
Journal of Asian Scientific Research, 2013, 3(8):786-799 

 

 

 

786 

 

 

EXISTENCE AND UNIQUENESS LINEAR PARTIAL DIFFERENTIAL 

EQUATIONS DEPENDING INITIAL AND BOUNDARY CONDITIONS 

 

Hayder Jabber Abood 

Babylon University, College of Education for Pure Science, Department of Mathematics, Babylon, Iraq 

Ahmed Hadi Hussain 

Babylon University, College of Education for Pure Science, Department of Mathematics, Babylon, Iraq 

 

ABSTRACT 

In this paper, we classify the linear second order partial differential equations. We will show that 

there are three types of partial differential equations hyperbolic, elliptic and parabolic. We are 

study hyperbolic equations and the type of equation will turn out to be decisive in establishing the 

kind of initial and boundary conditions that serve in a natural way to determine a solution 

uniquely. 
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Canonical form. 

 

1.   INTRODUCTION 

In (Kharibegashvili, 2008), the researcher considered one multidimensional version of the 

Cauchy characteristic problem in the light cone of the future for a hyperbolic equation with power 

nonlinearity with iterated wave operator in the principal part, depending on the exponent of 

nonlinearity and spatial dimension of equation, they are investigated the problem on the 

nonexistence of global solutions of the Cauchy characteristic problem Announce several new 

results concerning classical integration methods for second order scalar hyperbolic partial 

differential equations in plane, they are found that the vanishing of the generalized Laplace 

invariants is both necessary and sufficient for the equation to be Darbouxintegrable ,also 

invariantly characterize the various general cases of Darbouxintegrability due to Goursat, and 

researched necessary and sufficient conditions for an equation to admit a general or a complete 

intermediate integral in (MARTIN, 1996). In (Zigang, 2002), obtained necessary and sufficient 

conditions for the existence of diffeomorphisms that transform stochastic nonlinear systems to 

various canonical forms, this invariance rule allows the utilization of the existing necessary and 

sufficient conditions for deterministic nonlinear systems in associated stochastic nonlinear systems. 

A geometric setting for constrained exterior differential systems on fibered manifolds with n-

dimensional bases is proposed, constraints given as sub manifolds of jet bundles locally defined by 
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systems of first-order partial differential equations are shown to carry a natural geometric structure, 

called the canonical distribution. Systems of second-order partial differential equations subjected to 

differential constraints are modeled as exterior differential systems defined on constraint sub 

manifolds, as an important particular case, Lagrangian systems subjected to first-order differential 

constraints are considered in (Olga, 2006). A family of solutions of the Jacobi  partial differential 

equations is investigated, this family is defined for arbitrary values of the dimension n of the 

Poisson system, it is also of an arbitrary nonlinearity and can be globally analyzed thus improving 

the usual local scope of the Darboux theorem in (Benito, 2009).In (Petrov, 2004), he suggested a 

new method for constructing asymptotic solutions of Hamiltonian systems of ordinary differential 

equations under the assumption that the Hamiltonian is a periodic functionof time and can be 

represented by a series in powers of a small parameter and presented algorithmsfor the solution of 

both the direct problem of constructing the asymptotic series for the phase flowmap on the basis of 

a given Hamiltonian and the inverse problem of constructing the Hamiltonian on the basis of a 

given phase flow map. The researcher presented  an efficient approach for determining the solution 

of second-order linear differential equation, the second-order linear ordinary differential equation is 

first converted to a Volterra integral equation, by solving the resulting Volterra equation by means 

of Taylor’s expansion, different approaches based on differentiation and integration methods are 

employed to reduce the resulting integral equation to a system of linear equation for the unknown 

and its derivatives the approximate solution of second-order linear differential equation is obtained 

in (Nadhem, 2013). In (Cemil, 2012), they are studied the boundedness of the solutions to a non-

autonomous and non-linear differential equation of second order with two constant deviating 

arguments, also he extended some boundedness results obtained for a differential equation with a 

constant deviating argument in the literature to the boundedness of the solutions of a differential 

equation with two constant deviating arguments.  

