
Online Publication Date: 15
th

 May, 2012

Publisher: Asian Economic and Social Society

Optimized Crossover Genetic Algorithm to Minimize the

Maximum Lateness of Single Machine Family Scheduling

Problems

Habibeh Nazif (Department of Mathematics, Payame Noor

University,

I. R of Iran)

Lee Lai Soon (Department of Mathematics, Universiti Putra

Malaysia, 43400 UPM Serdang, Selangor, Malaysia)

Citation: Habibeh Nazif, Lee Lai Soon (2012) “Optimized Crossover Genetic Algorithm to

Minimize the Maximum Lateness of Single Machine Family Scheduling Problems”, Journal of Asian

Scientific Research, Vol. 2, No. 5, pp. 240-253.

Journal of Asian Scientific Research, Vol. 2, No. 5, pp. 240-253

240

Author (s)

Habibeh Nazif
Department of Mathematics,

Payame Noor University, I. R

of Iran
E-mail: h_nazif@pnu.ac.ir

Lee Lai Soon
Department of Mathematics,

Universiti Putra Malaysia,

43400 UPM Serdang, Selangor,

Malaysia
E-mail: lee@math.upm.edu.my

Optimized Crossover Genetic Algorithm to Minimize

the Maximum Lateness of Single Machine Family

Scheduling Problems

Abstract

We address a single machine family scheduling problem

where jobs are partitioned into families and setup time is

required between these families. For this problem, we

propose a genetic algorithm using an optimized crossover

operator to find an optimal schedule which minimizes the

maximum lateness of the jobs in the presence of the

sequence independent family setup times. The proposed

algorithm using an undirected bipartite graph finds the best

offspring solution among an exponentially large number of

potential offspring. Extensive computational experiments

are conducted to assess the efficiency of the proposed

algorithm compared to other variants of local search

methods namely dynamic length tabu search, randomized

steepest descent method, and other variants of genetic

algorithms. The computational results indicate the proposed

algorithm is generating better quality solutions compared to

other local search algorithms.

Keywords: Genetic algorithm, Single machine scheduling, Maximum lateness

Introduction

Machine Scheduling Problems (MSPs) are

one of the classical combinatorial

optimization problems which exist in many

diverse areas such as transportation,

manufacturing system, etc. The main focus

is on the efficient allocation of one or more

resources to activities over time. An

excellent survey can be found in (Lawler et

al., 1993). A single machine scheduling

problem is one where there are N jobs to be

scheduled on a single machine. In this paper,

we consider a Single Machine Family

Scheduling Problem (SMFSP), where jobs

are partitioned into families and setup time

is required between these families. (Hariri

and Potts, 1997) describe the problem in

which N jobs, each characterized by a

processing time and a due date ,

for , are partitioned into F

families. For each family f (),

jobs are split into batches, where a batch is

defined as a maximal set of contiguously

scheduled jobs from the same family which

share the same setup time. A sequence

independent family setup time , is required

at the start of the schedule and also

whenever there is a switch in processing

jobs from one family to jobs of another

family. We assume that all the jobs are

available at time zero. The objective is to

find a schedule which minimizes the

maximum lateness of the jobs. The

SMFSP for arbitrary family f is an NP-hard

problem as shown by (Bruno and Downey,

1978). This problem can be represented as

1 | based on the standard

classification of (Graham et al., 1979).

Setup includes obtaining tools, positioning

work in process, return tools, cleanup, etc.

In most scheduling research work, the setup

time has been considered as either negligible

or hence ignored, or considered as part of

the processing time. While these

assumptions simplify the problem, they

adversely affect the solution quality for

many applications which require explicit

treatment of setup (See Allahverdi et al.,

1999).In this study, we propose an

Optimized Crossover Genetic Algorithm

mailto:h_nazif@pnu.ac.ir
mailto:lee@math.upm.edu.my

Optimized Crossover Genetic Algorithm…..

241

(OCGA) for the problem of 1 | . The

objective is to find a schedule which

minimizes the maximum lateness of

the jobs in the presence of the sequence

independent family setup times .

Literature Review

Numerous optimization methods including

exact methods, heuristics and local search

algorithms have been proposed for the

problem of 1 | . Excellent reviews on

scheduling with setup considerations are

given by (Potts and Kovalyov, 2000) and

(Allahverdi et al., 1999, 2008).

(Monma and Potts, 1989) show that there

exists an optimal schedule in which the

Earliest Due Date (EDD) rule of (Jackson,

1955) applies within each family f. They

consider a variety of SMFSPs under the

assumption that the `triangle inequality'

holds for each machine i, which means that

 , for all distinct families f,

g and h. Using dynamic programming, they

solve the problems of 1 | and

1 | in and

time respectively. (Hariri and Potts, 1997)

propose a branch and bound (B&B)

algorithm for the problem of 1 | .

