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Choice of Priors and Variable Selection in Bayesian 

Regression 

 

Abstract 
 

This study is focused on the applications of the Bayes theory to 

Normal linear Regression model in choosing prior distributions 

for the parameters of interest and in the selection of variables 

for inclusion/deletion from a model-in the case of a reduced 

model. For the choice of prior distribution for the regression 

parameters β, two choices of priors were employed, these are: 

(i) the Non-informative (vague) prior and (ii) the conjugate 

prior. The vague prior is from a vague uniform distribution 

with parameters β and logσ
2
, while the conjugate prior is from 

a t-distribution with mean zero, variance σ and n-1 degrees of 

freedom. The likelihood function for the Normal distribution 

was used to revise this distribution in both cases to obtain the 

posterior distribution. This posterior distribution was found to 

be multivariate t-distribution for β in the case of the vague 

prior and the multivariate Standard t distribution in the case of 

the conjugate prior. The distributions breakdown their 

univariate cases for each βj parameter. The speed of 

convergence to the posterior distributions were monitored as an 

indication of which βj should be added or deleted from a 

reduce model this was done by running MCMC samples for 

5000, 10000, 15000, 20000, 25000 and 30000 samples. On the 

variable selection method, the Stochastic Variable selection 

was employed. This makes use of a latent variable γ to monitor 

the posterior distribution of each of the parameters of interest 

to determine which of the independent variables should be 

added to the new model. At the end of the work it was realized 

that for an appropriate choice of posterior distribution to be 

obtained, an appropriate choice of prior must be used. 

However when the prior distribution is unknown, the vague 

prior distribution is a plausible choice.   

 

Keywords: Bayes regression, Prior, Posterior, Likelihood function, Markov chain monte carlo 

(MCMC) Latent variables, WinBUGS. 

  

Introduction 

  

Bayes inference is the statistical practice of 

studying the probability of an event based on 

the prior knowledge of some or all the variables 

of interest in that probability distribution by 

employing the principles of conditional 

probability. An essential element of Bayes 

inference is the principle of inverse probability. 

The parameters of interest are considered to be 

of a pre-conceived functional form and, 

although it is not known for sure an intelligent 

guess can be made by the researcher to reflect 

the extent of his beliefs. Consider a probability 

density model       

 

  y(p),y(p  │ )(p)    

 

This denotes the joint probability density for a 

random vector y having a parameter of interest 

θ. The distribution of θ p(θ) is unknown, hence 

a prior choice of distribution is chosen to take 

care of that. By Bayes transformation it will be 

observed that the posterior distribution of the 
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parameter θ given the random vector y is given 

by  

  (p │ y(p)y  │ )(p)   

Where y(p │ )  is the likelihood function of 

y and )(p  is the prior distribution of the 

parameter θ. 

 

Background of Study 

In various areas of life, most especially in the 

sciences and business the concept of conditional 

probability is widely encountered thus making 

the application of Bayes theory an invaluable 

tool for making decisions, investigating 

propositions, analyzing results and making 

valid conclusions in the face of inadequate 

information. For valid decisions to be taken 

there usually is a need to study the contributing 

variables and see how they inter-relate with one 

another; this inter-relationship is the backbone 

of Bayes theorem. 

 

Bayesian Regression analysis is the form of 

Regression analysis in which the parameters of 

interest are not fixed as in the classical case; 

rather they are random variables with known 

(guessed) functional forms known as priors. 

The relationship between variables is of utmost 

interest in the study if Regression and its 

analysis. However in the case of Bayesian 

Regression there is an increasing need to go 

beyond just establishing the existence of a 

relationship among the covariates and the 

response variables to discovering what 

additional beliefs (priors) are required in order 

to use the well established Regression 

techniques to make inferences about the 

parameters and reach valid conclusions.  

 

When an appropriate choice of prior 

distribution has been chosen and the Regression 

of variables completed, then comes a case of 

what variables should be added or deleted from 

the generated model should there be a case of 

model reduction. A study of the contributing 

variables for that with the highest posterior 

distribution can help in this aspect. 

 

Justification of Study 

The study is of great importance because of 

some of the problems associated with the 

classical Regression and its estimation 

procedure. Unlike Classical statisticians, 

Bayesians do not have to worry about the 

singularity of the unit matrix X; this is because 

conditionality forced upon the X matrix by the 

random error component ε and by y. 

Furthermore the functional form of the 

parameters β and σ are known beforehand based 

on the choice of the prior distribution. As a 

result of the prior knowledge therefore; by 

using the methods of Markov‟s Chain Monte 

Carlo (MCMC) it becomes easy to simply 

design a model for the predictor and response 

variables without necessarily having to 

graphically investigating their interrelationship. 

Finally, the distribution of all the variables of 

interest can be studied individually.    

                                                      

Organization of the Paper 

The other sections of this paper are in the 

following order: the next section will focus on 

the works of other researchers on the subject 

matter; including some of their suggestions and 

propositions. The next section is where 

computer data simulations will be done using 

Bayesian analysis software- WinBUGS and the 

analysis, results and discussions follow 

immediately. After these, the paper will be 

summarised and the final conclusions drawn. 

 

On the choice of priors, a lot of work has been 

done by different researchers over the years to 

determine what priors should be considered in a 

Regression model especially in a case where  

there is uncertainty about the independent 

variables in the model then there is a need to 

elicit expert‟s opinion about the behaviour 

variables β. These experts will believe that one 

or more of the variables βj are zero or at best 

trivially small (Garthwaite and Dickey 1992).  

