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Abstract

For a system of two partial differential equations of second order, we obtain and justify two
asymptotics solutions in the form of two series with respect to the small parameter & . We have

Author (S) proven the solution is unique and uniform in the domain Q| and, further, each the asymptotics
approximations are withinQ (g"*l) .
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Introduction

Levenshtam (2009), considered systems of ordinary differential equations of the first order whose terms oscillate
with a high frequency ®.For the problem on periodic solutions, the author justifies the averaging method and
establishes a posteriori bounds for the error of partial sums of the complete asymptotic expansion for the solution.
Asymptotic expansions of periodic solutions of second —and third- order equations and formal asymptotics of such
solutions in the case of equations of arbitrary order were constructed in Abood™? (2004). The first-order asymptotic
form was obtained and proved for the solution of a system of two partial differential equations with small
parameters in the derivatives for the regular part, two boundary-layer parts and corner boundary part in Vasil'eva
and Butuzob (1990). In Levenshtam and Abood (2005), an algorithm of asymptotic integration of the initial-
boundary-value problem for the heat-conduction equation with minor terms (nonlinear sources of heat) in a thin rod

of thickness & = @ “? oscillating in time with frequency @ "was proposed. In the present paper, we consider a
system of partial differential equations of the second order and solve this system with the aid of two series and some
conditions. Our paper continues the line of research initiated in Levenshtam and Abood (2005). Examples of
applications of systems of second order partial differential equations in modelling can be found in elasticity in
Nerantzaki and Kandilas (2008) and packed-bed electrode in Xiao-Ying Qin and Yan-Ping Sun (2009).

Statement Of The Problem

We study a system of second order partial differential equations with initial-boundary-value conditions

g(a_h@}bl(x)a_uzai(x,t)wig‘ £ (U,% Y1),

ot oy’ OX i—0
v 02 0 N -
54_8(5\2/—'_@()()6%} =8, (X,t)V+§gi fi (U, X Y,1),

in the domain (X, y,1) e Q=(0<x<1) x(0<y<1)x(0<t<T).

The initial boundary conditions are
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u |t:0: 0, u Ix:o,1: 0, v |t:O: 0, v |x:0,1: 0,
2.2
a g o, 2.2)
oy y=01 oy y=0.1

where & is a small parameter, and the functions f, (U, X, y,t,&),and f,(u, X, y,t, &) are continuous and infinitely
differentiable with respect to each of their arguments. The construction is made under the following conditions.

1. The functions b, (X), &, (X,t)and f;,i=1,2 have continuous derivatives of order

(n+2).

X
1. We can assume thath, =1. Ifb, =b, (x), then making the change of the variable z = Ib;l(a)da, and we
0

shall assume that b, =b(x)>0 andb, =1.

Algorithm For Construction Of The Asymptotics

We seek an asymptotics expansion of the solution of problem (2.1) and (2.2) as the following two series in the
powers of & in the form

U0, Y, 8) = 22T (% Y, 0+ UK, Y,7)+ GuE, v, D,
- (3.1)

VXYt 2)= 2T 0 YD+ PV Y, 7+ GV(E, YD)

where U; and V; are coefficients of the regular part of the asymptotic, [;u, p,V, ;U and P,V are boundary-layer

functions describing boundary layers near the initial instant of time t = Oand the ends of the rod X=0and Xx=1.
The boundary-layer variables are

r=—,and&=—
£ £

Regular Parts Of The Asymptotics U And V

We substitute series (3.1) into equations (2.1) - (2.2) and the coefficients of the same powers of & in the left and
right-hand sides of the obtained relations are equated. If the variable 7 is assumed to be independent of tand
functions depending on & are represented by the corresponding asymptotic series then problem (2.1) and (2.2)
becomes
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[%h%j Q(X)Z—z%(&t)mgsifli(U,X,y,t),

_ 2— _
@-FE a—\;+b2(x)@ (X )7+ &'t (7, %, y,1),
ot oy OX = 4.2)
Ulw:ozoi U|x=0,1: 0’\7|t,1=0: 0, v |x=0,1: 0,
al o, d
ay y=0,1 ay y=0,1

The following problems for the regular coefficients U, and V, are obtained:

ou, . _
b(X)a—onai(X,t)uO +fy (UO,X, Yat),

oV _ _
6_;: a, (%)% + f,0 (V. X, Vi),

0y (0,,1) =0,  ¥(x,y,0)=0, 42)
Myl _g M| _p
ﬁy y=01 5’y y=0,1

By direct integration, it can be seen [Viik (2010), Viika and RAOM (2008), Tokovyy and Chien-Ching Ma,(2009),
Toshiki, Son Shin, Murakami and Ngoc(2007)] system (4.2) is equivalent to system of integral equations

%)= Eexp@bl(p)al(p,t) dpjbl(a) [7,(0:t) + 1, (1) ]dor, 4.3)

