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Optimized Crossover Genetic Algorithm to Minimize 

the Maximum Lateness of Single Machine Family 

Scheduling Problems  

 

 

Abstract 

 

We address a single machine family scheduling problem 

where jobs are partitioned into families and setup time is 

required between these families. For this problem, we 

propose a genetic algorithm using an optimized crossover 

operator to find an optimal schedule which minimizes the 

maximum lateness of the jobs in the presence of the 

sequence independent family setup times. The proposed 

algorithm using an undirected bipartite graph finds the best 

offspring solution among an exponentially large number of 

potential offspring. Extensive computational experiments 

are conducted to assess the efficiency of the proposed 

algorithm compared to other variants of local search 

methods namely dynamic length tabu search, randomized 

steepest descent method, and other variants of genetic 

algorithms. The computational results indicate the proposed 

algorithm is generating better quality solutions compared to 

other local search algorithms. 

Keywords: Genetic algorithm, Single machine scheduling, Maximum lateness 

 

Introduction 

Machine Scheduling Problems (MSPs) are 

one of the classical combinatorial 

optimization problems which exist in many 

diverse areas such as transportation, 

manufacturing system, etc. The main focus 

is on the efficient allocation of one or more 

resources to activities over time. An 

excellent survey can be found in (Lawler et 

al., 1993). A single machine scheduling 

problem is one where there are N jobs to be 

scheduled on a single machine. In this paper, 

we consider a Single Machine Family 

Scheduling Problem (SMFSP), where jobs 

are partitioned into families and setup time 

is required between these families.  (Hariri 

and Potts, 1997) describe the problem in 

which N jobs, each characterized by a 

processing time    and a due date   , 

for          , are partitioned into F 

families. For each family f (         ), 

jobs are split into batches, where a batch is   

defined  as  a  maximal  set of  contiguously 

scheduled jobs from the same family which 

share the same setup time. A sequence 

independent family setup time   , is required 

at the start of the schedule and also 

whenever there is a switch in processing 

jobs from one family to jobs of another 

family. We assume that all the jobs are 

available at time zero. The objective is to 

find a schedule which minimizes the 

maximum lateness      of the jobs. The 

SMFSP for arbitrary family f is an NP-hard 

problem as shown by (Bruno and Downey, 

1978). This problem can be represented as 

1   |      based on the standard 

classification of (Graham et al., 1979). 

Setup includes obtaining tools, positioning 

work in process, return tools, cleanup, etc. 

In most scheduling research work, the setup 

time has been considered as either negligible 

or hence ignored, or considered as part of 

the processing time. While these 

assumptions simplify the problem, they 

adversely affect the solution quality for 

many applications which require explicit 

treatment of setup (See Allahverdi et al., 

1999).In this study, we propose an 

Optimized Crossover Genetic Algorithm 
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(OCGA) for the problem of 1   |     . The 

objective is to find a schedule which 

minimizes the maximum lateness      of 

the jobs in the presence of the sequence 

independent family setup times   .  

Literature Review 

Numerous optimization methods including 

exact methods, heuristics and local search 

algorithms have been proposed for the 

problem of 1   |     . Excellent reviews on 

scheduling with setup considerations are 

given by (Potts and Kovalyov, 2000) and 

(Allahverdi et al., 1999, 2008). 

(Monma and Potts, 1989) show that there 

exists an optimal schedule in which the 

Earliest Due Date (EDD) rule of (Jackson, 

1955) applies within each family f. They 

consider a variety of SMFSPs under the 

assumption that the `triangle inequality' 

holds for each machine i, which means that 

               , for all distinct families f, 

g and h. Using dynamic programming, they 

solve the problems of 1    |      and 

1   |      in             and          

time respectively. (Hariri and Potts, 1997) 

propose a branch and bound (B&B) 

algorithm for the problem of 1   |     .  

They obtained an initial lower bound by 

ignoring setups, except for those associated 

with the first job in each family, and solved 

the resulting problem with the EDD rule. 

This lower bound is improved by a 

procedure that considers whether or not 

certain families are split into two or more 

batches. Computational results show that the 

algorithm is successful in solving instances 

for up to about 50 jobs.  

(Baker and Magazine, 2000) design an 

algorithm that uses a B&B approach 

combined with dominance properties which 

reduced the effective problem size to solve 

the problem of 1  |     , where setup times 

are identical. The identification of composite 

jobs allows the effective problem size to be 

reduced before the enumeration begins. 