 

In the case of variable selection, a lot of 

procedures and algorithms have been setup by 

many researchers over time to determine what 

variables should stay and what variables should 

be deleted from a model. Some choices of 

variable selection that have been identified for 

include indicator variable selection, Kuo and 

Mallick variable selection, Gibbs variable 

selection and stochastic search variable 

selection (O‟Hara and Sillanpaa; 2009). 

Algorithms developed for each of these 

methods of variable selection have proved very 

effective. For this work, only one of these 

methods of variable selection is employed 
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namely: the stochastic search variable selection 

or simple the stochastic variable selection.   

This deals with a spike or slab distribution. The 

spike is a narrow distribution that is peaked at 

zero or in the neighbourhood of zero while a 

slab is a distribution that is relatively flat at 

zero.  

 

Here, an indicator function γj for every variable 

βj. Set θj=γjβj so θj is 1 when βj exists and 0 

otherwise (Kuo and Mallick; 1998). Bayesian 

spike and slab variable selction has also been 

proposed by (Mitchell and Beauchamp; 1998) 

with modifications by (Ishwara and Rao; 2000, 

2003, 2005) 
 

 

Methodology  

  

In this paper a linear Bayes Regression will be 

assumed, this does not however imply that for 

Bayes Regression to be effectively 

implemented the relationship between the 

covariates and the response variables must be a 

linear one, rather it is required that the variables 

be linear in their in the way they enter the 

model. A typical Bayesian model which is what 

I shall be working with is represented by the 

model equation written thus   

iji Xy    Expressed in matrix notations.  

i=1,2,...,n; j=1,2,...,k; k=p-1 

 where y is a n 1 vector of response variables 

    X is an n  matrix of predictors 

   β is an n  vector of covariates 

  ε is n  vector for the error associated with 

response variable yi 

y│X, β, ε  N(X β, σ
2
In) and ε│X, β, σ

2
  N(0, 

σ
2
I) 

 

Assumptions of the Model 
In an attempt to make reasonable inferences 

from the analysis to be done, certain underlying 

and valid assumptions have to be made on the 

relationship and characteristics of the variables 

under study. 

We shall assume that the variable X is 

exogenous, that is to say that individual 

elements under each Xi are obtained outside the 

model specified in 1.1 and thus have no 

correlation with the errors term, .   

So,  E (|x) = 0, whatever the value the x. x is 

one of the observations of X  

This assumption is called the assumption of 

„mean independence‟.  This is consistent with 

the traditional linear Regression assumption 

that E () = 0; 

Hence  
pipi x...x)y(E   110

 

As a follow up to the above, since E (│x) = 0, 

the probability of  given x, p(|x) has been 

restricted, hence we shall make an assumption 

that besides being uncorrelated  and x are also 

independent therefore, their joint distribution 

 )X(p)(p)X,(p      

Another assumption that we need to make is the 

assumption that y is Normally distributed with 

multivariate Normal distribution  
 )I,X(N~y n

2     

This is an appropriate choice of distribution for 

y if y is (approximately) continuous and can 

take values on the real line R.  This assumption 

will cease to hold if y is strictly non-negative or 

discrete; when this happens other choice of 

distribution may be a better distribution for y.   

Another assumption which has to be made for 

progress in this area is the assumption that a 

constant term βo is included in the model, and 

that this constant term is exempted in the case 

of variable deletion.  In addition we have to be 

certain that each covariate xi is chosen in a way 

as to be independent of the other remaining k-1 

covariates, this assumption is necessary in other 

to avoid cases of multicolinearity of the 

predictor variables.  

  

In contrast to frequents approach to inference, 

where the parameters  and 
2
 are fixed but 

unknown constants, in this case of Bayesian 

inference  and 
2
 are random variables with 

unknown functional form, hence, a belief in 

their forms are expressed in the form of prior 

distribution. This prior distribution is revised by 

multiplying it by the likelihood function of the 

observed data to obtain the posterior 

distribution. 

 

Prior Choices and Variable Selection 
The object of statistical inference in Bayesian 

Regression is the positive distribution of the 

parameter β = (β1 β2 . . .βk) and σ
2
. By Bayes rule 

the joint posterior distribution of the parameters 

β and σ
2
 can be expressed as  
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    (p(β, σ
2
│y, X)  p(β, σ

2
)∏ p(y│X, β, σ

2
)     

At this point there is a need to obtain the 

likelihood function of y given X, β, and σ
2
 and 

then a joint prior distribution for β and σ
2
. 

However our interest in this work is to obtain 

the posterior distribution of the variable β with 

little emphasis on the distribution of the 

standard distribution σ.  

Now 

   

iyp(
│

2,
)










 )(

2

1
exp

2

1
22




iXy  

therefore the likelihood function of y can thus 

be expressed as           













 )Xy()Xy(exp)(),/y(p)y(

n
n

i

i 



2

2

1

22

2

1
  

 Having expressed the likelihood of y, the next 

step is to choose a suitable prior distribution for 

the parameters β and σ2. 