= jexp(j'a2 (x, p)dpj[ﬁ0 (x,5)+ f,o(x,y,t)]ds. (4.4)
o s
Substituting (4.4) in (4.3), we arrive at an integral equation with respect to U, (x,t):
ijGU xt,0,9)0, (o,5)dods +g, (xt),
00
where G, (x,t,o,s)and g, (x,t) are known functions. The solution of this integral equation can be expressed in terms

of the resolvent K, (x,t,o,s)of the Kernel G, (x,t,o,s) (as in [Viik (2010), Viika and ROOM (2008), Tokovyy
and Chien-Ching Ma,(2009), Toshiki, Son Shin, Murakami and Ngoc(2007)])

0, (xt)=g,(xt +_X[j'K xt,0,9)g,(o,s)dods.
00

After that, the function V], (x,t) can be determined by (4.4).

The system of equations for U,and v, is
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jhzi: 1. .JL_ T T T _
b(X)ﬂX ai(xyt)ul(x,t)+ﬂu_fm(uox,y,t)uwfn(uox,y,t)
fu, 1%,
1t Ty
'ET a, (x L7 (x t>+ Lt @y O+ £ G0y )
10, 19,
7y Ix
0,(0y,t)=-qu(y,t), v,(x,y,0)=- py(x,y,0),

IUEL =0, IDZL
ﬂy y=01 ﬂy

(4.5)

= 0.

y=01

From system (4.5) and direct integration, we have the system of integral equations
X EBX » .
u (x t)= oexpg (p)a. (p. t)0||01b AR ACRIL
s (4.6)

10,  1°0,
flo t)a,+f, t >—1ds,
@06y 0+ £ @y 1) g (2]

t at Q
V. (x1)= 9 expg(‘) & (x,p)dp=[a (x,s)m (x,s)+
: 0 4.7)

' 'ﬂﬂ ooy o o @oxy ) 0o IWoygs

ﬂy I

Substituting (4.7) in (4.6), we arrive at the integral equation with respect to T, (x,t):

ﬁGl X, ¥.t,0,5)0, (o,s)dods +g, (X, y,t),

where Gl(x, y,t,a,s) and g,(x, y,t) are known functions. The solution of this integral equation can be expressed in

terms of the resolvent K, (x,y,t,o,s)of the Kerel G,(x,y.t,o,s) [Viik (2010), Viika and ROGOM (2008),
Tokovyy and Chien-Ching Ma,(2009), Toshiki, Son Shin, Murakami and Ngoc(2007)] and we have

0 (x y.t)=g,(x y,t)+ijl(x, y,0,5)0,(o,s)dods. After that, the functionV,(x,y,t) can be determined by
00
4.7).

For regular terms U, and V, we obtain the problem
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b(x)“.ﬂi;= a, (O, () 1, @,y b))

q (4.8)
ad,(0,y,t)=-qu(,y,t) —= = 0.
y=0,1
v, _ -
w a, (Xt (x, 1)+ i, @ox,y ),
W (4.9
v, (x,y,0)=- pv(x,y,0), — = 0.
ﬂy y=01
T ¢ 11 o T 10, 1%,
where; (0 x,y,t)=9q9 ———f. @O.x,y,t)1 (x,t)- n-1._ -1 and
|n(0 y ) kazok!ﬂu_k 1k(0 y )k( ) qt 2y
= (- g 1 9° - — 170, IV, : o
i x oy, t)=q ———fF,, T x,yt X ,t)- O _ ——% This problem is quite similar to
i, @ox,y 1) iok!ﬂu_k « ox y tV (x ) Zy? X

problem (4.5) and can be solved by reduction to a system of integral equations.

Boundary Parts Of The Asymptotics puAnd pv

We construct the following group of coefficients of two series (3.1) that is the boundary-layer parts
pu(x,y,z,&)and pv(Xx,y,7,&). We consider problem (2.1) in a neighbourhood of the upper boundary (t=0) of

the domain Q and perform the change of variablest = &7 ; we obtain the system

dpu  &°pu dpu
oo te Y +b(x)§:a1(x,t)pu+fl(pu,x,y,gr,g) o
5.1
opv o*pv  opv
apr +g( ayg + aF; ]:az(x,t)pv+ f,(pv.x, Yy, e7,¢),
pu(x,y,0)=-T(x,y,0), pv(x,y,0)=—V(Xx, y,O),dﬂ :0,M =0.
dy y=0,1 dy y=0,1
The boundary-layer functions are p,uand p,v . In this case p,v=0.
For P,U we obtain the problem
op,u opyu
b(x =a,(X,0)pu, 0<x<X, 720,
5 TP Ak 0)R ‘
pu(0,y,7)=0, pou(x,y,0)=-0,(x,Y,0), (5.2)
dp,u _o, dpgv|  _ 0.
dy y=0,1 dy y=0,1

By direct integration, equation (5.2) has a classical solution
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pOU(X,z') _ —0, (9‘1(9(X)_T),0)6Xp[!q(@‘l(e(x)—fvts),O)de,O <r<é@

0, >0,

where Q(X) =

O ey <

b (o)doand 67 (z) is the function inverse to z = 9( ).