They obtained an initial lower bound by

ignoring setups, except for those associated

with the first job in each family, and solved

the resulting problem with the EDD rule.

This lower bound is improved by a

procedure that considers whether or not

certain families are split into two or more

batches. Computational results show that the

algorithm is successful in solving instances

for up to about 50 jobs.

(Baker and Magazine, 2000) design an

algorithm that uses a B&B approach

combined with dominance properties which

reduced the effective problem size to solve

the problem of 1 | , where setup times

are identical. The identification of composite

jobs allows the effective problem size to be

reduced before the enumeration begins.

Their proposed algorithm solves problems

with up to 60 jobs.(Zdrzałka, 1991) develops

heuristic methods for 1 | in which

there are unit setup times, and under the

assumption that due dates are non-positive

to ensure that the objective function is

positive. When all jobs of family are

scheduled contiguously, computational

results are shown to have a maximum

lateness which does not exceed twice the

optimal value. Moreover (Zdrzałka, 1995)

proposes two approximation algorithms

without the unit setup time assumption and

under non-positive due dates. The algorithm

starts with a schedule in which each batch

contains all jobs from a family, and allows

each family to be split into at most two

batches. The algorithm requires time

and it generates a schedule with maximum

lateness that is no more than 3/2 times the

optimal value.

(Hariri and Potts, 1997) design two

heuristics in which the first heuristic assigns

all jobs of a family to a single batch, and the

second heuristic splits each family into at

most two batches according to the due dates

of its jobs. They show that both heuristics

require O(N log N) time. They also show

that the first heuristic has a worst case

performance ratio of 2-1/F, where a

composite heuristic algorithm which selects

the better of the schedules generated by the

two heuristic has a worst case analysis of 5/3

for arbitrary F. (Pan et al., 2001) suggest a

mathematical model that first finds an initial

schedule and then applies merging

properties to improve the initial schedule.

Computational results show that their

algorithm is successful in solving problems

with up to 1000 jobs. (Schultz et al., 20004)

develop a new neighborhood search

heuristic for solving problem 1 |

based on the properties and theorems

presented by (Hariri and Potts, 1997) and

(Baker, 1999). The procedure is

computationally efficient for problem

instances with 500 jobs.

(Uzsoy and Velasquez, 2008) present

heuristic algorithms, a rolling horizon

heuristic (RH) and an incomplete dynamic

programming heuristic to minimize

maximum lateness of a single machine

scheduling problem with family dependent

Journal of Asian Scientific Research, Vol. 2, No. 5, pp. 240-253

242

set up times. When a machine processes two

jobs from the same family one after the

other, no set-up time is required. Extensive

computational experiments where test

problems are randomly generated, show that

the rolling horizon procedure outperforms

other heuristic algorithms except when setup

factors are large.

(Jin et al., 2009) propose a batch-based

simulated annealing algorithm (BSA) with

the new neighborhood developed based on

batch destruction and construction.

Experiments are carried out on the randomly

generated problems and the real-life

instances from a factory. Computational

results show that the proposed algorithm

outperforms the standard simulated

annealing (SSA) in both solution quality and

computational effort. Algorithm BSA also

outperforms the existing RH algorithm.

Results of the real-life problems also show

that BSA algorithm can obtain near optimal

solutions in 0.1 s.

(Lee et al., 2007) propose a MultiCrossover

Genetic Algorithm (MXGA) for the problem

of 1 | . They hypothesize that

generating multiple offspring during the

crossover can improve the performance of a

genetic algorithm. Computational

experiments of 50 and 100 jobs show that

the proposed MXGA achieves better

solutions compared to a standard genetic

algorithm, both standard and dynamic length

tabu search and a randomized steepest

descent method.

Optimized Crossover Genetic Algorithm

(OCGA)

Genetic Algorithms (GAs) were first

proposed by (John Holland, 1975). The GA

is a heuristic search technique that simulates

the processes of natural selection and

evolution. A GA maintains a population of

individuals over many generations. An

initial population of individuals, each

representing a feasible solution to the given

problem is constructed at random. For each

generation, the fitness value of each

individual in the population is measured,

where a high fitness value would exhibit a

better solution compared to a low fitness

value. Fitter members are more likely to be

selected from the population using a

selection mechanism to produce offspring

for the subsequent generation via crossover

and mutation. After many generations the

result is hopefully a population that is

substantially fitter than the original.

Most of the crossover mechanisms

determine offspring using a stochastic

approach and without reference to the

objective function. (Aggarwal et al., 1997)

propose an optimized crossover mechanism

for the independent set problem which takes

into account the objective function in a

straightforward way. They recognize that the

merge operation formulated by (Balas and

Niehaus, 1996) can be thought of as an

optimized crossover. Hence, they construct a

bipartite graph from the two parent

independent sets and determine an optimum

child using a matching algorithm in the

graph.