Their proposed algorithm solves problems 

with up to 60 jobs.(Zdrzałka, 1991) develops 

heuristic methods for 1   |      in which 

there are unit setup times, and under the 

assumption that due dates are non-positive 

to ensure that the objective function is 

positive. When all jobs of family are 

scheduled contiguously, computational 

results are shown to have a maximum 

lateness which does not exceed twice the 

optimal value. Moreover (Zdrzałka, 1995) 

proposes two approximation algorithms 

without the unit setup time assumption and 

under non-positive due dates. The algorithm 

starts with a schedule in which each batch 

contains all jobs from a family, and allows 

each family to be split into at most two 

batches. The algorithm requires       time 

and it generates a schedule with maximum 

lateness that is no more than 3/2 times the 

optimal value. 

(Hariri and Potts, 1997) design two 

heuristics in which the first heuristic assigns 

all jobs of a family to a single batch, and the 

second heuristic splits each family into at 

most two batches according to the due dates 

of its jobs. They show that both heuristics 

require O(N log N) time. They also show 

that the first heuristic has a worst case 

performance ratio of 2-1/F, where a 

composite heuristic algorithm which selects 

the better of the schedules generated by the 

two heuristic has a worst case analysis of 5/3 

for arbitrary F. (Pan et al., 2001) suggest a 

mathematical model that first finds an initial 

schedule and then applies merging 

properties to improve the initial schedule. 

Computational results show that their 

algorithm is successful in solving problems 

with up to 1000 jobs. (Schultz et al., 20004) 

develop a new neighborhood search 

heuristic for solving problem 1   |      

based on the properties and theorems 

presented by (Hariri and Potts, 1997) and 

(Baker, 1999). The procedure is 

computationally efficient for problem 

instances with 500 jobs. 

(Uzsoy and Velasquez, 2008) present 

heuristic algorithms, a rolling horizon 

heuristic (RH) and an incomplete dynamic 

programming heuristic to minimize 

maximum lateness of a single machine 

scheduling problem with family dependent 
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set up times. When a machine processes two 

jobs from the same family one after the 

other, no set-up time is required. Extensive 

computational experiments where test 

problems are randomly generated, show that 

the rolling horizon procedure outperforms 

other heuristic algorithms except when setup 

factors are large. 

(Jin et al., 2009) propose a batch-based 

simulated annealing algorithm (BSA) with 

the new neighborhood developed based on 

batch destruction and construction. 

Experiments are carried out on the randomly 

generated problems and the real-life 

instances from a factory. Computational 

results show that the proposed algorithm 

outperforms the standard simulated 

annealing (SSA) in both solution quality and 

computational effort. Algorithm BSA also 

outperforms the existing RH algorithm. 

Results of the real-life problems also show 

that BSA algorithm can obtain near optimal 

solutions in 0.1 s. 

(Lee et al., 2007) propose a MultiCrossover 

Genetic Algorithm (MXGA) for the problem 

of 1   |     . They hypothesize that 

generating multiple offspring during the 

crossover can improve the performance of a 

genetic algorithm. Computational 

experiments of 50 and 100 jobs show that 

the proposed MXGA achieves better 

solutions compared to a standard genetic 

algorithm, both standard and dynamic length 

tabu search and a randomized steepest 

descent method. 

Optimized Crossover Genetic Algorithm 

(OCGA) 

Genetic Algorithms (GAs) were first 

proposed by (John Holland, 1975). The GA 

is a heuristic search technique that simulates 

the processes of natural selection and 

evolution. A GA maintains a population of 

individuals over many generations. An 

initial population of individuals, each 

representing a feasible solution to the given 

problem is constructed at random. For each 

generation, the fitness value of each 

individual in the population is measured, 

where a high fitness value would exhibit a 

better solution compared to a low fitness 

value. Fitter members are more likely to be 

selected from the population using a 

selection mechanism to produce offspring 

for the subsequent generation via crossover 

and mutation. After many generations the 

result is hopefully a population that is 

substantially fitter than the original. 

Most of the crossover mechanisms 

determine offspring using a stochastic 

approach and without reference to the 

objective function. (Aggarwal et al., 1997) 

propose an optimized crossover mechanism 

for the independent set problem which takes 

into account the objective function in a 

straightforward way. They recognize that the 

merge operation formulated by (Balas and 

Niehaus, 1996) can be thought of as an 

optimized crossover. Hence, they construct a 

bipartite graph from the two parent 

independent sets and determine an optimum 

child using a matching algorithm in the 

graph.  