The system of equations for p,Uand P,V is

op,u op,u
%er(x)%:ai(x,t)plu+Al(x,r)
pu(x,y,0)=-00,(x,,0), pu(0,y,7)=0,
du|
dy y=0,1

8p)l(v =a,(x,t)pv+A,(x7),

pv(X,y,0)=—V,(x,y,0)

dpyv
;’; 10=0.
2
HereAl(X,‘[):%(X,O)TpOU(X,T)'Fflo(pou,Xy y,0,0)—%and

2

A (x,7)= %(X,O)rpov(x, )+ f,0(PoV: X, ¥,0,0) - 0 leV is smooth. In the

same way we obtain

T

: a,(x,0 PV(X,s)ds, 0<z<O(x
p1v=a2(x,0)jp0v(x,s)ds { )e(jx) ov(%:5) (x)

0, TZH(X).

—Ul(H_l(G(X)—T),O)eXpUai(9_1(9(X)—r+s),0)]x

pu = A (07(0(x)-7+5),0)ds, 0<7<0(x)

TZH(X).
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The function P U can be defined as the solution of the problems

62—“Tu+b(x)a[;7"u=al(x,t)pnu+An(x, y,7), (5.3)
pu(x y,0)=-0,(xy,0), pu(0y,7)=0,
dp,u
dy y=0.1

o (5.4)

where

~1 0
A, (X, y,r):zmrk[%(x,o) Pt (X, 7)+ i (Pou, X, y,0,0)+

k=0

0" o°p. U
—f u, X, 10)0 _—n_ly
F o (ot %y, 0,0)1- =

since (5.3) is a partial differential equation of the first order and first degree. Here the smooth function A | (X, Y, r)
is known. Using the initial and boundary conditions (5.4), we obtain

—0, (H’l(ﬁ(x)—r),o)exp Uai(ﬁl(e(x)—r+ s),O)jx

pu= An(e’l(e(x)—r+s),0)ds, 0<7<0(x)

0, r>0(x).
For the function PV, it is the solution of the problem

opV

?=An(x, y,7),

V(X ¥,0)=-V(x,y,0)
dpv
dy

y:0,1: O’
where

— -1 .0a
A, (% y,7)=a,(xt) an+2mfk[ﬁ(X'0) PV (X, 7)+ fy (Pov. X, ,0,0) +
k=0 ™ =

0" op,. v O°p, .V
PV f V! X! IO!O - o n-i
6k pOV 1k ( pO y )] 6X ayZ

413



Solution Of A System Of Two Partial Differential Equations.....

that satisfies the condition pn(x, y,oo)=0, where Zn(x, y,r)is a known continuous function vanishing

forz = H(X) and with partial derivative making jump on the characteristic line 7 = H(X). Integrating, we obtain

IZn(x,y,r)dr, 0<7<0(x),
an(X’ le): o(x)

0, r20(x),

where the function pnv(x, Y, r) is smooth everywhere.

Boundary Parts Of The Asymptotics qu And Qv

Now, we find the coefficients ou (&, y,t) and q,v(&, y,t). Consider problem (2.1) and the conditions (2.2) in a

neighbourhood of the left boundary of the domain €2 and perform the change of variable & = Xe . We obtain the
system

oqu d*qu) 1(&1 )oqu

2
8qv+86 quraqv=
ot oy> o

a, (e, t)av(E, y.te)+ f,(qu &8, y.t,¢).

For gou (<&, Y, t) we obtain the equation b(O)aq—Ou =0.

o5

From this equation, taking into account the standard condition for boundary parts at infinity, that
means QU (o0, t) = 0, and so we have gou (&, y,t) =0.

Now, for g,V (&, y,t)we have the problem

%Jrag_?:%(o’t)qov(f’yvt), E>0, 0<t<T,
v (0, y,t) =7, (0,y,1), qov(&,y,0)=0,
|
N Iy

Since this is a partial differential of first order and first degree, it’s solution have the form

Qv (& y,t) = Y (0, y,t—§)exp@a2(0, y,s+t—§)ds} 0<&<t<T

0, Ext.
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It’s possible to find Q,U and Q,V in the same way. Finally, we will continue to find q,Uand(],V.

For g,U we have the equation

oq.u
b(0)—/— =Y (&,v,t), 6.1
(0) PE (& y01) (6.2)
where
no1 1%}
(6922 T (0., a 0+ Ty (60.0,7,8,0)+
k=0 ™=
8k acIn—lu azqn—lu

— f u,X,vy,0,0)]-
Fa w (Gu, X, y,0,0)] PRy

is known and continuous everywhere.

