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ABSTRACT 

In the present paper, we introduce a new class of meromorphic multivalent functions defined by 

linear derivative operator. We obtain some geometric properties, like, coefficient inequality, 

convex set, extreme points, distortion and covering theorem,  -neighborhoods, partial sums and 

arithmetic mean. 
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INTRODUCTION 

 

Let    be the class of all functions of the form: 

 ( )      ∑    

 

   

     (    {     }                        ( ) 

which are analytic and meromorphic multivalent in the punctured unit disk  

 

   {      | |   }    { }  

Consider  a subclass     of functions of the form: 

       ( )      ∑    

 

   

     (       )                             ( ) 
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 A function      is meromorphic multivalent starlike function of order  (     ) if  

 

   {
   ( )

 ( )
}                 (            )                   ( ) 

 

A functions       is meromorphic multivalent convex function of order  (     ) if  

 

   {  
    ( )

  ( )
}              (            )                ( ) 

 

 The convolution (or Hadamard product ) of two functions,    is given by (2) and 

 

 ( )      ∑    

 

   

        (            {     })     ( ) 

is defined by  

(   )( )      ∑    

 

   

     
       

We shall need to state the extended linear derivative operator of Ruscheweyh type for the function 

belonging to the class     which is defined by the following convolution  

 

  
   
 ( )  

   

(   )   
  ( )    (         )                   ( ) 

  

In terms of binomial coefficients, (6) can be written as 

  

  
   
 ( )      ∑(

   

 
)     

 

   

           (         )       ( ) 

The linear operator       analogous to   
    was consider recently by Raina and Srivastava (2006) 

on the space of analytic and p-valent function in   (     { })   

 

Also the linear operator   
   

 was studied on meromorphic multivalent functions for other class in 

(Goyal and Prajapat, 2009). 
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Definition 1: Let      be given by (2). The class     (     ) is defined by  

 

    (     )  {     |
    (  

   
 ( ))

 

     (  
   
 ( ))

 

   

     (  
   
 ( ))

 

  (   )   
|       (      

                      }                                                              ( ) 

Najafzadeh and Ebadian (2013), Atshan and Kulkarni (2009), Atshan and Buti (2011), Khairnar 

and More (2008), studied meromorphic univalent and multivalent functions for different classes. 

 

COEFFICIENT INEQUALITY 

 

Theorem 1: Let     . Then         (     ) if and only if  

∑(
   

 
)

 

   

(   )[(   )    ]       (   )(   )                             ( ) 

 

(                          )  

 

The result is sharp for the function  

 

 ( )      
  (   )(   )

(   
 
)(   )[(   )    ]

          

 

Proof: Assume that the inequality (9) holds true and let | |  1, then from(8), we have 

 

|    (  
   
 ( ))

 

     (  
   
 ( ))

 

   |   |     (  
   
 ( ))

 

  (   )   | 

 |∑(
   

 
)

 

   

(   )      
 |   | (   )(   )   ∑(

   

 
) (   )

 

   

     
 | 

 ∑(
   

 
)

 

   

(   )[(   )    ]       (   )(   )      

by hypothesis. 

 

Hence, by the principle of maximum modulus,       (     ). 

Conversely, suppose that   defined by (2) is in the class     (     ).  

Hence  
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|
    (  

   
 ( ))

 

     (  
   
 ( ))

 

   

     (  
   
 ( ))

 

  (   )   
| 

 

 |
∑ (   

 
) 

   (   )      
 

 (   )(   )   ∑ (   
 
)(   ) 

        
 
|                                     

Since   ( )  | |  for all z, we have  

 

  {
∑ (   

 
) 

   (   )      
 

 (   )(   )   ∑ (   
 
)(   ) 

        
 
}                           (  ) 

 

We can choose the value of z on the real axis, so that     (  
   
 ( ))

 

 is real. Let     , through 

real values, so we can write (10) as 

∑(
   

 
)

 

   

(   )[(   )    ]       (   )(   )  

Finally sharpness follows if we take  

 

 ( )      
  (   )(   )

(   
 
)(   )[(   )    ]

                 

Corollary 1: Let       (     ). Then  

     
  (   )(   )

(   
 
)(   )[(   )    ]

  

where   

(                           )  

 

CONVEX SET 

 

Theorem 2: Let the functions 

       ( )      ∑    

 

   

           (       )  

       ( )      ∑    

 

   

          (       )  

be in the class     (     ). Then for        the function  

 ( )   (   ) ( )      ( )      ∑    

 

   

                  (  ) 
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where  

      (   )               

is also in the class     (     ). 