Moreover, they consider the parent which is 

least similar to the optimum child as the 

second child. (Balas and Niehaus, 1998) 

develop this approach to produce a superior 

genetic algorithm. They examine variations 

of each element of the genetic algorithm and 

develop a steady state replacement that 

performs better than its competitors on most 

problems. (Ahuja et al., 2000) propose a 

greedy genetic algorithm which uses two 

crossover schemes called path crossover and 

optimized crossover for the quadratic 

assignment problem. The results on a large 

set of standard problems show that path 

crossover performs slightly better than 

optimized crossover. 

In the remainder of this section we describe 

the proposed optimized crossover and 

discuss how various steps of the GA are 

implemented for the proposed algorithm. 

Briefly, the OCGA selects two parents from 

the population and generates two children by 

an optimized crossover mechanism which 

designed using an undirected bipartite graph. 

A F-point swap operator is used to produce 

children when the optimized crossover is not 

applied to the parents. To maintain diversity 
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within the population a binary mutation is 

randomly applied to each child. Moreover 

elitism replacement scheme and filtration 

strategy are used to preserve good solutions 

and to avoid premature convergence. The 

general framework of OCGA can be shown 

as follows: 

Algorithm OCGA 

 begin 

 Initialize Population (randomly generated); 

 Fitness Evaluation; 

 repeat 

 Selection (probabilistic binary tournament 

selection); 

Optimized Crossover; 

F-point Swap (if the optimized crossover is 

not applied); 

 Mutation (binary mutation); 

 Fitness Evaluation; 

 Elitism replacement with Filtration; 

 until the end condition is satisfied; 

 return the fittest solution found; 

 end 

Encoding Scheme and Selection 

Mechanism 

A natural way of coding the problem would 

be to represent each solution by a bit string. 

We use a binary {0, 1} representation that 

(Mason, 1992) applied for solving the 

problem of 1   | ∑    . Using this binary 

representation we defined the partition of 

families into batches, where `1' means the 

first job in a batch and `0' means a 

contiguously sequenced job in a batch. The 

length of the individual corresponds to the 

number of jobs N. After choosing the 

representation, we uniformly randomly 

generate an initial population which is of 

size 100 in our implementation using a 

random number generator. We assume that 

the size of population is kept constant 

throughout the process. 

Moreover we use a probabilistic binary 

tournament selection scheme to select 

individuals from the population to be the 

parents for the OCGA with a given selection 

probability    = 0.75 based on initial 

investigation presented in section 

computational experiments. In other words, 

we give a 75% chance for the fitter 

individual to be selected as the parent 

compared to the less fit individual which 

only has a 25% chance to be selected. 

Fitness Evaluation 

The fitness function is used to evaluate the 

individuals which are introduced into the 

population. We can define the fitness 

function using the property of EDD rule for 

batches developed by (Baker, 1999), in 

which there exists an optimal schedule 

where the batches are sequenced in a non-

decreasing order according to their due 

dates. As mentioned earlier, a batch is a 

maximum group of contiguously scheduled 

jobs within a family. Let     and     denote 

the due date and processing time of the jth 

job from family f  which is identified as pair 

(f, j). Let (f, h) ,..., (f, k) be the jobs of an 

arbitrary batch b, then the batch due date 

   is defined as follows: 

      
       

{       }          

 ∑   

 

   

       

      

In an optimal schedule, the batches are 

sequenced in a non-decreasing order 

according to their batch due dates 

               ). A sequence independent 

family setup time    is added before the start 

of each batch and when there is a switch in 

the processing jobs from one family to jobs 

of another family. We define fitness 

function as the maximum lateness      of 

the schedule defined as         
 

     

where          and    denotes the 

completion time of job j. 

Optimized Crossover 

According to (Aggarwal et al., 1997) during 

the optimized crossover scheme, two parents 

produce two new children. The first child is 

called the O-child (Optimum child) and the 

second child is called the E-child 

(Exploratory child). The O-child is 

constructed in such a way as to have the best 

objective function value from the feasible 

set of children, while the E-child is 
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constructed so as to maintain the diversity of 

the search space. We will now explain the 

optimized crossover strategy on determining 

O-child and E-child for the problem of  

1   |     . 

