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Abstract  

                                       

Longitudinal studies involving binary responses are widely 

applied in medical, health and economic science research, 

have focused increasingly on how various independent 

variables affect responses over time. These studies involve 

repeated observations on a subject and thus correlation 

within each subject is expected. Correct inferences can only 

be obtained by taking into account the correct specification 

of within-subject correlation structure between repeated 

observations. In recent years, non-normal longitudinal data 

is analyzed by Generalized Estimating Equations (GEE) 

method. Goodness-of-fit statistics have been suggested for 

selecting an appropriate working correlation structure in 

GEE with longitudinal binary data. The purpose of this 

article to provide an overview of the GEE approach for 

analyzing correlated binary data and to choose the structure 

of the correlation matrix between repeated observations for 

model comparison, using data from Istanbul Stock 

Exchange (ISE) to increase on the return. 

Keywords: Working Correlation Structures; Generalized Estimating Equations; Longitudinal 

Binary Data; Entropy 

JEL Codes: C33, G00 

 

Introduction 

 

Generalized estimating equations (GEE) 

approach which extends generalized linear 

models is a very popular for the situation of 

correlated data obtained longitudinal studies. 

Although GEE models can be used for 

continuous responses, they have often 

become for analysis of categorical and 

count responses. GEE models use 

quasi-likelihood estimation and full 

likelihood of the data is not necessary. It 

does not need multivariate distributions, 

because GEE assumes only a functional 

relationship for marginal distribution at 



Using Entropy Working Correlation Matrix…..  
 

 

 

229 

 

each time point. (Hedeker and Gibbons, 

2006, 135). This approach is complex to 

interpret and implement from classical 

analysis approach. Despite the many 

benefits of classical analysis, it has some 

constraints. These are: (1) it does not model 

the mean response changes across time on 

each subject; (2) it has some assumptions 

about the variance-covariance matrix. For 

example; in the classical regression model, 

a single observation of the response variable 

is considered as the observational unit. 

Therefore, the statistical modeling assumes 

independence between observations (Lee et 

al., 2007, 188). But the assumption of 

independence is not usually used in 

longitudinal studies, because the 

relationship between repeated observations 

over time on the same subject can be 

correlated; (3) it does not consider about the 

structure of dependence between repeated 

observations obtained from the same subject. 

For these reasons, the classical approaches 

are insufficient. 

 

The structure of correlation is important to 

produce efficiency (i.e., statistical power) in 

the estimation of the regression parameter. 

However, the loss of efficiency is lessened 

as the number of subjects gets large. If the 

correlation data is correctly identified, the 

inferences about hypothesis tests and 

confidence intervals will be valid and 

correct. 

 

In this study, we consider to correlated 

binary data and compare several criteria that 

can be obtained the final selection of 

working correlation structure. 

Generalized Estimating Equations 

A review of GEE method            

GEE models are used for analyzing 

longitudinal binary studies involve binary 

responses for each subject and a set of 

covariates varying with or without time. 

Consider a longitudinal binary data set 

comprising (Xit,Yit) for i=1,…,n; t=1,…,ni. 

For the i
th

 subject, there are ni repeated 

binary response variables. Define a nix1 

binary response vector as Yi=(Yi1,…,Yini)' 

and a nixp covariate matrix as 

Xi=(Xi1,…,Xini)' with a p-dimensional 

covariate vector Xit. The binary response 

variable Yit=1 at time t, if the subject i has 

response 1, success and Yit=0 if otherwise. 

It is assumed that ni=m for all i and N=mn 

(Lin et al., 2008, 4428). 

 

The most important problem in this method 

is to determine the (co)variance structure. 

Even if the covariance structure has been 

misspecified in longitudinal studies, GEE 

method yields asymptotically normal and 

consistent for estimated parameters. GEE 

specifications are similar to generalized 

linear model (GLM), but those of GLM 

with one addition are comprised by GEE 

approach. There are three specifications in 

this model. First, the linear predictor is 

given as 

…………………….(1) 

Then a link function is chosen in Equation2. 