The function ¥, (f, y,t) =0 for &>t (is evident from our findings in the above), so we can seek this function
in the form

Y (&yt)=2(y)(t=£)Z,(&.t), for &<t (6.2)

The function Z, (&, 1) s smooth everywhere. By the condition ¢,u (oo, y,t) = 0 and integrating (6.1), we have

b™(0)z(y)

0, Ext.

(t—s)z,(s,t)ds, 0<&<t<T

—+ S

gu(&,y.t)=

We can define the part qnv(ﬁ, y,t) as the solution of the problem

oq,v N oq,Vv

a o =¥, (& y.1), (6.3)

a.v(0,y,t)=-V,(0,y,t), q,v(&,y,0)=0,

6.4
AN g ©4)

ay y=0,1

here
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_ oa
¥, (&,y,1)=5,(0,y,t)p V+Z f[éik (%,0) peav(0,y,t)+ f (Pov, 0, y,1,0) +

v Also

op._ v d°p, Vv
—_ v,0,y,t,0)] -—=2— — ni .

P, (5, y,t) is a known continuous function that satisfies the condition pnv(oo, y,t) =0, vanishing for &>t
and with partial derivative making jump on the characteristic line & =t. Solving (6.3) and using (6.4), we obtain
[0
—,(0,y,t=¢&)exp (0,y,s+t—=&)ds |, 0<&<t<T
nv(ét’ y’t) = 0

0, E>t.
where the function g, v(&, y,t)is smooth everywhere.
7. JUSTIFICATION OF THE ASYMOTOTICS
By U, (X, y,t,&)and V, (X, y,t, &) we denote the n-" partial sums of the series (3.1).
Theorem. The solution u(x, y,t,g),v(x, y,t,g) of problem (2.1) and (2.2) admits the asymptotic solution
u(x, y,t,e)=U, (x,y,t,8) =0(&™),  v(x,y,t,8) -V, (X, y.t,£) =0(&™), (7.1)

uniformly in the domain Q=(0<x<1)x(0<y<1)x(0<t<T).

Proof. We set u=U,_,+wand v=V__ +w,. Substituting this in (1.1) and (2.1) we obtain the following problem for
the remainder terms w,and w,

e GG =a e o)

2
%+g[a W, +b2(x)aW2]= a, (x,t)w, +I1, (X, y,t,€),

oy’ ox
W, L:O:O,W |x 01~ =0, W, | =0, w, |x 01= 0,
M| g, M
ay y=01 6y y=01

Obviously, the inhomogeneous terms IT, and IT, can be estimated as H, (x, y.t,¢) :O(g"“) uniformly inQ . We
shall prove that the same estimate is valid for w, and w, . In view of the equalities

4-U, =(u=U,)+ (U, -U,) = +O(&),
V-V, W+O( ”*1)

this will directly imply the assertion of the theorem.
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We make the change of the variablesw, =re Kxrs) ( =1 2) where k —const >0. We obtain the following system of
equations for r andr, :

(6r o j+b1(x)%=c1(x,t)r1+ﬁ1(x,y,t,g),

ot
» (7.2)
or, o°r, or, .
E+8[ Y +b, (x)&j =c, (x,t)r, +IL, (X y,t,&),
with  the  homogeneous  boundary  conditions, as in the case ofr,i=12. Here

¢, =a(xt)-k(b(x)+¢&), ¢, =a,(xt)-k(l+e), IT =TIe** =0(c"). Assume that |r| has a maximum at
apoint K, (x,t,) of Q and |r,| has a maximum at a point K, (x,,t,), and assume that|r, (K, )| > |r, (K )|. We shall

consider the first equation of (7.2) atK,, (If|r, (K, )| <|r,(K,)|, then we shall consider the first equation of (7.2)
atK, ). We rewrite this equation as

[g‘;+g; j+b1(x)%:cl(x,t)r1+f[1(x,y,t,g), (7.3)
Assume that the functionr, is negative and has a minimum atK, . (The case of a positive maximum can be
considered in the same way.) Then ztl <0and g; < 0at this point (the inequality sign is possible only if K, lies on
the boundary of Q). Hence the left-hand side of (7.3) is negative at K, and is not larger thanr, (Kl) , While the right-
hand side is of order ™.

Consequently, |r, (K, )| = max|r, (x,t)| =O(&"") Since|r, (K, )| > |r, (K, ), it follows

that|r, (K, )| =m

k(x+t) _

ax|r, (x,t |— “” .Therefore ri(x,t)zo(g"”)uniformly inQ2. Hence we also have

W=re ( ") uniformly inG .

The proof of Theorem is complete.
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