In (Haichun, 2011), the researcher considered the existence of the solution of the second-order 

impulsive differential equations with inconstant coefficients, and change the second-order 

impulsive partial differential equation into the equivalent equation by transformation, by using the 

critical point theory of variational method and Lax-Milgram theorem, they are obtained  a new 

results for the existence of the solution of the impulsive partial differential equations. They studied 

the existence of global solutions for a class of second order impulsive abstract functional 

differential equations, the results are obtained by using Leray-Schauder's Alternative fixed point 

theorem in (Svasankaran et al.). In (Lahno and Zhdanov, 2005), the researchers perform complete 

group classification of the general class of quasilinear wave equations in two variables, this class 

may be seen as a generalization of the nonlinear d’Alembert, Liouville, sin/sinh-Gordon and 

Tzitzeica equations, they  are derived a number of new genuinely nonlinear invariant models with 

high symmetry properties. In (Yan-Zhi Duan, 2009), he investigated  the asymptotic behavior of 

classical solutions of reducible quasilinear hyperbolic systems with characteristic boundaries, under 

some suitable assumptions, and he proved that the solution approaches a combination of Lipchitz 

continuous and piecewise 
1C  traveling wave solution. The hyperbolic system of plane ideal 

plasticity equations under the Saint_Venant_Mises' yield criterion is considered, its' characteristics 

curves are deformed by the action of admitted group of point transformations, that permits to 
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construct a new analytical solution, the mechanical sense of obtained characteristic fields is 

discussed, the general algorithm of the relation of solutions of quasilinear hyperbolic system of two 

homogeneous equations of two independent variables is proposed in (Sergey et al., 2009). In 

(Jeanne., 2008), they are presented a partial classification for C 
type-changing symplectic 

Monge–Ampère partial differential equations that possess an infinite set of first-order intermediate 

partial differential equations.  

The normal forms will be quasi-linear evolution equations whose types change from 

hyperbolic to either parabolic or to zero, the zero points can be viewed as analogous to singular 

points in ordinary differentia equations. The characteristic function method has been employed to 

determine and investigate certain classes of solution of a system of first-order nonlinear hydro 

dynamical equations of a perfect fluid with respect to different Coriolis parameters, the application 

of a one-parameter group of infinitesimal transformations reduces the number of independent 

variables by one, and consequently, the system of partial differential equations in two independent 

variables reduces to a system of ordinary differential equations, the resulting differential equations 

are solved analytically for some special cases in (Abd-el-Malek and Helal, 2005). In the present 

work, we consider the linear second order partial differential equations, and we study the three 

types of partial differential equations hyperbolic, elliptic and parabolic. 

 

2.   MATHEMATICAL CLASSIFICATION  

We consider the following for linear partial differential equations: 

2 2
2

2 2
( ) 0,

u u
a x

t x

 
 

 
                                                                                                              (2.1) 

2 2
2

2 2
( ) 0,

u u
a t

t x

 
 

 
                                                                                                                (2.2) 

 
2 2

2 2

2 2
( ) 0,

u u
a t a x

t x

 
 

 
                                                                                                   (2.3) 

 
2 2

2 2

2 2
( ) 0.

u u
a x a t

t x

 
 

 
                                                                                                   (2.4) 

We can solve the equations (2.1), (2.2), (2.3) and (2.4) after classifying them as linear second order 

partial differential equations, recall that a linear second order partial differential equations in two 

variables is given by 

 

2 2 2

2 2
,

u u u u u
A B C D E Fu G

t t x x t x

    
     

     
                                             (2.5) 

where the all coefficients , , , , ,A B C D E F  are real functions of independent variables ,t x .  

Define a discriminant ( , )t x  by  
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2

0 0 0 0 0 0 0 0( , ) ( , ) 4 ( , ) ( , ).t x B t x A t x C t x                                                             (2.6) 

Definition (1.1): An equation is called hyperbolic  at the point 
0 0( , )t x if 

0 0( , ) 0.t x  It is 

parabolic at that point if 
0 0( , ) 0t x  and elliptic if 

0 0( , ) 0t x  . The classification for 

partial differential equations which have more than two independent variables or higher order 

derivatives are more complicated. 

The transformation leads to the discovery of special loci known as characteristic curves along 

which the partial differential equation provides only an incomplete expression for the second 

derivatives. Before we discuss the transformation to the canonical forms, we shall motivate the 

name and explain with more details why such transformation is useful. The name canonical form is 

used because this form corresponds to particularly simple choices of the coefficients of the second 

partial differential derivatives.  

To transform the equation into a canonical form, we first show how a general transformation 

affect equation (2.5). Suppose ,  be twice continuously differentiable functions of ,t x  

 ( , ),t x                                                                                                                                   (2.7) 

( , ).t x                                                                                                                                   (2.8)                          

Assume that the Jacobian J of the transformation defined by: 

 ,
t x

J

t x

 

 

 

 

 

 

                                                                                                                       (2.9) 

is non-zero. This assumption is necessary to see that one can make the transformation back to the 

original variables ,t x .  