   

CHOICE OF PRIORS 

 

The Non-informative (vague) Prior:  

This is of particular interest for two reasons: 

first it leads to a posterior inference about β and 

σ2 that are numerically identical to those that 

would be produced by traditional 

econometrician, and secondly, it is a good 

choice for statistical model when one has a lot 

of data and few parameters. The reason behind 

this is that if one has a lot of data and few 

parameters compared to the data then the 

likelihood function will be sharply peaked 

which means that the likelihood will dominate 

the posterior inferences. 

The standard non-informative (vague) prior 

distribution is a uniform distribution for β and 

logσ2.  

      2

2 1


 )log,(p  

Hence the joint posterior distribution of β and 

σ2 is given by 

   
)y,X/,(p 












)()(
2

1
exp)(

2

)1
2

(
2 


 XyXy

n

 

Now  

   )ˆ(ˆ)ˆ(ˆ)()(  


 XXyXXyXyXy  

where )()(ˆ 1 yXXX  
 from the classical 

Regression model as specified in the traditional 

Regression models.  

Therefore  

)ˆ()ˆ(2)ˆ()ˆ(

)()()()(





XyXXX

XyXyXyXy





 

But the cross product is equal to zero when 

evaluated in full, this thus leaves us with the 

remaining parts of the equation. 

Therefore 

 

)ˆ()ˆ(

)()ˆ()(












XX

XyXyXyXy
 

Furthermore  

kn

XyXy
SSEs






)()( 1
2 

 
The expression has a great number of 

applications in Bayesian econometrics 
21 )()ˆ()ˆ( SknXyXy    

Let    (n – k) = v 

Then vs
2
 = (y – Xβ)

T
(y – Xβ) 

Therefore the joint posterior distribution of β 

and σ
2 

is then  

                        
1

2 2 22

2

1

2

( )
ˆ ˆ( , , ) ( ) exp ( ) ( )

n

p y x s X X       


         

 

However, one interest is to obtain the 

conditional posterior distribution of β given σ
2
 

and eventually the posterior distribution of β 

and σ
2 

individually. To obtain the conditional 

posterior of β given, σ
2
 we will simply attempt 

to obtain the marginal distribution of β given σ
2
 

from the joint distribution of β and σ
2
. 

2 2 2( / , , ) ( , / , )
o

p y x p y x d    


      

  22

20

1
2

2

2

1



 d)ˆ(XX)ˆ(vsexp

n









 
 










 

 






















)ˆ()ˆ(exp
n





2

1
22

2

1  

This shows that the distribution of β 

conditioned on σ
2
 is a k–dimensional 

multivariate Normal distribution with mean ̂  

and variance 12  )XX( , but σ
2
 is unknown 

beforehand therefore there is a need to keep 

silent on σ
2
, this can be done by integrating out 

σ
2
  in order to obtain a marginal distribution  of 



Journal of Asian Scientific Research, Vol. 2, No. 7, pp. 354-377. 

 

 

358 

 

β which is not conditioned on σ
2
.
    

    22 ,/,,/  dXypxyp
o


  

   22
n

)ˆ(xx)ˆ(s


     

This is a form of the multivariate‟s student t 

distribution. This posterior distribution serves 

as a basis for making inferences about the 

parameter β.  

Furthermore, the marginal posterior distribution 

of σ
2
 can be obtained from equation (3.4) by 

taking the equation and integrating it with 

respect to β: such that 

   dxypxyp ),/,(....,/ 22









  

     = 

  


 d)ˆ(XX)ˆ(Sexp)(...

n

























 
2

2

1
22

2

1

 
This multiple integration is done to take care of 

all component parts of β = (β1, β2,. . . .,βk )         

p(σ
2
│y, X) = 

  .)ˆ()ˆ(exp...
2

exp
2

2
.1

22 



 dXX

Sn








 

















  

      







 












2

2.1
22

2
exp)(






S
n

 
This equation (8) is in the form of the inverse 

gamma distribution. This is however of little 

importance in this work. 

 

Conjugate prior 

A prior distribution is conjugate to a likelihood 

function if the posterior distribution obtained by 

their revised probability is from the same class 

of distribution as prior distribution. Models 

with convenient analytic properties are almost 

invariably come from conjugate families. 

Generally speaking, conjugate priors are like 

the posterior distribution from one imaginary 

dataset from a vague prior. 

 

For the Normal Regression model, the 

conjugate prior distribution for β and σ
2
 

),(p 2  is the Normal – Inverse gamma 

distribution. To obtain posterior distribution 

from the prior distribution a reversal of the non 

informative (vague) process is employed. In 

this case, the joint posterior distribution 

obtained using the vague prior is used as the 

prior distribution. Now as obtained previously, 

from equations (7) and (8), but this time 

considering equation (5) as a prior distribution 

for β and σ
2
. 

Now assuming we are considering a new data 

set generated by the same Regression process, 

then let subscripts 1 and 2 be used to denote the 

first and the second data set respectively. 

Therefore 

 






















)xy()xy(exp)(x,y/,p

n




 11112

1
22

11
2

2

1  

           (9)             













 

















)ˆ(XX)ˆ(sexp)(

n

1111
2
112

1
22

2

1





  

Where kn  11 , )()(ˆ 1 yXXX    and 

)()( 11
2
11  XyXysv   

Equation (9) factors into marginal distributions 

for β and σ
2
 as shown in equation (7) and (8) 

respectively. 

So to get the joint posterior distribution of β and 

σ
2
 we have it as 

 ),,,/,( 2121
2 XXyyp  by considering the 

second, samples taken and denoting them by a 

subscript 2. By Bayes rule, there is a need to 

obtain the likelihood function for the joint 

distributions of β and σ
2
 i.e  (β, σ

2
). 

