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ABSTRACT

The random sum distribution plays a key role in the application of statistics, in addition, it can be
used with insurance program, biotechnology and applied medical science. The statistical
significance of this distribution arises from its applicability in real life situations. Saddle point
approximations are powered tool in obtaining accurate expressions for distribution functions in
closed form. Approximations almost outperform other methods with respect to computational costs,
though not necessarily with respect to accuracy. However, the paper also, discusses the Saddle
point methods to the cumulative distribution function (CDF) for damage process in discrete form.
Furthermore, it shows approximations to random sum variable with dependent components

assuming presence of the moment generating function (MGF).

Keywords: Random sum, Poisson-Bernoulli distributions, Saddle point approximation,
Cumulative distribution function.

INTRODUCTION

Saddle point methods are influential tools in getting precise terms for distribution function which
are not recognized in closed sitting. Saddle point approximations almost surpass other techniques
regarding calculating expenses; while it does not inevitably surpass them concerning accuracy. The
most basic Saddle point approximation was launched by Daniels (1954) and is fundamentally
expression for approximating CDF and discrete distribution function through its MGF. Saddle
point approximations are constructed by supposing existence of the MGF or, equally, the CGF, of
random variable. However, in purpose of improvement of saddle point and associated methods, one
can refer to (Daniels, 1954; Daniels, 1987) for facts of the continuous and discrete method
distribution function, study conducted by Skovgaard (1987) for a conditional methods.
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Furthermore, Reid (1988) reported for applications to inference. As well as, Borowiak (1999)
study, for discussion of a tail area approximation that has uniform relative error and Terrell (2003)
for a stabilized Lugannani-Rice formula. In this paper, we will use the saddle point approximation

to estimate the random sum based on MGF for damage process. Presume a random variable X
has mass function f(x) identified for all real values of X . Subsequently, the MGF is identified as

M(s) = EE™) = 3eXp(x) @

X =—0

(Hogg and Craig, 1978) Over values of s for which the integral converges and the convergence is

constantly certain at s=0 and it should be supposed that M(s) converges over largest open
neighborhood at zero as @, b). The CGF is known by
K(s) =InM(s), se(ah), )

(Johnson et al., 2005).
For discrete integral-valued random variable X , the saddle point approximation for its mass

function p(X), based on the CGF K is given by

1
D(X) = ———=exp(K(S) —8x 3
P(x) Z0) P(K(S) —$X) (3)
where K'(§) =x W XET,

and Ty is the inner part of the span that powered by y, see Butler (2007). Saddle point expression
(3) is computable for any value in 7, but the plot of P(X) is meaningful as an approximation to

P(X) only for integer-valued arguments.

Saddle point Approximation for Univariate Cumulative Distribution Functions
Daniels (1987) initiated two continuity correct modifications for discrete integral-valued random

variable X for univariate cumulative distribution functions (CDF) that are presented below.
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First continuity-correction

Suppose X &7, so, that the saddle point equation can be solved at value X, the first

V4

approximation is

1—®(W)—¢(W)(V%V—%) it X% u
@
rl(xzx): 05_ 1 Km(o) _ 1 If X:lu
Vor | gogye 2K

Where W and U are known by

W =sgn(§)[2(8x — K(8))]°°
0, = 1—exp(-9)[K"©®°

In addition, the saddle point § solves K'(§) =X. The symbol ¢ and @ indicate the normal
probability distribution function (PDF) and the CDF correspondingly as well as SQN(S) takes sign

(%) for S (Butler, 2007).

Second Continuity-correction

Define X~ =X-.05e7

4 s the continuity-corrected or offset value of X. The second

approximation solves the offset saddle point equation K'(S) = X™. The saddle point S and X~

are used to alter the inputs into the CDF approximation according to

W, =sgn(S)y/2[Sx™ —K(S)]
u, = Zsinh(%),/K”(’s”)

This leads to the second continuity-modified approximation

®)
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~ ~ 1 1 P
1- D) ~g(W) (= —=)  ifx %
) W, U
Prz (X > X) =91 KM(O) (6)

3 iftx =u
6v/27K "(0)2

(Butler, 2007).