Step 1: Identify the parent with the 

least      as    and select the 

family within the   ,which contains 

the job where      occurs as 

family f. Label another parent 

as   . Note that this family f  will 

be used in both    and   .
 
 

 

Step 2: Construct an undirected bipartite 

graph          where
 

                 representing 

the jobs of family f,   
      

        
            

   represent

ing bit situation of the jobs of 

family f  in both    and
 

                 
        , and E 

representing the arc set in the graph 

in which,          {       
 }    if 

and only if jobs j is represented 

with the bit situation    and 

  
 
 
respectively. 

 

Step 3: Determine all the maximum 

matchings in graph G. Suppose that 

there are k jobs in family f that are 

represented with a different bit 

situation in the two parents. There 

will be exactly    maximum 

matchings in graph G. 

Step 4: Generate a temporary offspring 

from
 

   by 

replacing the bit situations of the 

jobs in family f  which corresponds 

to one of the maximum matchings 

in graph G. Repeat the procedure 

for      times to 

generate    temporary offspring. 

Note that one of the temporary 

offspring is exactly the same as    , 

so we remove it. 

 

Step 5: Select a temporary offspring with 

the least      among    
  temporary offspring as O-child. 

 

Step 6: Generate E-child from
 

   by 

replacing the bit situations of the 

jobs in family f with      
 

   
                  

     
  , 

where
 

    indicates family f of 

individual i. 

Since the number of temporary offspring 

will increase exponentially with the number 

k, we restricted the maximum temporary 

offspring in graph G in every case to    

even if the jobs that have a different bit 

situation in two parents are more than 5. In 

addition the proposed optimized crossover is 

applied based on a crossover probability, 

     0.75. In other words, the proposed 

optimized crossover is applied to 75% of 

pairs of selected parents. We demonstrate 

the proposed optimized crossover by an 

example as in Figure 1. 

 

 

 

 

 

 

 

Figure 1: Two parent    and    

Given the two parents     and    with 15 

jobs that are partitioned into 3 families. 

Suppose that    has the least       which 

occurs in job 3 of family 2. We formulate an 

     
 Family 1 Family 2 Family 3  

    1 0 1 0 0 1 1 0 1 0 1 1 0 1 1  

     
 Family 1 Family 2 Family 3  

    1 0 0 0 1 1 0 1 1 1 1 0 1 0 1  

     



Optimized Crossover Genetic Algorithm….. 
 

 

 

245 

 

undirected bipartite graph G of the jobs of 

family 2 in both     and    that is shown in 

Figure 2. 

 

                                                          

 

 

    

      
               

               
           

               
     

Figure 2: Undirected bipartite graph G of the jobs of family 2 in both    and    

In this case, the jobs 2, 3, and 5 of family 2 

are represented with a different bit situation 

in both     and    , so k = 3 and we can 

obtain    maximum matchings in this graph. 

The eight temporary offspring constructed 

by replacing the bit situations of the jobs in 

family 2, corresponds to each maximum 

matchings, are shown in Figure 3 

 

 

 

 

 

 

 

Figure 3: The eight temporary offspring 

Note that the fourth temporary offspring is 

the same as    , so we remove it. Suppose 

that the seventh temporary offspring has the 

least      , then we select it as O-child and 

we generate 

the E-child from     using Step 6. The O-

child and E-child are shown in Figure4.

Figure 4: The O-child and E-child

     
temporary offspring 1    1 0 1 0 0 1 1 1 1 1 1 1 0 1 1  

     

temporary offspring 2   1 0 1 0 0   1 1 1 1 0   1 0 1 0 1  

     

temporary offspring 3 1 0 1 0 0 1 1 0 1 1 1 1 0 1 1  

 

 

 

    

temporary offspring 4 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1  

     

temporary offspring 5 1 0 1 0 0 1 0 1 1 1 1 1 0 1 1  

     

temporary offspring 6 1 0 1 0 0 1 0 1 1 0 1 1 0 1 1  

     

temporary offspring 7 1 0 1 0 0 1 0 0 1 1 1 1 0 1 1  

     

temporary offspring 8 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1  

     

     
O-child 1 0 1 0 0 1 0 0 1 1 1 1 0 1 1  
     
E-child    1 0 0 0 1    1 1 1 1 0    1 0 1 0 1  
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F-point Swap:eproduction of parents is 

used when crossover operator is not applied 

to the selected parents in a standard GA. 