Hence

 











 )()(
2

1
exp

2
)(/, 222

1
2222

22
22

2
2 


 XyXy

n
Xy

 

Now the joint posterior distribution for β 

and σ
2
 given the first and second samples thus 

becomes. 

)X,y/,()Xy/,(p)X,X,y,y/,(p 22
2

11
2

2121
2                                                                

    (10)             

   



















)Xy()Xy()Xy()Xy(exp
nn




 222211112

1
222

2

121

 
The exponent part of equation (10) can be 

simplified thus 

 
 )Xy()Xy()Xy()Xy(  22221111 

 

                   

)ˆ()ˆ()ˆ()ˆ( 22
2

111
2

1  





 XXsvXXsv

 
                                 

)ˆ)()(ˆ()( 2211
2

21  





 XXXXsvv
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Let knnvvv  2121   
and 

   

MXXXX  )( 2211
 

Then 

)ˆ(M)ˆ(s)Xy)(Xy()xy()Xy(   2
22221111

 

Thus the joint posterior distribution of β and σ
2
 

can be written as  

(11)     

 






















)ˆ(M)ˆ(sexp)()X,X,y,y/,(p

nn




 2

2

1
222

2121
2

2

1
21

The same results above would be obtained if the 

likelihood function of the first sample and the 

second sample were pooled and a diffused prior 

distribution was subjected to it 

Following the same approach as before, it is 

observed that the joint posterior distortion of β 

and σ
2
 are as previously obtained thus the 

marginal distribution for β for σ
2
 are 
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Which is a form of multivariate Normal 

distribution Nmultivariate ),( 12 M  

Now therefore because of the unidentifiability 

of the variance   σ
2
M

-1
 we shall therefore seek 

to obtain a conditional posterior distribution for 

the parameters β and σ
2
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p(β│y1,y2, X1, X2)  tmultivariate, n1 + n2 

-1 degrees of freedom 

And ),,,/( 2121
2 XXyyp  follows the 

inverse gamma distribution
 

Distribution
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Now therefore because of the unidentifiability 

of the variance 12 M  we shall therefore 

obtain a conditional posterior distribution for 

the parameters β only. 

 

Bayesian Variable Selection 

In many statistical analyses, the problem of an 

optimal model in a set of plausible models is of 

utmost interest to the statistician, the same is 

obtainable in Bayesian analysis also.  Variable 

selection enhances the choice of which subset 

of variables should be included in the model, 

and eventually parameter estimation. The 

common computational method for choosing 

Bayesian variables and consequently an 

appropriate model for estimation is the Markov 

Chain Monte Carlo (MCMC) technique. 

 

Consider the Regression models summarized as 
      iiji Xy 0  
Where i=1, 2, . . .,n and j=1, 2, . . ., k; k=p-1 

With all the previously mentioned assumptions 

still in place.
 

The variable selection procedure can be seen as 

one of deciding which of the parameters βi is 

equal to zero. Each βi will therefore have a 

“slab and spike” prior with a spike (the 

probability mass function either exactly at zero 

or around zero) and a slab elsewhere. For this, 

an auxiliary indicator variable γ is used; where 

γ =1 where β≠0 and γj =0 where β=0 in the 

model. 

 

Stochastic Variable Selection 

Given the usual distribution of y~N(Xβ, σ
2
) 

each having its usual notation and the indicator 

function γj as defined earlier, let βγ consist of all 

non zero elements of β and let Xγ be the column 

of the matrix X corresponding to the elements 

of γ that are equal to 1, then the prior 

distribution for each βγ (γ  ) is given to be 

distributed as Normal with mean zero and 

variance 12  )XX(c  given by 

    ))XX(c,(~ 120   

 

Here, c is a large positive valued scalar. The 

value of is not known for certainty and thus has 

to be chosen. It has been suggested after testing 

various values that c should lie between 10 and 

100 (Smith and Kohn; 1996). 

The probability of β given the latent variable γ 

is summarized thus 

P (β│γi) = (1- γi) N(0,τ
2
)+γiN(0, c

2
σ

2
) 

Xγ contains independent values of X where γ = 

1.  

Each indicator function γj is assumed to be 

independent of others having a Bernoulli 

distribution with probability  

    101  i;)(p i   i=1,...,k 
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Each  is defined to be independent Bernoulli 

distributed with probability mass function 

defined as    jkj )()(p    1  

Now we consider the following prior which 

choose β, γ and σ independently. 
12  )XX(,(N~ k  ,    ),(B~ ij  1  and 

),(IG~   
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It should be observed at this point that as 

 →0 and η→ o, then p( σ
2
)→

2

1


 which is 

the non-informative prior distribution. The 

potentially promising variables (predictors) can 

be identified from the γ‟s that have high 

posterior probabilities, therefore the interest is 

on evaluating p(γ│y) . This task is one that can 

be achieved numerically using Gibbs sampling, 

starting with an initial choice   β
o 

γ
o 
and σ

o
, thus

 

we can generate Gibbs samples for
 
 β

1
,  1

, σ
1
, 

β
2
   2

 σ
2
  etc, using conditional  distributions. 

It should be noted that there are 2
K
 possible 

models to be obtained by choosing variables 

with this criteria, each model having a 

probability of 2
-k

.                   