Use the chain rule to obtain all the partial derivatives required in (2.5). It is easy to ensure that  

,
u u u

t t t

 

 

    
 

    
                                                                                                          (2.10) 

.
u u u

x x x

 

 

    
 

    
                                                                                                         (2.11)                      

The second partial derivatives can be simplified to get: 

2 2 2

2

2 2 2

2
.

u u u

t x t x t x x t

u u u

t x t x t x

     

  

   

  

         
    

           

      
 

        

                                                         (2.12) 

In a similar method we get 

2 2

2 2
,

u u

t x

 

 
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2 22 2 2 2 2 2

2 2 2 2 2
2 ,

u u u u u u

t t t t t t t

     

     

              
       

               
                 (2.13) 

2 22 2 2 2 2 2

2 2 2 2 2
2 .

u u u u u u

x x x x x x x

     

     

              
       

               
                    (2.14)                      

Then putting these into (2.5) one finds after collecting like terms  

 

2 2 2
* * * * * * *

2 2
,

u u u u u
A B C D E F u G

     

    
     

     
                                     (2.15) 

where all the coefficients are now functions of ,  and  

 

2 2

* ,A A B C
t t x x

         
     

      
                                                                            (2.16) 

* 2 2 ,B A B C
t t t x x t x x

               
    

        
                                            (2.17)

2 2

* ,C A B C
t t x x

         
     

      
                                                                            (2.18)                      

2 2 2
*

2 2
,D A B C D E

t t x x t x

        
    

     
                                                          (2.19) 

2 2 2
*

2 2
,E A B C D E

t t x x t x

        
    

     
                                                   (2.20)

* ,F F                                                                                                                                      (2.21) 

* .G G                                                                                                                                      (2.22)                                     

Obtaining equation (2.15) is in the same form as the original one. The classification of hyperbolic, 

parabolic and elliptic equations will not change under this transformation. The reason for this is 

that  

 
* * 2 * * 2 2 2( ) 4 ( 4 ) ,B A C J B AC J                                                                      (2.23) 

And since 0J  , the sign of 
*

is the same as that of .The classification depends only on the 

coefficients of the second derivative terms and thus we can write (2.5) and (2.15) respectively as: 

 

2 2 2

2 2
, , , , ,

u u u u u
A B C H t x u

t t x x t x

     
    

      
                                                        (2.24) 

and 
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2 2 2
* * * *

2 2
, , , , .

u u u u u
A B C H u 

     

     
    

      
                                                 (2.25) 

 

3.   CANONICAL FORMS 

In this section we discuss briefly the canonical forms, which correspond to particularly simple 

choices of the coefficients of the second partial derivatives of the unknown. To obtain a canonical 

form, we have to transform the partial differential equation which in turn will require the 

knowledge of characteristic curves. Three equivalent properties of characteristic curves, each of 

them can be used as a definition: 

1. Initial data on a characteristic curve cannot be prescribed freely, but must satisfy a 

compatibility condition. 

2. Discontinuities (of a certain nature) of a solution cannot occur except along 

characteristics. 

3.  Characteristics are the only possible “branch lines” of solutions, i.e. lines for which 

the same initial value problems may have several solutions. 

Suppose we introduce specific choices for the functions ,  . This will be done in such a way that 

some of the coefficients 
* *, ,A B and  

*C in (2.25) becomes zero. 

 

3.1. Hyperbolic Equation 

Note that 
* *,A B  are similar and can be written as:  

2 2

.A B C
t t x x

         
    

      
                                                                                    (3.1.1) 

 In which  stands for either  or . Let assume we try to choose ,  such that
* * 0A C  . 

This is of course possible only if the equation is hyperbolic. (Recall that  
2

* * * *4B A C  and 

for this choice  
2

* * 0B  . Since the type does not change under the transformation, we must 

have a hyperbolic partial differential equation). In order to annihilate 
*A  and 

*C  we have to find 

 such that  

 

2 2

0.A B C
t t x x

         
     

      
                                                                         (3.1.2) 

Dividing by

2

x

 
 
 

, the above equation becomes: 
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2

0,t tA B C

x x

 

 

    
         
 

   
    

                                                                                      (3.1.3) 

Thus the curve ( , )t x   constant.                                                                                         (3.1.4) 

We have  

0,d dt dx
t x

 


 
  
 

                                                                                                    (3.1.5) 

Therefore,  

 ,
dxt

dt

x







  




                                                                                                                            (3.1.6) 

And equation (3.1.3) becomes as follows:  

 

2

0.
dx dx

A B C
dt dt

 
   

 
                                                                                                   (3.1.7) 

This is a quadratic equation for 
dx

dt
and its roots are:  

 

2 4
.

