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ABSTRACT 

The random sum distribution plays a key role in the application of statistics, in addition, it can be 

used with insurance program, biotechnology and applied medical science. The statistical 

significance of this distribution arises from its applicability in real life situations. Saddle point 

approximations are powered tool in obtaining accurate expressions for distribution functions in 

closed form. Approximations almost outperform other methods with respect to computational costs, 

though not necessarily with respect to accuracy. However, the paper also, discusses the Saddle 

point methods to the cumulative distribution function (CDF) for damage process in discrete form. 

Furthermore, it shows approximations to random sum variable with dependent components 

assuming presence of the moment generating function (MGF). 

Keywords: Random sum, Poisson-Bernoulli distributions, Saddle point approximation, 

Cumulative distribution function. 

 

INTRODUCTION 

 

Saddle point methods are influential tools in getting precise terms for distribution function which 

are not recognized in closed sitting. Saddle point approximations almost surpass other techniques 

regarding calculating expenses; while it does not inevitably surpass them concerning accuracy. The 

most basic Saddle point approximation was launched by Daniels (1954) and is fundamentally 

expression for approximating CDF and discrete distribution function through its MGF. Saddle 

point approximations are constructed by supposing existence of the MGF or, equally, the CGF, of 

random variable. However, in purpose of improvement of saddle point and associated methods, one 

can refer to (Daniels, 1954; Daniels, 1987) for facts of the continuous and discrete method 

distribution function, study conducted by Skovgaard (1987) for a conditional methods. 
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Furthermore, Reid (1988) reported for applications to inference. As well as, Borowiak (1999) 

study, for discussion of a tail area approximation that has uniform relative error and Terrell (2003) 

for a stabilized Lugannani-Rice formula. In this paper, we will use the saddle point approximation 

to estimate the random sum based on MGF for damage process. Presume a random variable X  

has mass function 
)(xf

 identified for all real values of x . Subsequently, the MGF is identified as 

)()()( xpsxesxeEsM
x






                                        (1) 

(Hogg and Craig, 1978) Over values of s for which the integral converges and the convergence is 

constantly certain at 0s  and it should be supposed that 
)(sM

 converges over largest open 

neighborhood at zero as
),( ba

. The CGF is known by   

)(ln)( sMsK  ,             ,),( bas                             (2) 

(Johnson et al., 2005). 

For discrete integral-valued random variable X , the saddle point approximation for its mass 

function
)(xp

, based on the CGF K  is given by  

)ˆ)ˆ(exp(
)ˆ(
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xssK

sK
xp 





                                 (3) 

xsK  )ˆ(                   x,  

and   is the inner part of the span that powered by  , see Butler (2007). Saddle point expression 

(3) is computable for any value in  , but the plot of )(ˆ xp  is meaningful as an approximation to 

)(xp  only for integer-valued arguments. 

 

Saddle point Approximation for Univariate Cumulative Distribution Functions  

Daniels (1987) initiated two continuity correct modifications for discrete integral-valued random 

variable X  for univariate cumulative distribution functions (CDF) that are presented below. 
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First continuity-correction 

Suppose x  so, that the saddle point equation can be solved at value x , the first 

approximation is 
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Where ŵ  and 1̂u  are known by   

 

  5.0

5.0

)ˆ())ˆexp(1(ˆ

))ˆ(ˆ(2)ˆsgn(ˆ

1 sKsu

sKxssw


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In addition, the saddle point ŝ  solves xsK  )ˆ( . The symbol   and   indicate the normal 

probability distribution function (PDF) and the CDF correspondingly as well as )ˆsgn(s takes sign 

)(  for ŝ  (Butler, 2007). 

 

Second Continuity-correction 

Define 05. xx   as the continuity-corrected or offset value of x . The second 

approximation solves the offset saddle point equation
 xsK )~( . The saddle point s~ and 

x

are used to alter the inputs into the CDF approximation according to 
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This leads to the second continuity-modified approximation 
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(Butler, 2007). 

 

Third Approximation 

This approximation is denoted as )(ˆ
3

xXrP  and uses expression (6) with 2
~w  as in (5) and 2

~u  

replaced with 

      ,)~(~~
3 sKsu                                               (7) 

(Butler, 2007).      