Assume that 

                                y│γ, Xγ, βγ, σ
2

N(Xγβγ, σ
2
I) 

For Bayesian inferences, we use a hierarchical 

prior. The prior for βγ given that γ is Bernoulli 

distributed and σ
2
 is the vague prior p (σ

2
)
 

And finally, since γ has independent Bernoulli 

distribution, the conditional prior distribution of 

γ is 

               (12)                 
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This has a likelihood function which is given as 
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Where   π is a hyper parameter having a Beta 

prior distribution which is given as 

                    p(π) = 11 )1(
)(
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a, and b are conveniently chosen constants 

Now to obtain, the prior of γ, we integrate 

out , thus  

        

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However our interest is in the posterior 

distribution of γ with βγ and σ
-2 

integrated out, 

so the posterior distribution of γ is given thus. 

               (14)                        

p(γ│y) p(γ)p(y│γ) 

From the above we can conclude that the 

distribution of y given γ would involve the 

marginal of y given β and σ
2
 

Therefore we have 

                     (15)         
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Using Markov‟s chain can Carlo MCMC Gibb 

sampling we can obtain the posterior 

distribution from p(y
│

γ) as                                                                          

                       (16)      

p(y│Y) 
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Having obtained the prior distribution of the 

parameter γ and the conditional distribution of y 

given γ the next task is therefore to seek for a 

posterior distribution for the parameter γ given. 

This we shall attempt to do by using the 

Normalizing constant as shown in equation 3.23 

P(γ│y)   



qkq

nq

Sc


 )1()(1 22   

So with varying values of q and at a constant 

value for c, the posterior distribution of γ for the 

various competing variables of the Bayesian 

Regression can be approximated effectively. In 

a case where there are many equally likely 

variables which can be in the model, it becomes 

increasingly difficult to fully determine the 

appropriate model, at this point model 

averaging will have to be employed. 

 

Analyses, Results and Discussion                                                                     

In this section, we show how variables were 

selected after an appropriate choice of priors 
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distributions have been chosen for each of the 

parameters of interest β0, β1, β2, β3, β4 and β5. 

The posterior distributions are obtained under 

two prior choices. The posterior distributions 

converge for to their respective distribution for 

the two priors at different rates. This is used as 

an indication of the choicest of variables to be 

selected in the case of model reduction. 

Majority of the computations and statistical 

inferences carried out in this work were carried 

out by the using the Bayes inference software 

called Windows for Bayesian inferences using 

Gibbs Sampling- WinBUGS. 

 

As stated earlier Bayesian Regression employed 

in this work is employed for 5 Regression 

parameters β1, β2, β3, β4, and β5, and a constant 

parameter β0 for the intercept. The Regression 

model is given by 

                   

                            

iiiiii XXXXX)y(E 55443322110      

 

For the purpose of simulation each independent 

variable X is drawn from a Uniform (0, 1) 

distribution. This proposition is due to (Nagar 

1959, 1960). All the other quantities and their 

individual distributions are as stated earlier.  

 

Now for the posterior distribution of the 

parameter β1, . . . ,β5 to be obtained an 

appropriate choice of prior distributions have to 

be chosen. There are many plausible choices of 

these distributions, however for the purpose of 

this work two types of distributions were 

chosen namely: Non-informative (vague) priors 

and Conjugate priors respectively.  

 

Choice of Variables by Speed of 

Convergence 

The results of these iterations are shown below 

for the case of the Non-informative prior with 

5000, 10000, 15000, 20000, 25000 and 30000 

iterations respectively. An indication of choice  

variables for selection, in the case of model 

reduction is given by the speed of convergence 

of each of the beta variables to the observed 

posterior distributions. 

 

 

Fig. 1                                           
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beta5 sample: 5000
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Table-1: 

node  mean  sd  MC error  2.5% median 97.5%       start              sample 

beta1 0.02767 0.04644 6.596E-4 9.194E-4 0.01824    0.1085        1 5000 

beta2 0.0276 0.04951 7.05E-4                8.716E-4 0.01794    0.1101        1 5000 

beta3 0.02664 0.03816 4.515E-4 8.512E-4 0.01783    0.1071        1 5000 

beta4 0.02709 0.04599 6.905E-4 9.055E-4 0.01795    0.113        1 5000 

beta5 0.02739 0.04519 6.082E-4 9.127E-4 0.01816    0.11        1 5000 

 

The graphs and table above are graphs of the 

posterior distribution of the beta parameters, the 

graph indicate that the parameters have a 

distribution which tend to the student t 

distribution with (n-1) degrees of freedom, n in 

this case being 5000. However it was observed 

that the convergence of each of the betas to the 

t-distribution happen at different rates hence a 

need to monitor the rate of convergence of each 

of the parameters to ascertain which of the 

parameter will attain the maximum 

convergence first, next and last. This will go a 

long way to determine the variables which 

should be added or deleted from a model when 

the number of samples is of interest.  

 

Below are the higher sample sizes which help to 

monitor the parameters for general 

convergence.  