Moreover, they consider the parent which is

least similar to the optimum child as the

second child. (Balas and Niehaus, 1998)

develop this approach to produce a superior

genetic algorithm. They examine variations

of each element of the genetic algorithm and

develop a steady state replacement that

performs better than its competitors on most

problems. (Ahuja et al., 2000) propose a

greedy genetic algorithm which uses two

crossover schemes called path crossover and

optimized crossover for the quadratic

assignment problem. The results on a large

set of standard problems show that path

crossover performs slightly better than

optimized crossover.

In the remainder of this section we describe

the proposed optimized crossover and

discuss how various steps of the GA are

implemented for the proposed algorithm.

Briefly, the OCGA selects two parents from

the population and generates two children by

an optimized crossover mechanism which

designed using an undirected bipartite graph.

A F-point swap operator is used to produce

children when the optimized crossover is not

applied to the parents. To maintain diversity

Optimized Crossover Genetic Algorithm…..

243

within the population a binary mutation is

randomly applied to each child. Moreover

elitism replacement scheme and filtration

strategy are used to preserve good solutions

and to avoid premature convergence. The

general framework of OCGA can be shown

as follows:

Algorithm OCGA

 begin

 Initialize Population (randomly generated);

 Fitness Evaluation;

 repeat

 Selection (probabilistic binary tournament

selection);

Optimized Crossover;

F-point Swap (if the optimized crossover is

not applied);

 Mutation (binary mutation);

 Fitness Evaluation;

 Elitism replacement with Filtration;

 until the end condition is satisfied;

 return the fittest solution found;

 end

Encoding Scheme and Selection

Mechanism

A natural way of coding the problem would

be to represent each solution by a bit string.

We use a binary {0, 1} representation that

(Mason, 1992) applied for solving the

problem of 1 | ∑ . Using this binary

representation we defined the partition of

families into batches, where `1' means the

first job in a batch and `0' means a

contiguously sequenced job in a batch. The

length of the individual corresponds to the

number of jobs N. After choosing the

representation, we uniformly randomly

generate an initial population which is of

size 100 in our implementation using a

random number generator. We assume that

the size of population is kept constant

throughout the process.

Moreover we use a probabilistic binary

tournament selection scheme to select

individuals from the population to be the

parents for the OCGA with a given selection

probability = 0.75 based on initial

investigation presented in section

computational experiments. In other words,

we give a 75% chance for the fitter

individual to be selected as the parent

compared to the less fit individual which

only has a 25% chance to be selected.

Fitness Evaluation

The fitness function is used to evaluate the

individuals which are introduced into the

population. We can define the fitness

function using the property of EDD rule for

batches developed by (Baker, 1999), in

which there exists an optimal schedule

where the batches are sequenced in a non-

decreasing order according to their due

dates. As mentioned earlier, a batch is a

maximum group of contiguously scheduled

jobs within a family. Let and denote

the due date and processing time of the jth

job from family f which is identified as pair

(f, j). Let (f, h) ,..., (f, k) be the jobs of an

arbitrary batch b, then the batch due date

 is defined as follows:

{ }

 ∑

In an optimal schedule, the batches are

sequenced in a non-decreasing order

according to their batch due dates

). A sequence independent

family setup time is added before the start

of each batch and when there is a switch in

the processing jobs from one family to jobs

of another family. We define fitness

function as the maximum lateness of

the schedule defined as

where and denotes the

completion time of job j.

Optimized Crossover

According to (Aggarwal et al., 1997) during

the optimized crossover scheme, two parents

produce two new children. The first child is

called the O-child (Optimum child) and the

second child is called the E-child

(Exploratory child). The O-child is

constructed in such a way as to have the best

objective function value from the feasible

set of children, while the E-child is

Journal of Asian Scientific Research, Vol. 2, No. 5, pp. 240-253

244

constructed so as to maintain the diversity of

the search space. We will now explain the

optimized crossover strategy on determining

O-child and E-child for the problem of

1 | .

Step 1: Identify the parent with the

least as and select the

family within the ,which contains

the job where occurs as

family f. Label another parent

as . Note that this family f will

be used in both and .

Step 2: Construct an undirected bipartite

graph where

 representing

the jobs of family f,

 represent

ing bit situation of the jobs of

family f in both and

 , and E

representing the arc set in the graph

in which, {
 } if

and only if jobs j is represented

with the bit situation and

respectively.

Step 3: Determine all the maximum

matchings in graph G. Suppose that

there are k jobs in family f that are

represented with a different bit

situation in the two parents. There

will be exactly maximum

matchings in graph G.

Step 4: Generate a temporary offspring

from

 by

replacing the bit situations of the

jobs in family f which corresponds

to one of the maximum matchings

in graph G. Repeat the procedure

for times to

generate temporary offspring.