 

THE RANDOM-SUM DISTRIBUTIONS  

 

The random sum distributions have many natural applications. We motivate the notion of random 

distributions with damage process. The random variable Y  is said to have a random sum 

distribution if Y  is of the following form 

                                             NXXXXY  ....321                                     (8) 

However, the number of terms N  is uncertain, the random variables 
sX i

,

are independent and 

identically distributed (with common distribution X ) and every iX
 is independent of N . If N = 

0 is realized, then we have 0Y . Even though, this implicit in definition, we want to call this out 

for clariety. The concepts of damage process are inherent in the work of catcheside (1048). For a 

prescribed dosage and length of exposure to radio-therapy, the number of N  of chromosome 

breakages in individual cells can be assumed to have Poisson random variables. 

Each breakage has fixed independent probability. This leads to the random sum Poisson- Bernoulli 

distribution. The distribution function of Y  is given by  
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(Johnson et al., 2005). Where for )(,1 yGn n , is the distribution function of the independent 

sum NXXXX  ....321 . We can also express Yf in terms of convolutions: 







0

* ][)()(
n

n
Y nNPyfyf                                   (10) 

where f is the common distribution function for iX  and 
n

f
*

 is the n-fold convolution of f . If 

the common distribution X  is discrete, then the random sum Y  is discrete. On the other hand, if 

X  is continuous and if 0][  nNP , then the random variable Y will have a mixed 

distribution, as is often the case in insurance applications. The mean of the random sum Y is

][YE given by 

                                       
][][][ XENEYE 

                                                    (11) 

The variance of the random sumY is ][YVar  and is defined as 

                                      
2][][][][][ XENVarXVarNEYVar 

              (12) 

The moment generating function of random sum Y is given by
 

                                    
)]([ln)( sMMsM XNY                                                     (13) 

(Hogg and Tanis, 1983) where the function ln is the natural log function. As well as, the cumulant 

generating function of random sum Y is defined as   

                           
           )]([)]([ln)(ln)( sKKsKMsMsK XNXNYY            (14) 

When the random variable N  follows a Poisson distribution with a constant parameter , then the 

random variable Y  is said to have a Poisson random sum distribution which has the mean 

][NE  and the variance ][][ 2XEYVar  . The moment generating function in this 

case is 

)]1)((exp[)]([ln)(  sMsMMsM XXNY            (15) 

If the distribution  sX i

,
 are i.i.d. random variables follows Bernoulli )(p  distribution, the sum Y

 is said to have a Poisson- Bernoulli random sum distribution. The cumulant generating function for 

N   is given by  
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)1(e=(s)] M ln[=(s)  s

NN K                                    (16) 

And for sX i

,
 which are i.i.d. random variables follows Bernoulli )(p  distribution, The CGF for 

sX i

,
  is defined as  

                                      
  )(l=(s)] M ln[=(s) XX qpenK s                            (17) 

Where 1 qp . Then, we can drive the cumulant generating function for the Poisson- Bernoulli 

random sum distribution as follows  

                                    )]1)[())(()(  qpesKKsK s
XNY                         (18) 

Then the saddle point equation is  

                                
    xpesKsK s

YY  ˆ)ˆ()ˆ(                   (19) 

Then, we can find the saddle point as       
p

x
s


lnˆ                                                (20) 

               This leads to the saddle point mass function for Poisson- Bernoulli random sum which is given by 

                                               )lnexp()(ˆ
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And the saddle point approximation to cumulative distribution functions for Poisson- Bernoulli 

random sum presented below. 

First Continuity-correction 

For first continuity-correction we will define                 
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This leads to the First continuity-corrected approximation given in expression (4).                                

 

Second continuity-correction 

For Second continuity correction we will define 05. xx   as the continuity-corrected 

or offset value of x . The second approximation solves the offset saddle point equation 
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5.0)~(  xsK  and the saddle point s~ and 
x is used to alter the inputs into the CDF 

approximation according to                                                 
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Then, we'll find the second continuity-corrected approximation given in expression (6).  

 

Third Approximation 

This approximation is denoted as )(ˆ
3

xXrP  and uses expression (6) with 2
~w  as in (23) and 2

~u  

replaced with 5.0
5.0

ln~
3 


 x

p

x
u


. 

CONCLUSION  

 

This study indicated that, the saddle point approximation to the CDF for random sum Poisson-

Binomial Distribution in discrete settings. Furthermore, we discussed approximations to random 

sum random variable with dependent components assuming presence of the MGF. 
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