 

 

 

 

 

 

Fig.2 
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beta3 sample: 10000
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Table-2:             node  mean  sd  MC error 2.5% median 97.5% start sample 

beta1 0.02738 0.04891 4.58E-4 9.08E-4 0.01805 0.1132 1 10000 

beta2 0.02795 0.05014 4.698E-4 9.614E-4 0.01766 0.1108 1 10000 

beta3 0.02762 0.04676 4.937E-4 8.803E-4 0.01796 0.1147 1 10000 

beta4 0.02775 0.05019 4.868E-4 8.48E-4 0.01771 0.1145 1 10000 

beta5 0.0274 0.04355 3.897E-4 8.313E-4 0.0178 0.1126 1 10000 

 

 

Fig.3: 
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beta1 sample: 15000
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Table-3: 

 

node  mean  sd  MC error 2.5% median 97.5% start sample 

beta1 0.02761 0.05053 4.017E-4 8.567E-4 0.01795 0.1126 1 15000 

beta2 0.02819 0.05538 4.449E-4 9.546E-4 0.01781 0.113 1 15000 

beta3 0.02776 0.04741 3.662E-4 8.578E-4 0.01805 0.1147 1 15000 

beta4 0.0278 0.05097 4.135E-4 8.483E-4 0.01785 0.114 1 15000 

beta5 0.0278 0.05508 4.323E-4 8.502E-4 0.01787 0.1127 1 15000 
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Fig.4: 

beta1 sample: 20000

    0.0     1.0     2.0

    0.0

   10.0

   20.0

   30.0

beta2 sample: 20000

    0.0     1.0     2.0

    0.0

   10.0

   20.0

   30.0

beta3 sample: 20000

    0.0     0.5     1.0     1.5

    0.0

   10.0

   20.0

   30.0

beta4 sample: 20000

    0.0     1.0     2.0

    0.0

   10.0

   20.0

   30.0

beta5 sample: 20000

    0.0     1.0     2.0     3.0

    0.0

   10.0

   20.0

   30.0

 
 

 

Table-4: 

node  mean  sd  MC error 2.5% median 97.5% start sample 

beta1 0.02761 0.04925 3.264E-4 8.619E-4 0.01803 0.1142 1 20000 

beta2 0.02834 0.05407 3.808E-4 9.178E-4 0.018 0.1139 1 20000 

beta3 0.02765 0.04569 2.987E-4 8.708E-4 0.01816 0.1136 1 20000 

beta4 0.02771 0.04876 3.286E-4 8.79E-4 0.01793 0.1145 1 20000 

beta5 0.02774 0.05181 3.56E-4 8.652E-4 0.01801 0.1127 1 20000 
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fig. 5: 

beta1 sample: 25000
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Table-5: 
node  mean  sd  MC error 2.5% median 97.5% start sample

 
beta1 0.02782 0.05527 3.582E-4 8.795E-4 0.01797 0.1139 1 25000 

beta2 0.02838 0.05712 3.627E-4 9.129E-4 0.01803 0.1146 1 25000 

beta3 0.02794 0.04953 3.05E-4 8.977E-4 0.01816 0.1144 1 25000 

beta4 0.02768 0.04757 2.75E-4 8.741E-4 0.01795 0.1143 1 25000 

beta5 0.02783 0.05198 3.082E-4 9.007E-4 0.01805 0.1121 1 25000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Choice of Priors and Variable Selection..... 

 

 

367 

 

Fig.6: 

beta1 sample: 30000
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Table-6: 

node  mean  sd  MC error 2.5% median 97.5% start sample 

beta0 0.02827 0.05389 2.925E-4 9.044E-4 0.01815 0.1156 1 30000 

beta1 0.02804 0.05706 3.301E-4 8.704E-4 0.01801 0.1142 1 30000 

beta2 0.02846 0.05747 3.512E-4 8.849E-4 0.01808 0.1144 1 30000 

beta3 0.0282 0.05128 3.101E-4 9.046E-4 0.01823 0.1153 1 30000 

beta4 0.02792 0.05196 2.968E-4 8.636E-4 0.01799 0.1143 1 30000 

beta5 0.02793 0.05159 2.854E-4 8.762E-4 0.01804 0.1127 1 30000 

 

From the above graphs and tables it will be 

observed that the convergence to the t- 

distribution is faster in the parameter beta5, 

observe the speedy convergence from the 5000 

samples to the 15000, this makes it a potential 

variable for addition in the model. Other 

parameters converge at greater sample sizes 

between 10000 and 30000; however the 

parameters beta3 and beta4 still have room for 

convergence, for full convergence of these 

parameters, one might want to consider higher 

sample sizes. The parameters that converge 

earliest are potential parameters for addition in 

the variable selection process.  

In the case of the conjugate prior distributions 

(codes on appendix III and IV), the prior 

distributions were chosen from a conjugate t 

distributions having a mean of zero, precision 

of 0.001 and a degree of freedom of 49, since 

the initial sample size is 50. The choice of the 

precision value was chosen to disallow 

„numerical overflow‟- an error message in 

WinBUGS which specifies a range of the 

precision which is inconsistent with the values 

that may be evaluated by the software.   

   

The graphs and tables presented here are those 

for a conjugate t prior distribution of the beta 

variable. It will be observed that as at the 
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number of samples increase, the posterior 

distributions of the beta variates converge to the 

Standard t distribution at different rates for each 

of beta1, beta2, beta3, beta4 and beta5. 