Note that one of the temporary

offspring is exactly the same as ,

so we remove it.

Step 5: Select a temporary offspring with

the least among
 temporary offspring as O-child.

Step 6: Generate E-child from

 by

replacing the bit situations of the

jobs in family f with

 ,

where

 indicates family f of

individual i.

Since the number of temporary offspring

will increase exponentially with the number

k, we restricted the maximum temporary

offspring in graph G in every case to

even if the jobs that have a different bit

situation in two parents are more than 5. In

addition the proposed optimized crossover is

applied based on a crossover probability,

 0.75. In other words, the proposed

optimized crossover is applied to 75% of

pairs of selected parents. We demonstrate

the proposed optimized crossover by an

example as in Figure 1.

Figure 1: Two parent and

Given the two parents and with 15

jobs that are partitioned into 3 families.

Suppose that has the least which

occurs in job 3 of family 2. We formulate an

 Family 1 Family 2 Family 3

 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1

 Family 1 Family 2 Family 3

 1 0 0 0 1 1 0 1 1 1 1 0 1 0 1

Optimized Crossover Genetic Algorithm…..

245

undirected bipartite graph G of the jobs of

family 2 in both and that is shown in

Figure 2.

Figure 2: Undirected bipartite graph G of the jobs of family 2 in both and

In this case, the jobs 2, 3, and 5 of family 2

are represented with a different bit situation

in both and , so k = 3 and we can

obtain maximum matchings in this graph.

The eight temporary offspring constructed

by replacing the bit situations of the jobs in

family 2, corresponds to each maximum

matchings, are shown in Figure 3

Figure 3: The eight temporary offspring

Note that the fourth temporary offspring is

the same as , so we remove it. Suppose

that the seventh temporary offspring has the

least , then we select it as O-child and

we generate

the E-child from using Step 6. The O-

child and E-child are shown in Figure4.

Figure 4: The O-child and E-child

temporary offspring 1 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1

temporary offspring 2 1 0 1 0 0 1 1 1 1 0 1 0 1 0 1

temporary offspring 3 1 0 1 0 0 1 1 0 1 1 1 1 0 1 1

temporary offspring 4 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1

temporary offspring 5 1 0 1 0 0 1 0 1 1 1 1 1 0 1 1

temporary offspring 6 1 0 1 0 0 1 0 1 1 0 1 1 0 1 1

temporary offspring 7 1 0 1 0 0 1 0 0 1 1 1 1 0 1 1

temporary offspring 8 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1

O-child 1 0 1 0 0 1 0 0 1 1 1 1 0 1 1

E-child 1 0 0 0 1 1 1 1 1 0 1 0 1 0 1

Journal of Asian Scientific Research, Vol. 2, No. 5, pp. 240-253

246

F-point Swap:eproduction of parents is

used when crossover operator is not applied

to the selected parents in a standard GA.

(Lee et al., 2007) use a swap operator

instead of the exact duplicate of the parents

in their MXGA. In our study, we use a F-

point swap operator to produce two new

offspring when the optimized crossover is

not applied to the parents. This operator

could be regarded as a giant mutation where

the elements in the parent are randomly

reassigned. The process of F-point swap

operator is as follows:

Step 1: Select randomly a swap point

within family f = 1 from a parent to

form two sub-strings.

Step 2: Swap the position of the sub-strings

(except the first job in the selected

family) with the swap point as the

point of exchange.

Step 3: Repeat Step 1 and Step 2 for each

family f ().

The steps above are repeated for the second

parent to create a second offspring. An

example of F-point swap operator for the

two parents is given in Figure 5. A swap

point is chosen randomly between the fourth

gene and the fifth gene from family 1 in

parent 1. Two sub-genes ({1,0,0},{1}) are

formed in family 1. Note that the first gene

in family 1 is not in the list of the sub genes

and it will remain unchanged. We swap the

sub-genes in family 1 and repeat these steps

for other families in parent 1. After

completion a new offspring is obtained from

parent 1. Similarly, offspring 2 is formed

from parent 2.

Figure 5: An example of F-point swap

Mutation

We use binary mutation operator in our

OCGA. Binary mutation is applied

randomly to each offspring individually that

alters each gene from `1' to `0' or vice versa

with a given mutation probability = 1/N,

where N is the number of jobs. Note that

each gene can be selected to be mutated

except the first gene in each family.

When a gene is flipped from `0' to `1', it

means we split a single batch into two

separated batches. We combine two

contiguously scheduled batches into one

single batch if the gene is flipped from `1' to

`0'. In this case, the total number of the jobs

in the new batch equal to the sum of the jobs

in the previous two separated batches.

Replacement

In our study, we use elitism replacement

scheme where the good individuals will

survive for the next generation and are never

lost unless better solutions are found. The

elitism replacement is applied as follows:

both parent and offspring populations are

combined into a single population and sorted

in a non-increasing order of their associated

fitness value. Then, the first half of the

combined population is selected as the

individuals of the new population for the

next generation.