……………………..(2) 
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The common choices for link function are 

identity, logit, and log for continuous, 

binary and count data, respectively. The 

variance is described as a function of the 

mean, 

……………………..(3) 

where υ(μit) is a variance function and ϕ is a 

scale or distribution parameter. When each 

subject is measured at all m time points, the 

working correlation matrix of the repeated 

observations is of size mxm. If a subject has 

been measured at nitimepoints (ni<m), each 

subject’s correlation matrix Ri will be of 

size nixni. α is a vector of association 

parameters which are assumed to be  the 

same for all subjects. (Hedeker and Gibbons, 

2006, 135) 

 

Working Correlation Structures 

There are some possible correlation 

structures to be appropriate to use in GEE. 

These structures are independent, 

exchangeable, autoregressive, m-dependent 

and unstructured. The most commonly used 

working correlation structures and 

estimators are given in the Table 1. 

If data is balanced and there are clusters 

with small number of observations, the 

unstructured correlation matrix is 

recommended. An exchangeable correlation 

matrix may be most appropriate for datasets 

with clustered observations, which may not 

have a logical ordering at observations 

within a cluster. When the observations 

have been mistimed, it may be appropriate 

to regard a model where the M-dependent 

or autoregressive correlation is a function of 

the time between observations. Any 

estimation of α is not performed for both the 

independence and fixed working correlation 

structures (Horton and Lipsitz, 1999, 161). 

This paper presents the use of entropy for 

working correlation matrix, which supports 

an unstructured dependence within the time 

points. Although the word “entropy” 

originated in the literature of 

thermodynamics, its usage has penetrated 

almost all disciplines due to its association 

with the concept of information as 

envisaged by Claude Shannon. 

If the probabilities can be used rather than 

raw results, entropy can be calculated for 

one variable and can also be used for 

researching dependence between two or 

more variables. Due to this future of entropy, 

it could be a possible alternative for 

correlation coefficient. Because of the 

importance of working correlation matrix in 

GEE, it is crucial to use different working 

correlation structure in order to obtain 

efficient results. Therefore, entropy matrix 

could be the possible alternative for 

common working correlation matrix. 

The entropy and entropy correlation 

coefficient( ) formulations are given 

in Equation 4-8. 

………….(4) 

…….(5)    
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………(6) 

..……(7) 

…..(8) 

 

GEE Estimation 

The working covariance matrix for Yi 

equals ….….…(9) 

where Ai is mxm diagonal matrix with V(μit) 

as the t
th

 diagonal element. ϕ is an 

overdispersion parameter that can be 

estimated as 

follows:

.(10) 

where N is the total number of observations 

and p is the number of regression 

parameters. The square root of the 

overdispersion parameter is called the scale 

parameter. 

The GEE estimator of β is the solution 

of ....(11) 

where Di is the matrix of derivatives 

………………(12) 

Iterative process for GEE’s is given the 

following: 

1. Start with Ri=independent (i.e., identity) 

and ϕ =1: estimate β. 

2. Use estimates to calculated fitted 

values:  

3. Residuals:  

4. These are used to estimate Ai, Ri and  

5. Then the GEE’s are solved again to 

obtain improved estimates of β.  

 

 

…….(13) 

6. Between step 2 and 5 are repeated to 

converge to a value of β (Kılıç and 

Çilingirtürk, 2011, 327). 

 

Model Selection and Goodness of Fit 

Tests 

This paper examines three model selection 

criteria which are Marginal R
2
, QIC and 

QICU estimates. 

Repeated observations are correlated over 

time points, therefore residuals are not 

independent. R
2
 in the ordinary least 

squares method cannot be used for GEE 

directly. An extension of R
2
 statistics in 

GLM is called as Marginal R
2
 for GEE 

(Zheng, 2000, 1268). It can be calculated as 

shown below.  

...(14) 

Marginal R
2
 is a statistical measure which is 

often interpreted as the proportion of 

response variation “explained” by the fitted 

model. SAS PROC GENMOD could not be 

given Marginal R
2
, so this measurement is 

calculated with the macro %SelectGEE. 
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One of the goodness-of-fit statistics, 

Akaike’s Information Criterion (AIC), can 

be used for comparing competitive models. 

But this criteria could not be used for GEE 

method. Because GEE is not a 

likelihood-based method. In this reason, Pan 

(2001) introduced a selection method which 

named as Ouasilikelihood under the 

Independence Model Criterion (QIC). QIC 

is similar to AIC. The formulas AIC and 

QIC are given as 

follows: ……………(15) 

where L is the log likelihood and p is the 

dimension of β. 