(Lee et al., 2007) use a swap operator 

instead of the exact duplicate of the parents 

in their MXGA. In our study, we use a F-

point swap operator to produce two new 

offspring when the optimized crossover is 

not applied to the parents. This operator 

could be regarded as a giant mutation where 

the elements in the parent are randomly 

reassigned. The process of F-point swap 

operator is as follows: 

 

Step 1: Select randomly a swap point 

within family f = 1 from a parent to 

form   two sub-strings. 

Step 2: Swap the position of the sub-strings 

(except the first job in the selected 

family) with the swap point as the 

point of exchange. 

Step 3: Repeat Step 1 and Step 2 for each 

family f (         ). 

 

The steps above are repeated for the second 

parent to create a second offspring. An 

example of F-point swap operator for the 

two parents is given in Figure 5. A swap 

point is chosen randomly between the fourth 

gene and the fifth gene from family 1 in 

parent 1. Two sub-genes ({1,0,0},{1}) are 

formed in family 1. Note that the first gene 

in family 1 is not in the list of the sub genes 

and it will remain unchanged. We swap the 

sub-genes in family 1 and repeat these steps 

for other families in parent 1. After 

completion a new offspring is obtained from 

parent 1. Similarly, offspring 2 is formed 

from parent 2. 

Figure 5: An example of F-point swap 

Mutation 

 

We use binary mutation operator in our 

OCGA. Binary mutation is applied 

randomly to each offspring individually that 

alters each gene from `1' to `0' or vice versa 

with a given mutation probability    = 1/N, 

where N is the number of jobs.  Note that 

each gene can be selected to be mutated 

except the first gene in each family. 

 

When a gene is flipped from `0' to `1', it 

means we split a single batch into two 

separated batches. We combine two 

contiguously scheduled batches into one 

single batch if the gene is flipped from `1' to 

`0'. In this case, the total number of the jobs 

in the new batch equal to the sum of the jobs 

in the previous two separated batches. 

 

Replacement 

 

In our study, we use elitism replacement 

scheme where the good individuals will 

survive for the next generation and are never 

lost unless better solutions are found. The 

elitism replacement is applied as follows: 

both parent and offspring populations are 

combined into a single population and sorted 

in a non-increasing order of their associated 

fitness value. Then, the first half of the 

combined population is selected as the 

individuals of the new population for the 

next generation. 

 

 In order to avoid premature convergence 

and to add diversity to the new population, 

we use the filtration strategy proposed by 

(Lee et al., 2007). Identical individuals are 

identified from the new population and, they 

          

Parent 

1 
1100    1 101    00 11    101 

 Parent 2 101    10 10    010 111    00  

          
          

Offspri

ng 1 

11100 10001 11011  Offspring 2 11001 10100 10011  

          

                                                                     = swap point  
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are removed and replaced by uniformly 

randomly generated new individuals. Since a 

certain amount of computational time is 

required during the filtration strategy, so we 

apply the filtration in every 50 generations. 

 

Computational Experiments 

 

In this section, we present the computational 

results of the proposed OCGA and the 

comparisons with other variants of local 

search methods namely Standard Genetic 

Algorithm (SGA), Dynamic Length Tabu 

Search (DLTS), Randomized Steepest 

Descent Method (RSDM), and 

Multicrossover Genetic Algorithm (MXGA) 

where the last three algorithms are proposed 

by (Lee et al., 2007). The algorithms are 

coded in C language and implemented on a 

Pentium 4, 2.0 GHz computer with 2.0 GB 

RAM. 

 

We genarated problem instances with 50 and 

100 jobs, and with 4, 8 and 12 families. Jobs 

are distributed uniformly across families, so 

that each family contains ⌊   ⌋
 
or ⌈   ⌉

 
jobs. This classification of problem 

instances have been widely used by other 

literature so we adopt it for our 

computational experiments. 

 

In each problem, processing times are 

randomly generated integers from an 

uniform distribution defined on [1, 100]. We 

also generated five sets of integer due dates 

from the uniform distribution [0,   ], where 

   0.2, 0.4, 0.6, 0.8, 1.0}, and P is 

summation of generated processing times in 

each problem. Based on (Hariri and Potts, 

1997), the three setup times class A, B and 

C are randomly generated integers from the 

three uniform distributions [1, 100], [1, 20] 

and [101, 200] respectively. For each 

combination of N, F,   and setup times 

class, five problem instances are created.  