 In order to avoid premature convergence

and to add diversity to the new population,

we use the filtration strategy proposed by

(Lee et al., 2007). Identical individuals are

identified from the new population and, they

Parent

1
1100 1 101 00 11 101

 Parent 2 101 10 10 010 111 00

Offspri

ng 1

11100 10001 11011 Offspring 2 11001 10100 10011

 = swap point

Optimized Crossover Genetic Algorithm…..

247

are removed and replaced by uniformly

randomly generated new individuals. Since a

certain amount of computational time is

required during the filtration strategy, so we

apply the filtration in every 50 generations.

Computational Experiments

In this section, we present the computational

results of the proposed OCGA and the

comparisons with other variants of local

search methods namely Standard Genetic

Algorithm (SGA), Dynamic Length Tabu

Search (DLTS), Randomized Steepest

Descent Method (RSDM), and

Multicrossover Genetic Algorithm (MXGA)

where the last three algorithms are proposed

by (Lee et al., 2007). The algorithms are

coded in C language and implemented on a

Pentium 4, 2.0 GHz computer with 2.0 GB

RAM.

We genarated problem instances with 50 and

100 jobs, and with 4, 8 and 12 families. Jobs

are distributed uniformly across families, so

that each family contains ⌊ ⌋

or ⌈ ⌉

jobs. This classification of problem

instances have been widely used by other

literature so we adopt it for our

computational experiments.

In each problem, processing times are

randomly generated integers from an

uniform distribution defined on [1, 100]. We

also generated five sets of integer due dates

from the uniform distribution [0,], where

 0.2, 0.4, 0.6, 0.8, 1.0}, and P is

summation of generated processing times in

each problem. Based on (Hariri and Potts,

1997), the three setup times class A, B and

C are randomly generated integers from the

three uniform distributions [1, 100], [1, 20]

and [101, 200] respectively. For each

combination of N, F, and setup times

class, five problem instances are created.

We used the lower bound proposed by

algorithms. Algorithms are compared by

listing, for each combination of value N, F,

 and setup times class, the average relative

percentage deviation (ARD) and the

maximum relative percentage deviation

(MRD) of the heuristic solution value from

the lower bound. The ARD and MRD

formulas are shown in equations (1) and (2)

respectively.

∑ ∑

 (1)

 (2)

where,

 I= number of problem instances with the

relevant combination of parameters;

 R= number of repeated runs for problem

instance i ();

 = heuristic solution found in rth run of

problem instance i;

 = lower bound of the problem instance i.

Initial Investigations of OCGA

We gradually construct the proposed

algorithm from the standard GA. The

differences between the OCGA and SGA are

with regards to the use of the crossover

operator, reproduction procedure and the

replacement scheme. For the initial

investigation, five problem instances with

five combinations of due dates are generated

as described earlier and setup time class A is

used in this experiment. For each

combination of the problem instance and the

due date range, a total of 30 runs were

performed to obtain the average value. In

order to have a fair comparison in this

experiment, a fixed time limit of 15 CPU

seconds per run is imposed.

In the first investigation, we employ

selection probability with four different

values in the SGA to determine the most

efficient value of which will be used in

the binary tournament selection mechanism

in our computational experiments. The

results are given in Table 1.

Journal of Asian Scientific Research, Vol. 2, No. 5, pp. 240-253

248

Table 1: Comparison among selection probabilities (15 CPU seconds per run)

N F

 SGA

 = 0.60

 SGA

 = 0.70

 SGA

 = 0.75

 SGA

 = 0.80

ARD MRD

ARD
MRD ARD MRD ARD MRD

50
4 23.03 85.82 21.92 84.45 21.13 84.24 22.11 86.89

8 19.16 56.80 19.26 56.01 19.13 55.91 19.39 56.50

100
4 25.10 112.02 24.76 111.64 24.71 111.66 25.14 111.74

8 23.40 89.92 23.41 89.60 23.29 87.95 23.64 88.20

Average 22.42 86.14 22.34 85.43 22.07 84.94 22.57 85.83

For each algorithm the entries report the

average value of ARD and MRD computed

over the five problem instances with five

combinations of due dates (i.e. 750 runs)

and the final line gives the overall value. It

is clear that better solution quality is

obtained under the optimized crossover

operator. From Table 1, we can conclude

that a selection probability of 0.75 can be

effective for getting better results. Table 2

shows the computational results of the

optimized crossover operator employed in

the SGA compared to the 1-point crossover

operator. The results of this investigation

determine whether our proposed optimized

crossover operator is advantageous to

produce offspring during crossover.