 

Fig.7: 

beta1 sample: 5000
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Table-7: 

node  mean  sd  MC error 2.5% median 97.5% start sample 

beta1 -0.4019 32.76 0.5362 -64.33 -0.2323 65.5 1 5000 

beta2 -0.2515 32.05 0.4629 -61.78 -0.2928 64.04 1 5000 

beta3 0.8609 32.12 0.4801 -60.6 0.7065 65.48 1 5000 

beta4 -0.2801 32.17 0.5007 -63.1 -0.3354 61.75 1 5000 

beta5 0.4152 32.38 0.5219 -62.8 0.1877 63.89 1 5000 
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Fig.8: 

 

beta1 sample: 10000
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Table-8: 

node  mean  sd  MC error 2.5% median 97.5% start sample 

beta1 0.01198 32.66 0.383 -63.81 0.2918 65.18 1 10000 

beta2 -0.1244 32.21 0.3104 -62.2 -0.5972 63.72 1 10000 

beta3 0.216 32.35 0.3393 -61.49 0.2235 64.71 1 10000 

beta4 -0.1445 32.37 0.3539 -63.34 -0.1344 62.49 1 10000 

beta5 0.2345 32.4 0.3217 -64.39 0.3767 63.3 1 10000 

 

 

It will be observed at this point that at 5000 

samples the beta variates beta1, beta2 and 

especially beta 5 have distributions that 

converge to the Standard t distribution faster 

than that of all the other beta variates. This 

observation makes them favoured parameters in 

our choice of the parameters that will be 

considered when choosing variables for a 

reduced model. However the trace of these beta 

variates are cyclical in nature hence a need to 

choose just the right amount of samples for pure 

convergence. 
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Fig.9: 

beta1 sample: 10000
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Table-9: 

node  mean  sd  MC error 2.5% median 97.5% start sample 

beta1 0.01198 32.66 0.383 -63.81 0.2918 65.18 1 10000 

beta2 -0.1244 32.21 0.3104 -62.2 -0.5972 63.72 1 10000 

beta3 0.216 32.35 0.3393 -61.49 0.2235 64.71 1 10000 

beta4 -0.1445 32.37 0.3539 -63.34 -0.1344 62.49 1 10000 

beta5 0.2345 32.4 0.3217 -64.39 0.3767 63.3 1 10000 
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Fig.10: 

beta1 sample: 15000
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Table10:  

 

node  mean  sd  MC error 2.5% median 97.5% start sample 

beta1 -0.03282 32.67 0.2906 -64.44 0.2956 64.67 1 15000 

beta2 -0.0372 32.12 0.2567 -63.0 -0.2054 62.96 1 15000 

beta3 0.1065 32.29 0.2547 -62.19 -0.1206 64.39 1 15000 

beta4 0.07017 32.33 0.2838 -63.11 0.01727 62.93 1 15000 

beta5 -0.2541 32.72 0.2668 -64.88 -0.1592 63.65 1 15000 

 

The trace of beta2 are beta 5 are relatively 

stable at this point while those of beta1, beta3 

and beta4 still fluctuate, this is an implication 

that the convergence of beta2 and beta5 are 

faster than others. Now to consider the other 

sample sizes to see the speed of convergence of 

the beta variates, we take larger sample sizes of 

20000, 25000 and 30000 samples. 
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Fig.11: 
 

  

beta2 sample: 20000
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Table 11: 

node  mean  sd  MC error 2.5% median 97.5% start sample 

beta1 0.1101 32.54 0.2536 -63.81 0.3901 64.32 1 20000 

beta2 7.726E-4 32.2 0.2344 -63.14 -0.1121 63.38 1 20000 

beta3 0.08148 32.15 0.2436 -62.62 0.01785 63.33 1 20000 

beta4 0.2338 32.46 0.2435 -63.16 0.2668 63.06 1 20000 

beta5 -0.105 32.7 0.2316 -64.57 0.02121 64.15 1 20000 

 

At this point, almost all the beta variates have 

fully converged to the Standard t distribution 

with beta2 having the least posterior mean (its 

mean is closest to the standard t distribution  

mean) and beta4 having the most.  
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Fig.12: 

 

beta1 sample: 25000
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Table-12: 

 

node  mean  sd  MC error 2.5% median 97.5% start sample 

beta1 -0.05494 32.56 0.2107 -64.52 0.1517 64.19 1 25000 

beta2 0.03356 32.04 0.2051 -62.56 -0.2061 63.21 1 25000 

beta3 0.1144 32.16 0.2314 -62.62 0.1789 63.5 1 25000 

beta4 0.2232 32.31 0.2272 -63.1 0.1528 62.93 1 25000 

beta5 0.07198 32.63 0.1955 -64.7 0.2549 64.15 1 25000 
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Fig.13: 

beta1 sample: 30000
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Table-13: 

node  mean  sd  MC error 2.5% median 97.5% start sample 

beta1 -0.09018 32.58 0.1999 -64.64 0.06665 64.45 1 30000 

beta2 0.07158 32.12 0.1859 -63.06 -0.091 63.52 1 30000 

beta3 0.09854 32.21 0.1995 -62.76 0.1286 63.63 1 30000 

beta4 0.04514 32.27 0.2059 -63.26 0.0103 62.73 1 30000 

beta5 -0.0461 32.61 0.1816 -64.69 0.08919 63.89 1 30000 

 

The graphs and tables for the 25000 and 30000 

sample size iterations show that the speed of 

convergence increases in the following order 

beta2, beta3, beta4, beta1 and beta5. In 

addition, this gives us an insight as to which 

variables should be added or deleted from a 

model in the case of variable selection. That is 

say that the independent variable related to 

beta2 should be the first to be added to the 

model and independent variable related to beta5 

should be the first to be deleted from the model. 