 

Proof: Suppose that each of the functions         is in the class     (     )  Then, making use 

of Theorem 1, we see that 

∑(
   

 
)

 

   

(   )[(   )    ]     

 (   )∑(
   

 
)

 

   

(   )[(   )    ]      ∑(
   

 
)

 

   

(   )[(   )    ]     

 (   )  (   )(   )     (   )(   ) 

   (   )(   )  

which completes the proof of Theorem 2. 

 

EXTREME POINTS 

 

Theorem 3: Let              and  

    ( )      
  (   )(   )

(   
 
)(   )[(   )    ]

                                (  ) 

for              Then       (     ) if and only if it can be expressed in the form 

       ( )  ∑    

 

   

    ( )  

where  

                        ∑    

 

   

     

Proof: Suppose that  

       ( )  ∑    

 

   

    ( )          

where     

                        ∑    

 

   

    

Then 

 ( )        ( )  ∑    

 

   

    ( ) 
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   ∑    

 

   

(    
  (   )(   )

(   
 
)(   )[(   )    ]

    ) 

  

 ( )      ∑
  (   )(   )    

(   
 
)(   )[(   )    ]

    
 

   

 

     ∑     
   

 

   

  

where 

     
  (   )(   )    

(   
 
)(   )[(   )    ]

   

By Theorem 1, we have       (     ) if and only if  

∑
(   

 
)(   )[(   )    ]

  (   )(   )

 

   

        

for   

 ( )      ∑     
   

 

   

  

Hence  

∑
(   

 
)(   )[(   )    ]

  (   )(   )

 

   

     
  (   )(   )

(   
 
)(   )[(   )    ]

 

 ∑    

 

   

          

The proof is complete. 

Conversely, assume       (     )  Then we show that    can be written in the form: 

 ( )  ∑    

 

   

    ( )  

Now         (     )  implies from Theorem 1 

     
  (   )(   )

(   
 
)(   )[(   )    ]

  

Setting  

     
(   

 
)(   )[(   )    ]

  (   )(   )
                      

 

 



Journal of Asian Scientific Research, 2013, 3(7):734-746 

 

 

 

740 

 

and  

      ∑     

 

   

 

 then  

 ( )      ∑     
   

 

   

 

     ∑
  (   )(   )    

(   
 
)(   )[(   )    ]

 

   

 

     ∑(        )    

 

   

 

     (  ∑    

 

   

)  ∑        

 

   

 

        ∑        

 

   

 

 ∑    

 

   

    ( )  

 

DISTORTION AND COVERING THEOREM 

 

Theorem 4: If the function       (     ), then  for   | |    

 

 

| | 
 

  (   )(   )

(   
 
)(   )[(   )    ]

| |    | ( )|

 
 

| | 
 

  (   )(   )

(   
 
)(   )[(   )    ]

| |          (  ) 

The result is sharp and attained for  

 ( )  
 

  
 

  (   )(   )

(   
 
)(   )[(   )    ]

       

Proof: Let       (     ). Then   

| ( )|  |
 

  
 ∑    

 

   

    |   

 
 

| | 
 ∑    

 

   

| |    
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| | 
 | |   ∑    

 

   

   

By Theorem1, we have   

∑     
  (   )(   )

(   
 
)(   )[(   )    ]

 

   

   

Thus 

| ( )|  
 

| | 
 

  (   )(   )

(   
 
)(   )[(   )    ]

| |     

Similarly, we have  

| ( )|  
 

  
 ∑    

 

   

| |    

  
 

  
 | |   ∑    

 

   

  

| ( )|  
 

| | 
 

  (   )(   )

(   
 
)(   )[(   )    ]

| |     

Hence result (13) follows. 

 

 

 

Theorem 5: If        (     )   then for   | |     

 

 

| |   
 

  (   )(   )

(   
 
)[(   )    ]

| |   |  ( )|  
 

| |   
 

  (   )(   )

(   
 
)[(   )    ]

| |          (  ) 

with equality for    

 ( )  
 

  
 

  (   )(   )

(   
 
)(   )[(   )    ]

      

Proof: Let       (     ). Then  

|  ( )|  
 

| |   
 ∑(   )    

 

   

| |      

 
 

| |   
 | |  ∑(   )    

 

   

 

 
 

| |   
 

  (   )(   )

(   
 
)[(   )    ]

| |     

On the other hand    
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|  ( )|  
 

| |   
 ∑(   )    

 

   

| |      

 
 

| |   
 | |  ∑(   )    

 

   

 

 
 

| |   
 

  (   )(   )

(   
 
)[(   )    ]

| |    

which complete the proof. 