Table 2: Comparison between crossover operators (15 CPU seconds per run)

N F
 Optimized Crossover 1-point Crossover

 ARD MRD ARD MRD

50
4 18.62 79.00 21.80 83.45

8 17.69 56.40 19.33 61.95

100
4 21.06 99.61 24.92 105.16

8 19.30 84.31 22.18 86.70

Average 19.17 79.83 22.06 84.32

Table 3 indicates results of the F-point swap operator that we employed in the SGA

compared to the reproduction when the crossover operator is not applied.

Table 3: Results of F-point swap (15 CPU seconds per run)

N F
 F-point swap Reproduction

ARD MRD ARD MRD

50
4 21.80 86.53 23.43 89.06

8 20.36 55.77 20.36 56.24

100
4 24.06 127.12 28.00 131.41

8 23.77 104.69 25.02 106.96

Average 22.50 93.53 24.20 95.92

From Table 3 we can conclude that the

performance of the SGA improves the

solution quality when F-point swap operator

is used. This shows that the F-point swap

operator manages to create more diversity in

population which leads the search to explore

a better local optima. The computational

results for the different replacement

strategies that we employed in the SGA are

reported in Table 4. We compare the steady

state replacement strategy with the proposed

Optimized Crossover Genetic Algorithm…..

249

elitism replacement and filtration strategy described.earlier.

Table 4: Comparison between replacement strategies (15 CPU seconds per run)

The results obtained by the elitism

replacement and filtration strategy are better

compared to the steady state. In fact, the

elitism replacement and filtration strategy

can search the solution space in a more

efficient manner. The demonstrated

computational experiments provide

guidelines to design the proposed OCGA.

Thus, we apply the optimized crossover and

the F-point swap operator to produce

offspring in the proposed OCGA. While the

elitism replacement and filtration strategy

are used to preserve good solutions and to

avoid premature convergence.

Competitors

We used four local search algorithms

namely SGA, DLTS, RSDM, and MXGA to

compare with our proposed OCGA. In the

case of SGA a standard 1-point crossover

operator is applied to produce two offspring

from two selected parents, while a

reproduction procedure is used when the

crossover does not apply to the selected

parents. Also the replacement scheme

employed in the SGA is the steady-state

replacement scheme.

As for the DLTS, RSDM, and MXGA, all

three local search algorithms are proposed

by (Lee et al., 2007). The DLTS applies the

shift job neighborhood approach and

dynamically controls the length of the tabu

list during implementation in order to

achieve better solution quality. After a move

is executed, the job that is shifted is stored in

the tabu list, or both jobs are stored if the

move is effectively transpose of adjacent

jobs. Thus, a neighbor is tabu if it is

generated by shifting one of the jobs in the

tabu list. Also an aspiration criterion is used

into DLTS, in which if the solution value of

a tabu neighbor is better than that for all

solutions generated thus far, then its tabu

status is overridden.

In the case of RSDM, a steepest descent

method using a shift job neighborhood is

developed. The RSDM adopts an acceptance

rule that allows neutral moves to be made

for up to M consecutive iterations where M

is a parameter, before terminating the

algorithm. Hence, when multiple identical

good solutions are found in a single

iteration, the RSDM selects a move

randomly from the list of the identical good

solutions. This strategy is applied to escape

the search from falling into the same local

optimum.

Finally, the differences between the MXGA

and our OCGA are with regards to the use of

the crossover operator, swap operator and

the mutation operator. The MXGA selects

offspring for the population from a

candidate list of temporary offspring

generated via F-point crossover operator.

During the swap operator, a swap point is

randomly selected within a parent and the

substrings separated by the swap point are

exchanged to form a new offspring.

Two mutation operators are used in MXGA:

first, an offspring is selected based on an

individual mutation probability , then

each element in the selected offspring is

N F
 Elitism with Filtration Steady State

ARD MRD ARD MRD

50
4 20.11 88.37 20.93 92.82

8 18.98 56.21 19.53 55.86

100
4 21.03 118.99 23.92 121.41

8 20.36 99.43 21.86 101.66

Average 20.12 90.75 21.56 92.94

Journal of Asian Scientific Research, Vol. 2, No. 5, pp. 240-253

250

visited and altered with a gene mutation

probability, .

Results and Discussions

In this computational experiment, we used

the problem instances described earlier. For

each combination of problem instances, 30

runs were performed. In order to have a fair

comparison between different algorithms,

we employed a duration of 15 CPU seconds

per run in this experiment. Table 5 shows

the computational results in which for each

algorithm, the entries report the average

value of ARD and MRD computed over the

five problem instances with five

combinations of due dates (i.e. 750 runs).