…

….(16) 

 

Is quasi likelihood computed using R, Ω _̂I 

is the inverse of the variance matrix by 

fitting an independence model and  is 

modified sandwich estimate of variance 

from the model with R in Equation 16. 

When  approximates p, Pan 

(2001) also proposed QICU which could be 

useful in variable selection, but it is not 

used for model comparison. QICU’s formula 

is given in Equation 17 (Hardin and Hilbe, 

2003, 

139). …(17) 

Marginal R
2
, QIC and QICU are the criteria 

of the evaluation of choosing the best model. 

In this process, the model with lower value 

of QIC and QICU and higher value of 

Marginal R
2
 should be taken into account. 

These criteria are obtained by special macro 

software in the SAS 9.2 program 

(support.sas.com/resources/papers/proceedi

ngs09/251-2009.pdf, 2011, 5). 

 

Stock Price Change Model 

The significance and purpose of this 

study 

The purpose of this study is to model the 

ISE Stock Price Change and to present the 

entropy working correlation matrix. The 

model will have a technical analyses 

approach, because it takes just the increase 

signal in a quarterly base. According to 

goodness-of-fit criteria, appropriate working 

correlation structures in the GEE analysis of 

longitudinal studies with binary responses is 

determined. Furthermore, it is showed that 

which variables is the most effective on 

stock prices. One of the most thought in 

investors is to predict the future direction of 

stock prices. Stock prices have more 

volatility than the other investments. The 

most commonly used analyses in evaluating 

of the stock prices are fundamental and 

technical analysis.  Fundamental analysis 

is a method of evaluating securities by 

attempting to measure the intrinsic value of 

a stock. Fundamental analysts study 

everything from the overall economy and 

industry conditions to the financial 

condition and management of companies.  

Technical analysis is the evaluation of 

securities by means of studying statistics 

generated by market activity, such as past 
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prices and volume. Technical analysts do 

not attempt to measure a security's intrinsic 

value but instead use stock charts to identify 

patterns and trends that may suggest what a 

stock will do in the future” 

(http://www.investopedia.com/ask/answers/

131.asp, 2011). 

 

Data Sources 

Using 100 transactions data chosen ISE 

between 2008/12 and 2010/12 quarterly, we 

estimate parameter estimates and the 

corresponding standard errors under 

exchangeable, AR(1), M(2) dependent, 

unstructured and entropy correlation 

structures via GEE method. We compare the 

criteria for choosing between these 

structures. In this study, response variable is 

stock price. According to the technical 

analysis, it is coded 1 if it increases 

according to the previous 3-month period, 

otherwise 0. Covariate variables are 

transaction volume, stock dividend, cash 

dividend, increase of capital, price index, 

exchange rate of dollar, Nomenclature 

Generale des Activites Economiques dans 

I'Union Europeenne, NACE, (General 

Name for Economic Activities in the 

European Union) Codes and time. 

Transaction volume and dividend paid in 

cash are coded 1 if it increases according to 

the previous 3-month period, otherwise 0. 

The effects of NACE, increase of capital 

and stock dividend of these factors on stock 

return are not statistically significant. We 

take the transaction volume and dividend 

paid in cash as the covariate variables. 

 

 

Findings and Results 

Let μit denote the mean, the probability of 

increasing stock prices for i=1,…,100 

stocks and t=3 (baseline), 6, 9, 12, 15, 18, 

21, 24 months. logit link function for binary 

responses can be shown as follows: 

…(18) 

where β0, β1, β2, β3 are the regression 

coefficient parameters for intercept, the size 

of transaction volume, dividend paid in cash 

and time respectively. Table 2 presents the 

results of the GEE models using several 

various working correlations. The analysis 

results are similar in the estimated 

parameters for all structures. The negative 

sign of the regression coefficient of time 

variable indicates that decreasing on stock 

prices is stronger at the beginning of the 

follow-up period. From the results, high the 

size of transaction volume and dividend 

paid in cash have significantly positive 

effect on increasing stock prices. However, 

as shown in Table 2, p-values imply that 

there are statistically significant effects on 

these variables. Table 3 summarizes the 

results of the analysis with different 

working correlation structures. Although 

QIC and Marginal R
2
 have selected the best 

fitting model, these criteria are very close 

for all structures. The M(2) dependent 

structure is found to have the smallest QIC 

in all other structures and thus is selected as 

the preferred working correlation structures. 