 

We used the lower bound proposed by 

algorithms. Algorithms are compared by 

listing, for each combination of value N, F, 

  and setup times class, the average relative 

percentage deviation (ARD) and the 

maximum relative percentage deviation 

(MRD) of the heuristic solution value from 

the lower bound. The ARD and MRD 

formulas are shown in equations (1) and (2) 

respectively. 

 

     
∑ ∑  

        
   

       
   

 
   

  
       (1)         

                
         

 
        

   
       (2)            

where, 

 I= number of problem instances with the 

relevant combination of parameters;  

 R= number of repeated runs for problem 

instance i (         );        

    = heuristic solution found in rth run of 

problem instance i;         

   = lower bound of the problem instance i. 

 

Initial Investigations of OCGA 

 

We gradually construct the proposed 

algorithm from the standard GA. The 

differences between the OCGA and SGA are 

with regards to the use of the crossover 

operator, reproduction procedure and the 

replacement scheme. For the initial 

investigation, five problem instances with 

five combinations of due dates are generated 

as described earlier and setup time class A is 

used in this experiment. For each 

combination of the problem instance and the 

due date range, a total of 30 runs were 

performed to obtain the average value. In 

order to have a fair comparison in this 

experiment, a fixed time limit of 15 CPU 

seconds per run is imposed. 

 

In the first investigation, we employ 

selection probability    with four different 

values in the SGA to determine the most 

efficient value of    which will be used in 

the binary tournament selection mechanism 

in our computational experiments. The 

results are given in Table 1. 
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Table 1:   Comparison among selection probabilities (15 CPU seconds per run) 

N F 

        SGA 

      = 0.60 

          SGA 

         = 0.70 

              SGA 

            = 0.75 

             SGA 

          = 0.80 

ARD MRD 
    

ARD 
MRD       ARD MRD     ARD MRD 

50 
4 23.03 85.82    21.92 84.45       21.13 84.24     22.11 86.89 

8 19.16 56.80    19.26 56.01       19.13 55.91     19.39 56.50 

100 
4 25.10 112.02    24.76 111.64       24.71 111.66     25.14 111.74 

8 23.40 89.92    23.41 89.60       23.29 87.95     23.64 88.20 

Average 22.42 86.14    22.34 85.43       22.07 84.94     22.57 85.83 

 

For each algorithm the entries report the 

average value of ARD and MRD computed 

over the five problem instances with five 

combinations of due dates (i.e. 750 runs) 

and the final line gives the overall value. It 

is clear that better solution quality is 

obtained under the optimized crossover 

operator. From Table 1, we can conclude 

that a selection probability of 0.75 can be 

effective for getting better results. Table 2 

shows the computational results of the 

optimized crossover operator employed in 

the SGA compared to the 1-point crossover 

operator. The results of this investigation 

determine whether our proposed optimized 

crossover operator is advantageous to 

produce offspring during crossover. 

 

 

Table 2:   Comparison between crossover operators (15 CPU seconds per run) 

N F 
     Optimized  Crossover         1-point Crossover 

 ARD   MRD  ARD   MRD 

50 
4 18.62  79.00 21.80  83.45 

8 17.69  56.40 19.33  61.95 

100 
4 21.06  99.61 24.92  105.16 

8 19.30  84.31 22.18  86.70 

Average 19.17  79.83 22.06  84.32 

 

Table 3 indicates  results of the F-point swap operator that we employed in the SGA 

compared to the reproduction when the crossover operator is not applied. 

Table 3:   Results of F-point swap (15 CPU seconds per run) 

N F 
            F-point swap           Reproduction 

ARD MRD ARD  MRD 

50 
4 21.80 86.53 23.43 89.06 

8 20.36 55.77 20.36 56.24 

100 
4 24.06 127.12 28.00 131.41 

8 23.77 104.69 25.02 106.96 

Average 22.50 93.53 24.20 95.92 

 

From Table 3 we can conclude that the 

performance of the SGA improves the 

solution quality when F-point swap operator 

is used. This shows that the F-point swap 

operator manages to create more diversity in 

population which leads the search to explore 

a better local optima. The computational 

results for the different replacement 

strategies that we employed in the SGA are 

reported in Table 4. We compare the steady 

state replacement strategy with the proposed 



Optimized Crossover Genetic Algorithm….. 
 

 

 

249 

 

elitism replacement and filtration strategy described.earlier.