For each setup class, the final line gives the

average over all values of N and F. The final

line of Table 5 gives the overall average

value over all setup classes. It is clear from

Table 5 that the OCGA performs better than

the SGA, DLTS, RSDM, and MXGA

algorithms. This indicates that our proposed

algorithm is able to produce better quality

solutions compared to others. We have also

found that computational difficulty as

measured by relative deviation from the

lower bound increases with problem size. In

the case of setup time class C with large

setup time, jobs tend to form a large batch

size with more jobs in a batch to reduce the

need of setup time between batches from

different families. Therefore, more jobs will

miss their assigned due dates. However,

with a small setup time similar to setup time

class B, more jobs will meet their respective

due dates. Hence when the setup time is

small more batches are formed which means

fewer jobs are to be processed per batch.To

verify the performance of our proposed

OCGA compared to other local search

methods, a statistical test namely the paired

t-test is also applied by using S-PLUS

statistical package. First we set up two

hypotheses for each two paired samples (i.e.

each method and the proposed OCGA are

separately two paired samples). The null

hypothesis, which assumes the mean of two

paired samples are equal and the alternative

hypothesis, which assumes the mean of

proposed OCGA is less than the mean of

other method for each two paired samples.

Note that all assumptions of the test are fully

met.

Results show that the lower bounds of 95%

confidence intervals for the mean

differences between each method and the

proposed OCGA are greater than zero,

which suggests a positive difference

between them. The small p-value (p <

0.001) for the four comparisons, which is

highly significant, states that the data are

inconsistent with the null hypothesis, that is,

the proposed OCGA does not perform

equally with other methods. Specifically,

with the alternative hypothesis, it can be

concluded that the proposed OCGA has a

less mean than the other local search

methods.

Conclusion

In this paper, we developed an optimized

crossover genetic algorithm to effectively

solve the problem of 1 | . Various

techniques have also been investigated and

used into the proposed algorithm to further

enhance the solutions quality. The

computational experiments show that the

proposed algorithm gives better quality

solutions compared to other variants of local

search methods. We will develop the

proposed OCGA to solve the problem of

minimizing the total (weighted) completion

time as future research. The development of

OCGA for other optimality criterion such as

minimizing the total (weighted)

tardiness/earliness is also worthy of future

research.

Optimized Crossover Genetic Algorithm…..

251

Table 5: Comparative computational results (15 CPU seconds per run)

Setup

N F

SGA MXGA OCGA DLTS RSDM

Class ARD MRD ARD MRD ARD MRD ARD MRD ARD MRD

 4 21.50 91.09 16.86 76.46 15.87 69.25 16.77 75.40 20.66 82.22

50 8 19.77 62.17 14.63 52.87 13.52 46.36 15.42 54.55 19.44 58.21

 12 16.25 45.59 11.00 36.23 10.10 29.07 11.86 37.96 15.66 46.49

A
 4 22.85 114.09 19.13 90.31 18.53 84.15 19.01 94.50 20.45 97.04

100 8 28.58 107.39 21.20 85.88 19.29 76.21 22.98 94.02 25.72 99.18

 12 34.81 93.21 19.31 67.02 17.77 58.36 21.37 70.60 24.75 79.57

Average 23.96 85.59 17.02 68.13 15.85 60.57 17.90 71.17 21.11 77.12

 4 7.20 39.51 5.16 30.75 4.70 29.39 5.14 31.86 6.03 35.53

50 8 9.53 50.39 6.94 35.90 5.16 30.16 7.46 36.60 8.66 43.27

 12 8.50 49.06 6.76 44.04 5.37 37.11 7.72 46.54 8.48 47.85

B
 4 7.88 38.01 5.87 29.71 5.73 27.26 5.90 29.44 6.54 30.24

100 8 14.00 89.70 8.21 34.21 7.09 34.05 9.91 53.18 11.91 77.63

 12 18.19 78.20 8.12 39.88 6.79 38.12 10.81 50.27 13.62 74.26

Average 10.88 57.48 6.84 35.75 5.81 32.68 7.82 41.32 9.21 51.46

 4 32.47 99.07 20.94 71.77 19.96 66.20 20.62 70.96 26.49 87.50

50 8 23.93 56.71 15.52 40.75 15.09 36.18 15.98 42.42 20.88 52.42

 12 15.99 30.73 11.07 25.74

 9.84 20.06
 11.45 26.84 15.28 33.97

C
 4 43.71 136.61 27.98 92.84 26.92 91.48 27.26 94.69 30.73 101.43

100 8 39.65 96.14 26.63 79.12 24.97 70.43 27.89 84.48 32.86 88.69

 12 49.42 84.32 22.91 60.75 20.88 54.55 24.30 62.60 29.22 72.11

Average 34.20 83.93 20.84 61.83 19.61 56.48 21.25 63.67 25.91 72.69

AVERAGE 23.01 75.67 14.90 55.24 13.76 49.91 15.66 58.72 18.74 67.09

Journal of Asian Scientific Research, Vol. 2, No. 5, pp. 240-253

252

References

Aggarwal CC, Orlin JB, Tai RP. (1997)
“Optimized crossover for the independent

set problem”. Operations Research. Vol. 45,

pp. 226-234.