For without time dependent data set, this 

structure is used to consider as a function of 

time between observations, M(2) dependent 
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is preferred. 

Conclusions 

 

We have discussed selecting the working 

correlation structure in GEE with 

longitudinal binary response. An application 

of longitudinal studies to data on stock price 

is used as an example. GEE is relatively 

new method for the analysis of longitudinal 

studies on stock price. GEE method yields 

the estimates of regression coefficients and 

their variances from different correlation 

structures that can be sensitivity to incorrect 

specification. will be estimated 

asymptotically normal and consistently, 

even when the working correlation structure 

is misspecified. The choice of Ri will 

influence the efficiency for estimates of 

parameters and variances. It is more 

efficient to use Ri that is chosen correct 

specification. For this study, the results of 

the correlation structure M-dependent and 

AR(1) are more similar. If the repeated 

observations across subjects are measured at 

equally spaced in time, AR(1) structure is 

preferred in longitudinal data (Shults et al., 

2009, 2353). M-dependent structure is used 

to consider as a function of time between 

observations for without time dependent 

data set. According to Marginal R
2
, QIC and 

QICU of selection criteria, M(2) dependent 

structure is preferred in this study. However, 

one of the main points of this study is to 

compare the efficiency of the entropy 

matrix as a working correlation structure to 

other structures. According to Marginal R
2
, 

QIC and QICU of selection criteria (lower 

QIC and OICU values and higher Marginal 

R
2
 value), entropy matrix is preferred 

instead of unstructured correlation matrix. 

This result showed that entropy matrix 

could be used as a working correlation 

structure instead of unstructured correlation 

matrix in this study. In order to determine 

the status of the stock price, financial ratios 

are calculated by balance sheets, financial 

and income statements of companies. 

Further studies are needed to investigate 

how to affect these ratios as covariate 

variables when more common working 

correlation structures are used. 
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Table 1.Commonly used working correlation structures and estimators 

Working 

Correlation 

Structures 

Definition Example 

The number 

of 

parameters 

Estimators 

Independent 
 

1     j=k
,

0    j k
ij ikCorr Y Y


 



 

1 0 .. 0

0 1 .. 0

.. .. .. ..

0 0 .. 1

 
 
 
 
 
 

 

0 

In this case, working 

correlation is not 

estimated.  

Exchangeab

le 

 
1     j=k

,
    j k

ij ikCorr Y Y



 



 

1 ..

1 ..

.. .. .. ..

.. 1

 

 

 

 
 
 
 
 
 

 

1 

 

 

*
1

*

1

1
ˆ

1

K

ij ik

i j k

K

i i

i

e e
N p

N n n


  






 





 

Unstructure

d 

 
1     j=k

,
  j kij ik

jk

Corr Y Y



 



 

12 1

12 2

1 2

1 ..

1 ..

.. .. .. ..

.. 1

t

t

t t

 

 

 

 
 
 
 
 
 

 

 1 2t t     1

1
ˆ

K

jk ij ik

i

e e
K p


 






 

Autoregressi

ve of first 

order 

[AR(1)] 

 ,

i

,

t=0,1,...,n -j

t

ij i j tCorr Y Y    

1

2

1 2

1 ..

1 ..

.. .. .. ..

.. 1

t

t

t t

 

 

 





 

 
 
 
 
 
 
 

 

1 

 

 

, 1

1 11

1

1

1
ˆ

1

i

K

ij i j

i j n

K

i

i

e e
K p

K n






  






 

 



 

M-dependen

t 

 
1     t=0

,    t=1,2,...,m

0     t>m

ij ik tCorr Y Y 




 



 

1 1

1 2

1 2

1 ..

1 ..

.. .. .. ..

.. 1

t

t

t t

 

 

 





 

 
 
 
 
 
 

 

0 1M t  

 

 

 

,

1

1

1
ˆ

i

K

t ij i j t

i j n tt

K

t i

i

e e
K p

K n t






  






 

 



 

Fixed  ,ij ik jkCorr Y Y r  

12 1

12 2

1 2

1 ..