Stochastic Variable Selection 

This is an extremely flexible method of variable 

selection that is implemented in the WinBUGS 

software. Here MCMC methods are used to 

draw samples from a model so that the variables 

with the highest posterior probabilities are 

visited most often. It works well in cases where 

we are more interested in the marginal inclusion 

probabilities of the variates. 
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node  mean  sd  MC error 2.5% median 97.5% start sample 

beta0 -0.7453 31.91 0.4071 -64.48 -0.3593 62.36 1 5000 

beta1 -0.4697 31.07 0.4074 -61.06 -0.3663 61.41 1 5000 

beta2 0.5216 32.14 0.4753 -62.61 0.3092 64.09 1 5000 

beta3 0.8325 31.51 0.4714 -59.7 0.8452 61.64 1 5000 

beta4 -0.004833 31.79 0.4157 -62.05 -0.1965 60.83 1 5000 

beta5 0.1411 32.03 0.3612 -62.58 0.2408 62.41 1 5000 

gamma[1] 0.4972 0.5 0.006684 0.0 0.0 1.0 1 5000 

gamma[2] 0.5054 0.5 0.007218 0.0 1.0 1.0 1 5000 

gamma[3] 0.5052 0.5 0.007145 0.0 1.0 1.0 1 5000 

gamma[4] 0.505 0.5 0.006273 0.0 1.0 1.0 1 5000 

gamma[5] 0.4942 0.5 0.007286 0.0 0.0 1.0 1 5000 

 

As stated in the section above, the most 

promising predictors are the ones whose latent 

variables have the highest posterior 

probabilities, so in the cases above where the 

stochastic variable selections are used, the 

latent variables are the γj variables with each 

having a Bernoulli distribution (refer to 

appendix for WinBUGS code).  In the case 

above all the latent variables have similar 

properties; this is probably due to the fact that 

all the X‟s (i.e. independent variables) are from 

a Uniform distribution of the same form.  

 

However the independent variables x2i, x3i, and 

x4i associated with β2, β3 and β4 respectively are 

choice variables since they have an 

approximately equal posterior probability for 

their latent variables after running an MCMC 

simulation with 5000 as the sample size. For 

higher sample sizes, the differences in the latent 

variables γ may not be easily identified because 

all the independent variables are from the same 

Uniform (0, 1) distribution. 

 

Summary 

Thus far efforts have been made to establish the 

relationship between the variables of a linear 

Bayesian Regression model with special 

considerations given to the choice of the prior 

distributions that are being used. The focus of 

this work is on the possible choices available 

for the covariates β = (β0, β1, β2, β3, β4, β5) of 

the linear Regression model; in addition to 

choosing  the independent variables that are 

most likely to leave or enter the model in the 

case of variable deletion or inclusion 

respectively. 

In the course of this research work we have 

been able to briefly explore a brief background 

of the study with interest on the transition from 

the classical or frequentist approach to 

Regression to the more recent Bayesian 

approach.   After studying and proving some of 

the underlying theories behind the Bayes 

Regression, we have succeeded at employing 

two types of prior distribution for the β 

covariates- the Non-informative (vague) prior 

distribution and the conjugate prior distribution. 

In the case of the Non-informative prior 

distribution, the prior distribution of the beta 

variates were of the Uniform distribution 

U(0,σ), this combined with the likelihood 

function of the Normal distribution (an 

operation carried out in WinBUGS ) and 

yielded a t-distribution with mean that is 

approximately zero and n-1 degrees of freedom 

for each of the sample sizes n1, . . ., n6 with 

n1=5000, n2=10000, n3=15000, n4=20000, 

n5=25000 and n6= 30000. In addition the  speed 

of convergence of each of the each of the beta 

variates were monitored as an insight to which 

variables should be added or deleted from the 

model.  

 

Under the conjugate prior arrangement, the beta 

variates were drawn from the conjugate t- 

distribution with mean zero, precision 0.001 

and n-1=49 degrees of freedom. This was 

drawn from an initial sample size of 50. When 

this was multiplied with the likelihood of the 

Normal distribution the result posterior 

distribution generated were of the Standard t 

distribution with means and variances as 

summarised in the table. The speed of 
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convergence was also monitored and beta2, 

beta3, and beta4 were found to potentially 

variables to be included in the model.  

 

For variable selection, the Stochastic Variable 

selection was applied using latent variables 

gamma for each of the beta variates. On the 

choice of variables, the independent variables 

associated with beta2, beta3 and bet4 were 

found to be choice variables for inclusion in the 

model. This is consistent with the choice of 

variables selected by simply monitoring the 

speed of convergence of the beta parameters. 

 

 Conclusion 

 

In conclusion it was established that for a 

Normal linear Regression with the posterior 

covariates from a t-distribution the appropriate 

choice of prior distribution would be a vague 

uniform prior distribution with mean zero and a 

given standard deviation  σ. For a Normal linear 

Regression model having the posterior beta 

covariates from Standard t distribution, the 

most appropriate prior distribution should be 

from a t-distribution with n-1 degrees of 

freedom and a zero mean The speed of 

convergence of the parameters to the desired 

posterior distribution is an indication of what 

variables should be added or deleted from 

models in the case of model reduction. The 

parameters that converge fastest should have 

their variables added to the new model. 
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