 

Table 4:   Comparison between replacement strategies (15 CPU seconds per run) 

 

The results obtained by the elitism 

replacement and filtration strategy are better 

compared to the steady state. In fact, the 

elitism replacement and filtration strategy 

can search the solution space in a more 

efficient manner. The demonstrated 

computational experiments provide 

guidelines to design the proposed OCGA. 

Thus, we apply the optimized crossover and 

the F-point swap operator to produce 

offspring in the proposed OCGA. While the 

elitism replacement and filtration strategy 

are used to preserve good solutions and to 

avoid premature convergence. 

 

Competitors 

 

We used four local search algorithms 

namely SGA, DLTS, RSDM, and MXGA to 

compare with our proposed OCGA. In the 

case of SGA a standard 1-point crossover 

operator is applied to produce two offspring 

from two selected parents, while a 

reproduction procedure is used when the 

crossover does not apply to the selected 

parents. Also the replacement scheme 

employed in the SGA is the steady-state 

replacement scheme. 

 

As for the DLTS, RSDM, and MXGA, all 

three local search algorithms are proposed 

by (Lee et al., 2007). The DLTS applies the 

shift job neighborhood approach and 

dynamically controls the length of the tabu 

list during implementation in order to 

achieve better solution quality. After a move 

is executed, the job that is shifted is stored in 

the tabu list, or both jobs are stored if the 

move is effectively transpose of adjacent 

jobs. Thus, a neighbor is tabu if it is 

generated by shifting one of the jobs in the 

tabu list. Also an aspiration criterion is used 

into DLTS, in which if the solution value of 

a tabu neighbor is better than that for all 

solutions generated thus far, then its tabu 

status is overridden. 

 

In the case of RSDM, a steepest descent 

method using a shift job neighborhood is 

developed. The RSDM adopts an acceptance 

rule that allows neutral moves to be made 

for up to M consecutive iterations where M 

is a parameter, before terminating the 

algorithm. Hence, when multiple identical 

good solutions are found in a single 

iteration, the RSDM selects a move 

randomly from the list of the identical good 

solutions. This strategy is applied to escape 

the search from falling into the same local 

optimum. 

 

Finally, the differences between the MXGA 

and our OCGA are with regards to the use of 

the crossover operator, swap operator and 

the mutation operator. The MXGA selects 

offspring for the population from a 

candidate list of temporary offspring 

generated via F-point crossover operator. 

During the swap operator, a swap point is 

randomly selected within a parent and the 

substrings separated by the swap point are 

exchanged to form a new offspring. 

 

Two mutation operators are used in MXGA: 

first, an offspring is selected based on an 

individual mutation probability   , then 

each element in the selected offspring is 

N F 
       Elitism with Filtration                           Steady State 

ARD                     MRD ARD                MRD 

50 
4 20.11                     88.37 20.93                92.82 

8 18.98                     56.21 19.53                55.86 

100 
4 21.03                     118.99 23.92                121.41 

8 20.36                     99.43 21.86                101.66 

Average 20.12                     90.75 21.56                92.94 
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visited and altered with a gene mutation 

probability,   . 

 

Results and Discussions 

 

In this computational experiment, we used 

the problem instances described earlier. For 

each combination of problem instances, 30 

runs were performed. In order to have a fair 

comparison between different algorithms, 

we employed a duration of 15 CPU seconds 

per run in this experiment. Table 5 shows 

the computational results in which for each 

algorithm, the entries report the average 

value of ARD and MRD computed over the 

five problem instances with five 

combinations of due dates (i.e. 750 runs). 

For each setup class, the final line gives the 

average over all values of N and F. The final 

line of Table 5 gives the overall average 

value over all setup classes. It is clear from 

Table 5 that the OCGA performs better than 

the SGA, DLTS, RSDM, and MXGA 

algorithms. This indicates that our proposed 

algorithm is able to produce better quality 

solutions compared to others. We have also 

found that computational difficulty as 

measured by relative deviation from the 

lower bound increases with problem size. In 

the case of setup time class C with large 

setup time, jobs tend to form a large batch 

size with more jobs in a batch to reduce the 

need of setup time between batches from 

different families. Therefore, more jobs will 

miss their assigned due dates. However, 

with a small setup time similar to setup time 

class B, more jobs will meet their respective 

due dates. Hence when the setup time is 

small more batches are formed which means 

fewer jobs are to be processed per batch.To 

verify the performance of our proposed 

OCGA compared to other local search 

methods, a statistical test namely the paired 

t-test is also applied by using S-PLUS 

statistical package. First we set up two 

hypotheses for each two paired samples (i.e. 

each method and the proposed OCGA are 

separately two paired samples). The null 

hypothesis, which assumes the mean of two 

paired samples are equal and the alternative 

hypothesis, which assumes the mean of 

proposed OCGA is less than the mean of 

other method for each two paired samples. 