1 ..

.. .. .. ..

.. 1

t

t

t t

r r

r r

r r

 
 
 
 
 
 

 

0 

(User 

specified) 

In this case, working 

correlation is not 

estimated.  
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Table 2.Analysis of the GEE parameter and standard error (SE) estimates, using various 

working correlation structures 

Parameter 
Exchangeabl

e 
AR(1) 

M(2) 

Dependent 

Unstructured 
Entropy 1 Entropy 2 

 
Estim

ate 
SE 

Estim

ate 
SE 

Estim

ate 
SE 

Estim

ate 
SE 

Estima

te 
SE 

Estima

te 
SE 

Intercept 
0.562

7* 

0.16

56 

0.580

9* 

0.16

50 

0.577

0* 

0.16

51 

0.716

9* 

0.15

79 

0.7040

* 

0.15

80 

0.5788

* 

0.16

33 

The size of 

transaction 

volume, 

(TV) 

1.424

7* 

0.16

30 

1.423

5* 

0.16

50 

1.429

3* 

0.16

49 

1.194

6* 

0.15

19 

1.2612

* 

0.15

79 

1.3955

* 

0.16

14 

Dividend 

paid in cash, 

(DC) 

0.920

3* 

0.36

57 

0.960

2* 

0.37

20 

0.949

1* 

0.37

00 

0.795

3* 

0.31

42 

0.7459

** 

0.33

08 

0.8497

** 

0.35

34 

Time 
-0.13

02* 

0.03

73 

-0.134

7* 

0.03

69 

-0.133

7* 

0.03

70 

-0.175

4* 

0.03

31 

-0.153

8* 

0.03

53 

-0.132

1* 

0.03

68 

Marginal R
2
 0.13108 0.13118 0.13118 0.12443 0.12919 0.13092 

QIC 882.305 882.264 882.262 889.705 884.828 882.617 

QICU 882.379 882.427 882.412 888.163 883.950 882.416 

*p<0,01 ** p<0,05 

 

Table 3.Estimated working correlation matrices for various structures 

Excha

ngeab

le 

Ti

m

e 1 

Ti

m

e 2 

Ti

m

e 3 

Ti

m

e 4 

Ti

m

e 5 

Ti

m

e 6 

Ti

m

e 7 

Ti

m

e 8 

 

Unstr

uctur

ed 

Ti

m

e 1 

Ti

m

e 2 

Ti

m

e 3 

Ti

m

e 4 

Ti

m

e 5 

Ti

m

e 6 

Ti

m

e 7 

Ti

m

e 8 

Time 

1 

1.

00

0 

-0.

01

7 

-0.

01

7 

-0.

01

7 

-0.

01

7 

-0.

01

7 

-0.

01

7 

-0.

01

7 

 
Time 

1 

1.

00

0 

-0.

03

8 

-0.

20

1 

-0.

10

2 

-0.

18

5 

-0.

04

0 

-0.

17

2 

-0.

19

5 

Time 

2 

-0.

01

7 

1.

00

0 

-0.

01

7 

-0.

01

7 

-0.

01

7 

-0.

01

7 

-0.

01

7 

-0.

01

7 

 
Time 

2 

-0.

03

8 

1.

00

0 

0.

07

4 

-0.

10

5 

0.

16

8 

-0.

14

3 

0.

20

0 

0.

07

7 

Time 

3 

-0.

01

7 

-0.

01

7 

1.

00

0 

-0.

01

7 

-0.

01

7 

-0.

01

7 

-0.

01

7 

-0.

01

7 

 
Time 

3 

-0.

20

1 

0.

07

4 

1.

00

0 

0.

05

4 

0.

00

6 

-0.

00

8 

0.

22

9 

0.

10

4 
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Time 

4 

-0.

01

7 

-0.

01

7 

-0.

01

7 

1.

00

0 

-0.

01

7 

-0.

01

7 

-0.

01

7 

-0.

01

7 

 
Time 

4 

-0.

10

2 

-0.

10

5 

0.

05

4 

1.

00

0 

-0.

16

7 

0.

27

0 

-0.

04

0 

-0.

08

9 

Time 

5 

-0.

01

7 

-0.

01

7 

-0.

01

7 

-0.

01

7 

1.

00

0 
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