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 Introduction 

Levenshtam (2009), considered systems of ordinary differential equations of the first order whose terms oscillate 

with a high frequency ω.For the problem on periodic solutions, the author justifies the averaging method and 

establishes a posteriori bounds for the error of partial sums of the complete asymptotic expansion for the solution. 

Asymptotic expansions of periodic solutions of second –and third- order equations and formal asymptotics of such 

solutions in the case of equations of arbitrary order were constructed in Abood
1,2

 (2004). The first-order asymptotic 

form was obtained and proved for the solution of a system of two partial differential equations with small 

parameters in the derivatives for the regular part, two boundary-layer parts and corner boundary part in Vasil'eva 

and Butuzob (1990). In Levenshtam and Abood (2005), an algorithm of asymptotic integration of the initial-

boundary-value problem for the heat-conduction equation with minor terms (nonlinear sources of heat) in a thin rod 

of thickness
1/2   oscillating in time with frequency 

1
was proposed. In the present paper, we consider a 

system of partial differential equations of the second order and solve this system with the aid of two series and some 

conditions. Our paper continues the line of research initiated in Levenshtam and Abood (2005). Examples of 

applications of systems of second order partial differential equations in modelling can be found in elasticity in 

Nerantzaki and Kandilas (2008) and packed-bed electrode in Xiao-Ying Qin and Yan-Ping Sun (2009). 

  

Statement Of The Problem 

We study a system of second order partial differential equations with initial-boundary-value conditions 
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in the domain ( , , ) (0 1) (0 1) (0 ).x y t x y t T          

The initial boundary conditions are 
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where  is a small parameter, and the functions 1( , , , , ),f u x y t  and 2( , , , , )f u x y t  are continuous and infinitely 

differentiable with respect to each of their arguments. The construction is made under the following conditions.
 

I. The functions    , ,i ib x a x t and , 1,2if i  have continuous derivatives of order     

  2n . 

II. We can assume that 2 1b  . If  2 2b b x , then making the change of the variable  1

2

0

x

z b d   , and we 

shall assume that  1 0b b x   and 2 1b  . 

Algorithm For Construction Of The Asymptotics 

We seek an asymptotics expansion of the solution of problem (2.1) and (2.2) as the following two series in the 

powers of   in the form 

                     
0
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                                          (3.1) 

where iu  and iv  are coefficients of the regular part of the asymptotic, , ,i i ip u p v q u and ip v are boundary-layer 

functions describing boundary layers near the initial instant of time 0t  and the ends of the rod 0x  and 1x  . 

The boundary-layer variables are  

t



 , and

x



  . 

 Regular Parts Of The Asymptotics u And v  

We substitute series (3.1) into equations (2.1) - (2.2) and the coefficients of the same powers of  in the left and 

right-hand sides of the obtained relations are equated. If the variable  is assumed to be independent of t and 

functions depending on ε are represented by the corresponding asymptotic series then problem (2.1) and (2.2) 

becomes 
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The following problems for the regular coefficients 0u and 0v are obtained: 
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By direct integration, it can be seen [Viik (2010), Viika and  Room   (2008), Tokovyy and Chien-Ching Ma,(2009), 

Toshiki, Son Shin, Murakami and Ngoc(2007)] system (4.2) is equivalent to system of integral equations   

           1 1

0 1 0 10

0

, exp , , , , ,
x x

u x t b p a p t dp b v t f y t d


     
     

 
                                                    (4.3)                     

 

                            0 2 0 20

0

, exp , , , , .
t t

s

v x t a x p dp u x s f x y t ds
 

     
 

                                                         (4.4)      

Substituting (4.4) in (4.3), we arrive at an integral equation with respect to  0
, :u x t

 

                                0 0 0 0

0 0

, , , , , , ,
x t

u x t G x t s u s d ds g x t      

where  0
  , , ,G x t s and

0
( , )g x t  are known functions. The solution of this integral equation can be expressed in terms 

of the resolvent  0
, , ,x t s of the Kernel  0

, , ,G x t s (as in [Viik (2010), Viika and  Room   (2008), Tokovyy 

and Chien-Ching Ma,(2009), Toshiki, Son Shin, Murakami and Ngoc(2007)]) 

        0 0 0 0

0 0

, , , , , , .
x t

u x t g x t x t s g s d ds       

After that, the function  0
,v x t  can be determined by (4.4). 

The system of equations for 
1

u and 
1

v is 
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From system (4.5) and direct integration, we have the system of integral equations  
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Substituting (4.7) in (4.6), we arrive at the integral equation with respect to  1
, :u x t  

       1 1 1 1

0 0

, , , , , , , , ,
x t

u x t G x y t s u s d ds g x y t      

where  1
  , , , ,G x y t s and

1
( , , )g x y t  are known functions. The solution of this integral equation can be expressed in 

terms of the resolvent  1
, , , ,x y t s of the Kernel  1

, , , ,G x y t s  [Viik (2010), Viika and  Room   (2008), 

Tokovyy and Chien-Ching Ma,(2009), Toshiki, Son Shin, Murakami and Ngoc(2007)] and we have 

       1 1 1 1

0 0

, , , , , , , ,
x t

u x y t g x y t x y s g s d ds      . After that, the function  1
, ,v x y t  can be determined by 

(4.7). 

For regular terms nu  and nv we obtain the problem 
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¶ ¶ ¶
å . This problem is quite similar to 

problem (4.5) and can be solved by reduction to a system of integral equations. 