 

NEIGHBORHOODS AND PARTIAL SUMS 

 

Definition 2: Let  (                           )                 

We define the  -neighborhood of a function      and denote   ( ) such that  

  ( )  {       ( )

    

 ∑    

 

   

         ∑
(   

 
)(   )[(   )    ]

  (   )(   )
|         |

 

   

  }       (  ) 

 

Goodman (1957), Ruscheweyh (1981) and Altintas and Owa (1996) have investigated 

neighborhoods for analytic univalent functions, we consider this concept for the class     (     )   

 

Theorem 6: Let the function  ( ) defined by (2) be in the class     (     ), for every complex 

number      with   | |            

let 
 ( )     

   
     (     )  then      ( )      (     )            

Proof: Since       (     ),   satisfies (9) and we can write for     | |       

that 

[
    (  

   
 ( ))

 

     (  
   
 ( ))

 

   

     (  
   
 ( ))

 

  (   )   
]                         (  ) 

Equivalently, we must have  

(   )( )

   
                                                       (  ) 

where    

    ( )      ∑    
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such that 

     
 (   

 
)(   )[(   )    ]

  (   )(   )
 

Satisfying  

  

|    |  
 (   

 
)(   )[(   )    ]

  (   )(   )
                

Since              

 ( )      

   
     (     )  

by (17) 

 

  
(
 ( )      

   
  ( ))                                                (  ) 

Now assume that  |
(   )( )

   
|     Then, by (18), we have  

|
 

   

(   )( )

   
 

 

   
 |  

| |

|   |
 

 

|   |
|
(   )( )

   
|  

| |   

|   |
    

 This is a contradiction as  | |   . Therefore |
(   )( )

   
|     

Letting  

 ( )      ∑    

 

   

         ( )  

Then  

  |
(   )( )

   
|  |

(   )   ( )

   
| 

 |∑(         )     
   

 

   

| 

 ∑|         ||    || |
   

 

   

 

 | |   ∑[
(   

 
)(   )[(   )    ]

  (   )(   )
]

 

   

|         | 

     

therefore   
(   )( )

   
     and we get   ( )      (     ), so   ( )      (     ). 

 

Theorem 7: Let   ( ) be defined by (2) and the partial sums   ( )          ( ) be defined by                 

                                     ( )      and  
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  ( )      ∑    

   

   

              (   )   

Also suppose that  

∑    

 

   

         

where   

     
(   

 
)(   )[(   )    ]

  (   )(   )
                                    (  ) 

Then we have  

  {
 ( )

  ( )
}    

 

  
                                                       (  ) 

  {
  ( )

 ( )
}    

  

    
          (        )         (  ) 

Each of the bounds in (19) and (20) is the best possible for      

 

Proof: For the coefficients      given by (19), it is not difficult to verify that             

                 

Therefore, by using the hypothesis (19), we have  

∑    

   

   

   ∑    

 

   

 ∑                                       (  )

 

   

 

By setting 

  ( )    (
 ( )

  ( )
 (  

 

  
)) 

          
  ∑      

   
   

  ∑      
  

   

   

and applying (22) we find that  

|
  ( )   

  ( )   
|  |

  ∑      
   

   

   ∑      
    ∑      

   
   

   
   

| 

                    
  ∑      

 
   

   ∑        ∑      
 
   

   
   

    

This proof (20). Therefore,   (  ( ))    and we obtain  

  {
 ( )

  ( )
}    

 

  
  

Now, in the same manner, we can prove the assertion (21) by setting   

  ( )  (    ) (
  ( )

 ( )
 

  

    
)  

This completes the proof. 



Journal of Asian Scientific Research, 2013, 3(7):734-746 

 

 

 

745 

 

 

Theorem 8:  Let    ( )   ( )     ( ) defined by  

  ( )      ∑      

 

   

     (                          )        (  ) 

be in the class      (     ). Then the arithmetic mean of 

   ( )  (         )   defined by 

 ( )  
 

 
 ∑  ( )

 

   

                                                     (  ) 

is also in the class      (     ).    

 

Proof:  By (23), (24), we can write  

 ( )  
 

 
 ∑(     ∑      

 

   

    )

 

   

   

             ∑(
 

 
 ∑      

 

   

)     
 

   

  

Since       
   (     )    for every  (         ) so by using Theorem1, we prove that  

∑(
   

 
)

 

   

(   )[(   )    ] (
 

 
 ∑      

 

   

)                            

 
 

 
 ∑(∑(

   

 
)

 

   

(   )[(   )    ]      )

 

   

 

 
 

 
 ∑  (   )(   ) 

 

   

 

   (   )(   ). 
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