Ahuja RK, Orlin JB, Tiwari A. (2000) “A

greedy genetic algorithm for the quadratic

assignment problem”. Computers &

Operations Research. Vol. 27, pp. 917-934.

Allahverdi A, Gupta JND, Aldowaisan T.

(1999) “A review of scheduling research

involving setup considerations”. Omega,

International Journal of Management

Science. Vol. 27, pp. 219-239.

Allahverdi A, Ng CT, Cheng TCE,

Kovalyov MY. (2008) “A survey of

scheduling problems with setup times or

costs”. European Journal of Operational

Research Vol. 187, pp. 985-1032.

Baker KR. (1999) “Heuristic procedures

for scheduling job families with setups and

due dates”. Naval Research Logistic. pp.

976-991.

Baker KR, Magazine MJ. (2000)
“Minimizing maximum lateness with job

families”. European Journal of Operational

Research. Vol. 127, pp. 126-139.

Balas E, Niehaus W. (1996) “Finding large

cliques in arbitrary graphs by bipartite

matching”. In: Johnson DS., Trick MA.

(eds.): Clique, coloring and satisfiability:

second DIMACS implementation challenge.

pp. 29-53.

Balas E, Niehaus W. (1998) “Optimized

crossover-based genetic algorithms for the

maximum cardinality and maximum weight

clique problems”. Journal of Heuristics. Vol.

4, pp. 107-122.

Bruno J, Downey P. (1978) “Complexity

of task sequencing with deadlines, set-up

times and changeover costs”. SIAM Journal

on Computing. Vol. 7, No. 4, pp. 393-404.

Graham RL, Lawler EL, Lenstra JK,

Rinnooy Kan AHG. (1979) “Optimization

and approximation in deterministic machine

scheduling diseases: a survey”. Annals of

Discrete Mathematics. Vol. 5, pp. 287-326.

Hariri AMA, Potts CN. (1997) “Single

machine scheduling with batch setup time to

minimize maximum lateness”. Annals of

Operations Research Vol. 70, pp. 75-92.

Holland JH. (1975) Adaptations in natural

and artificial systems. Ann Arbor: The

University of Michigan Press.

Jackson JR. (1955) Scheduling a

production line to minimize maximum

tardiness. University of California, Los

Angeles.

Jin F, Song S, Wu C. (2009) “A simulated

annealing algorithm for single machine

scheduling problems with family setups”.

Computers & Operations Research. Vol. 36,

pp. 2133-2138.

Lawler EL, Lenstra JK, Rinnooy Kan

AHG, Shmoys DB. (1993) “Sequencing and

scheduling: algorithms and complexity. In:

Graces SC., Rinnooy Kan AHG., Zipkin PH.

(eds.): Logistic of production and inventory,

Handbooks in operations research and

management science”. North-Holland:

Amsterdam. Vol. 4, pp. 445-522.

Lee LS, Potts CN, Bennell JA. (2007) “A

genetic algorithms for single machine family

scheduling problem”. In proceedings of

IMT-GT 2007 regional conference on

mathematics, statistics and applications, 3-5

December 2007, Penang, Malaysia. pp. 488-

493.

Mason AJ. (1992) Genetic algorithms and

scheduling problems. PhD thesis, University

of Cambridge, UK.

Monma CL, Potts CN. (1989) “On the

Complexity of scheduling with batch setup

time”. Operations Research. Vol. 37, No. 5,

pp. 798-804.

Pan JCH, Chen JS, Cheng HL. (2001) “A

Heuristic approach for single machine

scheduling with due dates and class setups”.

Computers & Operations Research. Vol. 28,

pp. 1111-1130.

Potts CN, Kovalyov MY. (2000)
“Scheduling with batching: a review”.

European Journal of Operational Research.

Vol. 120, pp. 228-249.

Schultz SR, Hodgson TJ, King RE, Taner

MR. (2004) “Minimizing L-max for the

single machine scheduling problem with

family set-ups”. International Journal of

Production Research. Vol. 42, pp. 4315-

4330.

Uzsoy R, Velasquez JD. (2008) “Heuristics

for minimizing maximum lateness on a

single machine with family-dependent set-

Optimized Crossover Genetic Algorithm…..

253

up times”. Computers & Operations

Research. Vol. 35, pp. 2018-2033.

Zdrzałka S. (1991) “Approximation

algorithms for single machine sequencing

with delivery times and unit batch setup

times”. European Journal of Operational

Research. Vol. 51, pp. 199-209.

Zdrzałka S. (1995) “Analysis of

approximation algorithms for single

machine scheduling with delivery times and

sequence independent batch setup times”.

European Journal of Operational Research.

Vol. 80, pp. 371-380.

