(79) 

Since 

 …………………………(80) 

It must be that 

  ……………(81) 

Or 

  

………..(82) 

Substituting Equations (   ) to (   ) gives 

 

.(83) 
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The roots of this equation are 

  

(84) 
from Equation (4) 

  …………………………….(85) 

 

The natural mode is given by Equation (7). 

 86) 

From Equation (  ) 

 

……………(87) 

Thus 

  

.(88) 

From above equations, the effect of dimension (b/a), 
specific mass (M)( Kilogram per length Kg/m) and 
flexibly per mass (EI/M)( Pascal meter to power five 
per kilogram pa.m5/Kg) on the natural frequency for 
Al- beam are studied, proprieties and dimension of 
Al- beam is shown in table (1)     

Finite element 

It is said that there are two methods for mode 
analysis. One is the theoretical analysis and the other 
is the finite element method (FEM). Theoretical 
analysis is usually used for a simple shape of an 
elastic body, such as a flat plate and straight bar, but 
theoretical analysis cannot gives us the vibration 
mode for complex shape of an elastic body. FEM 
analysis can obtain the vibration mode for it. 
In FEM analysis, it is important to select a proper 
element type which influences the accuracy of 
solution, working time for model construction, and 

CPU time, the two dimensional elastic beam is 
selected for the following reasons, (a) vibration mode 
is constrained in the two dimensional plane, (b) 
Number of elements can be reduced; the time for 
model construction and CPU time are both shortened 
(Zienkiewicz O.C., CBE, FRS). 
Two-dimensional elastic beam has three degree of 
freedom at each node (i, j), which are translator 
deformations in x and y directions and rotational 
deformation around the z axis. This beam can be 
subjected to extension or compression bending due to 
its length and the magnitude of the area moment of 
inertia of its cross section. 
A mapped mesh consisting of beam (ANSYS element 
type 2D elastic) is used two dimensional modeling of 
solid structures Figure (1). The numbers of divisions 
are equal to 20.  To study natural frequency, 
Aluminum alloy have taken with four boundary 
conditions. Figures from (2) to (5) are shown the 
natural frequency and modes of the Al alloy. 
 
Experimental Setup 
 
 Free vibration takes place when a system oscillates 
under the action of forces inherent in the system itself 
due to initial disturbance, and when the externally 
applied steady-state forces are absent.  
The experimental setup is consists of an Aluminum 
beams. Different combinations of beam geometries 
for each of the beam material are used with supported 
condition. Transducers (strain gauge, accelerometer), 
a data-acquisition system and a computer with signal 
display and processing software. Accelerometer is a 
sensing element (transducer) to measure the vibration 
response (i.e., acceleration, velocity and 
displacement). Data acquisition system takes 
vibration signal from the accelerometer and encode it 
I digital form. Computer acts as a data storage and 
analysis system, it takes encoded data from data 
acquisition system and after processing it display on 
the computer screen by using analysis software and 
then Determine at least the three experimental natural 
frequencies from the frequency-domain plot 
     
Results and Discussion 
 
 Figure (6, 7, 8, 9) show the comparison between  
theoretical solution, finite element and experimental 
solution with different support conditions, Fixed-Free 
ends, Hinged-Hinged ends, Fixed-Fixed ends, and 
Fixed-Hinged ends respectively for Al- alloy beam 
with different size b/a ( where b is the height of beam 
and a is a width) equal to (1, 1.5, 2, 2.5, 3) with 
constant length equal to (0.254m). It can be seen 
from comparison that the natural frequency is high 
when the beam  is fixed end than hinged end than 
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free end and the natural frequency is increase with 
increase the ratio (b/a). Figures (10, 11, 12, and 13) 
show the effect of specific mass (M)(Kg/m) of beam 
on the natural frequency. It can be seen from 
comparison that the natural frequency is higher when 
the beam is fixed end than hinged end than free end 
and the natural frequency is increase with increase 
the specific mass of beam. The effects of square root 
of flexural stiffness per mass (EI/M)( pa.m5/Kg) on 
the natural frequency are shown in Figures (14, 15, 
16, and 17). It can be seen from comparison that the 
natural frequency is higher when the beam fixed end 
than hinged end than free end and the natural 
frequency is increase with increase the square root of 
flexural stiffness (EI) per mass (M). The rate of 
increase of natural frequency is higher in fixed end of 
the beam than hinged end than free end of the beam 
with increase the dimension of the beam. Results of 
theoretical solution, finite element, and Experimental 
are much closed. It can be seen theoretical results are 
higher than finite element results, and finite element 
results are higher than Experimental results because 
the beam, in actual practice, there is always some 
damping.   
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Appendix  

 

 

Figure (1) two-dimensional beam element 

 

(a) 

 

(b) 
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(c) 

Figure (2) Natural frequency for fixed-Free ends Al-Alloy beam, (a) Mode1, (b) Mode2, (c) Mode3. 

 

(a) 
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(b) 

 

(c) 

Figure (3) Natural frequency for Hinged-Hinged ends Al-Alloy beam, (a) Mode1, (b) Mode2, (c) Mode3. 

 

(a) 
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(b) 

 

(c) 

Figure (4) Natural frequency for Fixd-Fixd ends Al-Alloy beam, (a) Mode1, (b) Mode2, (c) Mode3. 
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(a) 

 

(b) 

 

(c) 

Figure (5) Natural frequency for Fixed-Hinged ends Al-Alloy beam, (a) Mode1, (b) Mode2, (c) Mode3 
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Figure (6) Effect (b/a) on natural frequency (Fixed-Free ends) 

 

Figure (7) Effect (b/a) on natural frequency (Hinged-Hinged ends) 
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Figure (8) Effect (b/a) on natural frequency (Fixed-Fixed ends) 

 

Figure (9) Effect (b/a) on natural frequency (Fixed-Hinged ends) 

 

 Figure (10) Effect specific mass on natural frequency (Fixed-Free ends) 

 

Figure (11) Effect specific mass on natural frequency (Hinged-Hinged ends)  



 

© AESS Publications, 2011 Page 244 
 

Journal of Asian Scientific Research, 1 (5), pp.229-246 2011 

 

 

Figure (12) Effect specific mass on natural frequency (Fixed-Fixed ends) 

 

Figure (13) Effect specific mass on natural frequency (Fixed-Hinged ends) 

 

Figure (14) Effect square root of flexural stiffness per mass (EI/M) on natural frequency (Fixed-Free ends) 
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Figure (15) Effect square root of flexural stiffness per mass (EI/M) on natural frequency (Hinged-Hinged ends)  

 

Figure (16) Effect square root of flexural stiffness per mass (EI/M) on natural frequency (Fixed-Fixed ends) 

 

Figure (17) Effect square root of flexural stiffness per mass (EI/M) on natural frequency (Fixed-Hinged ends) 
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Table (1) properties and dimension of Aluminum beam  

  a 
(m) b/a L 

(m) I(m4)*10-10 Ρ 
(Kg/m3) 

E 
(Mpa) 

M 
(Kg/m) 

1 0.01 1 0.254 8.33 2700 70 0.27 
2 0.01 1.5 0.254 28.1 2700 70 0.405 
3 0.01 2 0.254 66.7 2700 70 0.54 
4 0.01 2.5 0.254 130 2700 70 0.675 

5 0.01 3 0.254 225 2700 70 0.81 
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