2

dx B B AC

dt A

 
                                                                                                       (3.1.8) 

These equations are called characteristic equations and are ordinary differential equations for 

families of curves in ,t x plane along which    constant. The solutions are called  the 

characteristic curves. Notice that the discriminant is under the radical in (3.1.8) and since the 

problem is hyperbolic, 
2 4 0B AC  , there are two distinct characteristic curves. We can 

choose one to be ( , )t x  and the other ( , ).t x  Solving the ordinary differential equations 

(3.1.8), we obtain: 

1 1( , ) ,t x C                                                                                                                 (3.1.9)

2 2( , ) .t x C                                                                                                                          (3.1.10)                  

Thus the transformations: 

 1( , ),t x                                                                                                                             (3.1.11) 

2( , ),t x                                                                                                                            (3.1.12)                   

They are will lead to 
* * 0A C  and the canonical form is: 
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2
* *,

u
B H

 




 
                                                                                                                   (3.1.13)  

Or after division by 
*B  

 

2 *
.

*

u H

B 




 
                                                                                                                        (3.1.14) 

This is called the first canonical form of the hyperbolic equation.  

Sometimes we find another canonical form for hyperbolic partial differential equations which is 

obtained by making a transformation  

,                                                                                                                     (3.1.15)

.                                                                                                                                   (3.1.16)                   

Using the equations (3.1.6) ,(3.1.7) and (3.1.8) for this transformation one has  

 

2 2
**

2 2
, , , , .

u u u u
H u 

   

    
   

    
                                                                            (3.1.17) 

Then the equation (3.1.17) is called the second canonical form of the hyperbolic equation. 

 

3.2 Study Some Applications for Equations (3.1),(3.2),(2.3) And (2.4) 

3.2.1. Let consider the problem (2.1) with  2 2a t t and  

2 2
2

2 2
0

u u
t

t x

 
 

 
for 0x  . 

Solution:
21, 0, .A B C t     

If 
2 4 ,B AC   

Then
2 20 4 1 ( ) 4 .t t       

The equation is hyperbolic because 0t  . 

When 

2 4

2

dx B B AC

dt A

 
   

then the characteristic equation is : 

20 4 2
.

2 1 2

dx t t
t

dt

 
   


  

These equations are separable ordinary differential equations and the solutions are: 

2

1

1
,

2
x t c    
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2

2

1
.

2
x t c   

We take then the following transformation: 

21
.

2
x t                                                                                                                            (3.2.1.1)                                                                                                                    

21
.

2
x t                                                                                                                            (3.2.1.2)                                                                                                                      

Evaluate all derivatives of ,  for (3.2.1.1) and (3.2.1.2) 

 

2 2 2

2 2

2 2 2

2 2

, 1, 0, 1, 0

, 1, 0, 1, 0.

t
t t t x x x

t
t t t x x x

    

    

    
      

     

    
    

     

 

Substituting all derivatives of ,  for (3.2.1.1) and (3.2.1.2) for , , , , , ,A B C D E F G      
 

 
20, 4 , 0, 1, 1, 0, 0.A B t C D E F G                

Now solve (3.2.1.1) and (3.2.1.2) for ,t x  

,
2

x
 

  

2 ,t t          

And substituting in , , , ,A B C D E    
 we get   

 

2
2

2
2

4 0

4 4 .

u u u
t

u u u u u
t

   

 
     

  
   

   

    
      

     

  

3.2.2. We solve the problem (2.2) with  2 2a x x and  

2 2
2

2 2
0

u u
x

t x

 
 

 
for 0x  . 

Solution: 
21, 0,A B C x     
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 2 20 4 1 4x x       

The equation is hyperbolic since 0x   

Then the characteristic equation is :

20 4 2

2 1 2

.

dx x x
x

dt

dx
dt

x

 
   



 

 

These equations are separable ordinary differential equations and the solutions are : 

1

2

ln ,

ln .

x t c

x t c

 

 
 

We take then the transformations: 

ln ,x t                                                                                                                             (3.5.2.1) 

ln .x t                                                                                                                             (3.5.2.2) 

Now , evaluate all derivatives of ,   for (3.5.2.1) and (3.5.2.2) 

 

2 2 2

2 2 2

2 2 2

2 2 2

1 1
1, 0, 0, ,

1 1
1, 0, 0, , .

t t t x x x x x

t t t x x x x x

    

    

     
     

     

     
    

     

 