 Boundary Parts Of The Asymptotics pu And pv  

We construct the following group of coefficients of two series (3.1) that is the boundary-layer parts 

 , , ,pu x y   and  , , ,pv x y   . We consider problem (2.1) in a neighbourhood of the upper boundary  0t   of 

the domain   and perform the change of variables t  ; we obtain the system 
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y y
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The boundary-layer functions are
0

p u and
0

p v . In this case
0

0p v  .  

For 0p u  we obtain the problem 
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By direct integration, equation (5.2) has a classical solution 
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 is the function inverse to  z x . 

The system of equations for 1p u and 1p v  is 
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The function np u can be defined as the solution of the problems 
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since (5.3) is a partial differential equation of the first order and first degree. Here the smooth function  , ,n x y   
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For the function np v , it is the solution of the problem 
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that satisfies the condition  , , 0,np x y   where  , ,n x y  is a known continuous function vanishing 

for  x  and with partial derivative making jump on the characteristic line  x  . Integrating, we obtain  
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where the function  , ,np v x y  is smooth everywhere. 

Boundary Parts Of The Asymptotics qu And qv  

Now, we find the coefficients  , ,iq u y t  and  , ,iq v y t . Consider problem (2.1) and the conditions (2.2) in a 

neighbourhood of the left boundary of the domain   and perform the change of variable
1x   . We obtain the 

system 
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From this equation, taking into account the standard condition for boundary parts at infinity, that 

means  0 , 0q u t  , and so we have  0 , , 0q u y t  .  
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Since this is a partial differential of first order and first degree, it’s solution have the form 
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It’s possible to find 1q u and 1q v in the same way. Finally, we will continue to find nq u and nq v . 

For nq u we have the equation 
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is known and continuous everywhere.  

The function  , , 0n y t   for t  (is evident from our findings in the above), so we can seek this function 

in the form 

                                , , , , for .n ny t z y t t t                                                                 (6.2) 

The function  ,n t is smooth everywhere. By the condition  , , 0nq u y t  and integrating (6.1), we have  
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We can define the part  , ,nq v y t as the solution of the problem 
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Also 

 , ,n y t is a known continuous function that satisfies the condition  , , 0,np v y t   vanishing for t   

and with partial derivative making jump on the characteristic line t  . Solving (6.3) and using (6.4), we obtain  

                   
   

0

0, , exp 0, , , 0
, ,

0, .
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n

v y t y s t ds t T
q v y t

t



  




  
             




  

where the function  , ,nq v y t is smooth everywhere. 

7. JUSTIFICATION OF THE ASYMOTOTICS 

By  , , ,nU x y t  and  , , ,nV x y t  we denote the n -
th 

partial sums of the series (3.1). 

Theorem.  The solution    , , , , , , ,u x y t v x y t   of problem (2.1) and (2.2) admits the asymptotic solution  

                  1 1( , , , ) ( , , , ) , ( , , , ) ( , , , )n n

n n
u x y t U x y t O v x y t V x y t O          ,                                  (7.1) 

uniformly in the domain      0 1 0 1 0x y t T         . 

 

Proof. We set 
1 1n

u U w


  and 
1 2n

v V w


  . Substituting this in (1.1) and (2.1) we obtain the following problem for 

the remainder terms 
1

w and 
2

w  

                  

     

     

2

1 1 1

1 1 1 12

2

2 2 2

2 2 2 22

1 0 1 0,1 2 0 2 0,1

1 2

0,1 0,1

, , , , ,

, , , , ,

| 0, | 0, | 0, | 0,

0, 0.

t x t x

y y

w w w
b x a x t w x y t

t y x

w w w
b x a x t w x y t

t y x

w w w w

w w

y y

 

 

   

 

   
    

   

   
    

   

   

 
 

 
 

 

Obviously, the inhomogeneous terms 
1


 
and 

2


 
can be estimated as    1, , , n

i
x y t O     uniformly in . We 

shall prove that the same estimate is valid for 
1

w and
2

w . In view of the equalities 
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this will directly imply the assertion of the theorem. 
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We make the change of the variables
   1,2

k x y t

i i
w re i

 
  , where k  const >0. We obtain the following system of 

equations for 
1

r and
2

r : 
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                                                                (7.2) 

with the homogeneous boundary conditions, as in the case of , 1,2
i

r i  . Here 

         ( ) 1

1 1 2 2
ˆ, , , 1 , ( ).k x t n

i i
c a x t k b x c a x t k e O            

 
Assume that 

1
r  has a maximum at 

a point  1 1 1
,x t  of   and 

2
r  has a maximum at a point  2 2 2

,x t , and assume that    1 1 2 2
r r   . We shall 

consider the first equation of (7.2) at
1

 , (If    1 1 2 2
r r   , then we shall consider the first equation of (7.2) 

at
2

 ). We rewrite this equation as 

                     
     

2

1 1 1
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ˆ, , , , ,
r r r

b x c x t r x y t
t y x

 
   

    
   

                                                                  (7.3) 

Assume that the function
1

r  is negative and has a minimum at
1

 . (The case of a positive maximum can be 

considered in the same way.) Then 1 0
r

t





and 1 0

r

x





at this point (the inequality sign is possible only if 

1
 lies on 

the boundary of ). Hence the left-hand side of (7.3) is negative at 
1

 and is not larger than  1 1
r  , while the right-

hand side is of order
1n 
. 

Consequently,      1

1 1 1
max , nr r x t O  


   .Since    1 1 2 2

r r   , it follows 

that      1

2 2 2
max , nr r x t O  


   .Therefore    1, n

i
r x t O   uniformly in . Hence we also have 

   1k x t n

i i
w r e O 

   uniformly in G .  

The proof of Theorem is complete. 
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