Third Approximation

This approximation is denoted as |5r3(X > X) and uses expression (6) with Wz as in (5) and Uz
replaced with
Uy =SK"(5), @)

(Butler, 2007).
THE RANDOM-SUM DISTRIBUTIONS

The random sum distributions have many natural applications. We motivate the notion of random
distributions with damage process. The random variable Y is said to have a random sum
distribution if Y is of the following form

Y=X+X,+X;+...4+ X (8)

However, the number of terms N is uncertain, the random variables Xi S are independent and
identically distributed (with common distribution X ) and every Xi is independent of N f N -
0 is realized, then we haveY = 0. Even though, this implicit in definition, we want to call this out
for clariety. The concepts of damage process are inherent in the work of catcheside (1048). For a

prescribed dosage and length of exposure to radio-therapy, the number of N of chromosome

breakages in individual cells can be assumed to have Poisson random variables.

Each breakage has fixed independent probability. This leads to the random sum Poisson- Bernoulli

distribution. The distribution function of Y is given by

f, (y) =ioen(y)P[N —n] ©
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(Johnson et al., 2005). Where for N >1,G (), is the distribution function of the independent

sum X, + X, + X +....+ X . We can also express f, in terms of convolutions:
f, () =2 f"(Y)PIN =n] (10)
n=0

*
where f is the common distribution function for X; and f " is the n-fold convolution of f . If
the common distribution X is discrete, then the random sum Y is discrete. On the other hand, if

X is continuous and if P[N = n] > O, then the random variable Y will have a mixed

distribution, as is often the case in insurance applications. The mean of the random sum Y is

ELY ] given by

ELY]1=EIN]E[X]

(11)

The variance of the random sumY isVVar[Y] and is defined as
Vvar[Y] = E[NVar X]+VarfN]E[X]? 12

The moment generating function of random sum Y is given by
M, (s) = My [InM (s)] (13)

(Hogg and Tanis, 1983) where the function Inis the natural log function. As well as, the cumulant
generating function of random sum Y is defined as

Ky (8) =InMy (s) =In M [K, (s)]= Ky [Ky (5)] (14)

When the random variable N follows a Poisson distribution with a constant parameter A , then the
random variable Y is said to have a Poisson random sum distribution which has the mean

A =E[N] and the variance Var{Y ] = AE[X 2] . The moment generating function in this

My (8) =My [InM, ()] =exp[A(My (5)-D)] @)

If the distribution X;'S are i.i.d. random variables follows Bernoulli (p) distribution, the sum Y

is said to have a Poisson- Bernoulli random sum distribution. The cumulant generating function for
N is given by
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—_ —_ S
Ky (8)=In[My (8)]= A€’ -1) (16)
And for X,'S which are i.i.d. random variables follows Bernoulli () distribution, The CGF for
X,'S is defined as

Kx (8)=In[ My (s)]=In(pe” +0) n

Where P+ =1. Then, we can drive the cumulant generating function for the Poisson- Bernoulli

random sum distribution as follows

Ky (8) = Ky (Kx (8)) =A[(pe’ +0)-1)] (18)
Then the saddle point equation is
K{ (8) = K{ (§) = Ape® =x (19)
A X
Then, we can find the saddle pointas S = IN— (20)

p

This leads to the saddle point mass function for Poisson- Bernoulli random sum which is given by

ﬁ(x)=ﬁexp(x—zp—xln%) o

And the saddle point approximation to cumulative distribution functions for Poisson- Bernoulli
random sum presented below.

First Continuity-correction
For first continuity-correction we will define

wz\/z(xlnl—xmp)
Ap 22)

~ Al
X
This leads to the First continuity-corrected approximation given in expression (4).

Second continuity-correction

For Second continuity correction we will define X~ =X—.05e7

8 the continuity-corrected

or offset value of X. The second approximation solves the offset saddle point equation
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K'(S)=x—0.5 and the saddle point Sand X is used to alter the inputs into the CDF

approximation according to

W, = \/2{(x—o.5)InX;'S—i(X—O.S—/lp)}

~ . x—0.5
U, = 2sinh(0.5In )Vx-0.5
Ap
Then, we'll find the second continuity-corrected approximation given in expression (6).

Third Approximation

This approximation is denoted as Isrs(X > X) and uses expression (6) with W, as in (23) and U,

~ x—0.5
replaced with Uy = In vX—-05.
Ap
CONCLUSION

This study indicated that, the saddle point approximation to the CDF for random sum Poisson-
Binomial Distribution in discrete settings. Furthermore, we discussed approximations to random

sum random variable with dependent components assuming presence of the MGF.
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