Note that all assumptions of the test are fully 

met. 

Results show that the lower bounds of 95% 

confidence intervals for the mean 

differences between each method and the 

proposed OCGA are greater than zero, 

which suggests a positive difference 

between them. The small p-value (p < 

0.001) for the four comparisons, which is 

highly significant, states that the data are 

inconsistent with the null hypothesis, that is, 

the proposed OCGA does not perform 

equally with other methods. Specifically, 

with the alternative hypothesis, it can be 

concluded that the proposed OCGA has a 

less mean than the other local search 

methods.  

Conclusion 

In this paper, we developed an optimized 

crossover genetic algorithm to effectively 

solve the problem of 1   |      . Various 

techniques have also been investigated and 

used into the proposed algorithm to further 

enhance the solutions quality. The 

computational experiments show that the 

proposed algorithm gives better quality 

solutions compared to other variants of local 

search methods. We will develop the 

proposed OCGA to solve the problem of 

minimizing the total (weighted) completion 

time as future research. The development of 

OCGA for other optimality criterion such as 

minimizing the total (weighted) 

tardiness/earliness is also worthy of future 

research. 
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Table 5:      Comparative computational results (15 CPU seconds per run) 

 

 

 

 

 

 

 

 

Setup 

N        F 

SGA  MXGA  OCGA DLTS  RSDM 

Class ARD       MRD  ARD       MRD   ARD       MRD   ARD       MRD   ARD       MRD 

 
             4 21.50      91.09 16.86      76.46 15.87      69.25 16.77      75.40 20.66      82.22 

 
50         8 19.77      62.17 14.63      52.87 13.52      46.36 15.42      54.55 19.44      58.21 

 
           12 16.25      45.59 11.00      36.23 10.10      29.07 11.86      37.96 15.66      46.49 

A 
            4 22.85     114.09 19.13      90.31   18.53      84.15   19.01      94.50   20.45      97.04 

 
100      8 28.58     107.39 21.20      85.88   19.29      76.21   22.98      94.02   25.72      99.18 

 
          12 34.81      93.21 19.31      67.02   17.77      58.36   21.37      70.60   24.75      79.57 

Average 23.96      85.59 17.02      68.13   15.85      60.57   17.90      71.17   21.11      77.12 

 
             4  7.20       39.51  5.16       30.75    4.70       29.39     5.14       31.86    6.03       35.53 

 
50         8 9.53       50.39 6.94       35.90 5.16       30.16 7.46       36.60 8.66       43.27 

 
           12 8.50       49.06 6.76       44.04 5.37       37.11 7.72       46.54 8.48       47.85 

B 
            4 7.88       38.01 5.87       29.71 5.73       27.26 5.90       29.44 6.54       30.24 

 
100      8 14.00      89.70 8.21       34.21 7.09       34.05 9.91       53.18 11.91      77.63 

 
          12 18.19      78.20 8.12       39.88 6.79       38.12 10.81      50.27 13.62      74.26 

Average 10.88      57.48  6.84       35.75    5.81       32.68    7.82        41.32    9.21       51.46 

 
             4 32.47      99.07 20.94      71.77   19.96      66.20   20.62      70.96   26.49      87.50 

 
50         8 23.93      56.71 15.52      40.75   15.09      36.18   15.98      42.42   20.88      52.42 

 
           12 15.99      30.73 11.07      25.74 

   9.84       20.06 
  11.45      26.84   15.28      33.97 

C 
            4 43.71     136.61 27.98      92.84   26.92      91.48   27.26      94.69   30.73      101.43 

 
100      8 39.65      96.14 26.63      79.12   24.97      70.43   27.89      84.48   32.86      88.69 

 
          12 49.42      84.32 22.91      60.75   20.88      54.55   24.30      62.60   29.22      72.11 

Average 34.20      83.93 20.84      61.83   19.61      56.48   21.25      63.67   25.91      72.69 

AVERAGE 23.01      75.67 14.90      55.24   13.76      49.91   15.66      58.72   18.74      67.09 
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