Substituting evaluate all derivatives of ,   for (3.5.2.1) and (3.5.2.2) for 

, , , , , , .A B C D E F G      
 

  We get: 
* * * *0, 4, 0, 1, 1, 0, 0A B C D E F G           

Then we solve (3.5.2.1) and (3.5.2.2) for ,t x   

 
2,

2
t x e x e      
      

And substitute ,t x in , , , , , ,A B C D E F G      
, we get 

 

2

2

4 0

1 1

4 4

u u u

u u u

   

   

  
   

   

  
 

   

 

3.2.3. Consider the problem (2.3) with  2 2a t t and  2 2a x x  

2 2
2 2

2 2
0

u u
t x

t x

 
 

 
for 0, 0t x  . 
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Solution: 
2 2 2 2, 0, , 4 0A t B C x t x        

,

,

dx x

dt t

dx dt

x t

 

 

 

then
1 2ln ln , ln ln .x t c x t c     

 Take the following transformation: 

ln ln .x t                                                                                                                         (3.5.3.1) 

ln ln .x t                                                                                                                         (3.5.3.2) 

Now, Evaluate all  derivatives of ,  for equations (3.5.3.1) and (3.5.3.2) 

2 2 2

2 2 2 2

2 2 2

2 2 2 2

1 1 1 1
, , , 0, ,

1 1 1 1
, , , 0, .

t t x x t t t x x x

t t x x t t t x x x

    

    

    
      

     

    
      

     

 

Substitute all derivatives of ,   for equations (3.5.3.1) and (3.5.3.2) for

, , , , , , .A B C D E F G      
 We get  

*0, 4, 0, 2, 0.A B C D E F G              

And solve (3.5.3.1) and (3.5.3.2) for ,t x
2 21

,t x e
e

 

 




  . 

Now substitute 
2 2,t x in , , , , , ,A B C D E F G      

we get: 

 

2

2

4 2 0,

1
.

2

u u

u u

  

  

 
  

  

 


  

 

3.2.4. We can solve the problem if  2 2xa x e  and  2 2a t t  

2 2
2 2

2 2
0, 0, 0.x u u

e t t x
t x

 
   

 
  

Solution: 
2 2 2 2, 0, , 4x xA e B C t e t      
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2

1

2

2

,

1
,

2

1
.

2

x

x

x

dx t

dt e

e t c

e t c

 

 

 

 

Take the following transformations:  

21
.

2

xe t                                                                                                                          (3.5.4.1) 

 

                                                                                                                     (3.5.4.1) 

 

Evaluate  all derivatives ,  for (3.5.4.1) and  (3.5.4.1), we get:  

2 2 2

2 2

2 2 2

2 2

, , 1, 0, ,

, , 1, 0, .

x x

x x

t e e
t x t t x x

t e e
t x t t x x

    

    

    
      

     

    
    

     

  

Substitute all derivatives of ,   for (3.5.4.1) and  (3.5.4.1) for , , , , , , .A B C D E F G      
we 

obtain:  

2 2 2 2 2 20, 4 , 0, , , 0, 0.x x x x xA B t e C D e t e E e t e F G                  

Then we can solve (3.5.4.1) and (3.5.4.2) for ,t x
2

xe
 

 ,
2t t         . 

Now substitute 
2 2,t x in , , , , , ,A B C D E F G      

we get: 

     
2

2 2 2 2 2 24 0x x x x xu u u
t e e t e e t e

   

  
     

   
 

21
.

2

xe t  
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     

 
 

 
 

2
2 2 2 2 2 2

2 2 2 22

2 2 2 2

2

2 2

2

2 2

4

4 4

1 1 1 1

4 4 4 4

1 1 1 1 1 1

4 4

x x x x x

x x x x

x x

x x

x x

u u u
t e e t e e t e

e t e e t eu u u

t e t e

u u u

t e t e

u u u

t e t e

   

   

   

   

  
    

   

   
 

   

     
      

        

     
      

        

 

 

4.   CONCLUSION 

The second order linear partial differential equations can be classified into three types ( 

hyperbolic, elliptic and parabolic),which are invariant under changes of variables. The types are 

determined by sign of the discriminant. This exactly corresponds to the different cases for the 

quadratic equation satisfied by the slope of the characteristic curves. We concluded that hyperbolic 

equations have two distinct families of real characteristic curves. All the three types of two order 

partial differential equations can be converted to canonical forms after manipulated them by some 

steps. Hyperbolic equations converted to a form to be identical with the wave equation in the 

leading terms. Thus, the wave equation serves as canonical model for second order constant 

coefficient partial differential equations. We will spend the rest of the quarter studying the solution 

to the wave equation.   
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