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ABSTRACT 

In this paper, a hybrid Simulated Annealing algorithm using Boltzmann and Bose-Einstein 

Distributions (SABBE) is proposed. SABBE was designed for solving satisfiability (SAT) instances, 

and it has three phases: i) BP (Boltzmann Phase), ii) BEP (Bose-Einstein Phase), and iii) DEP 

(Dynamical Equilibrium Phase). BP and BEP are simulated annealing searching procedures based 

on Boltzmann and Bose-Einstein distributions respectively. BP ranges from high to low 

temperature values, while BEP goes from low to very low temperatures. Another simulated 

annealing search procedure, DEP, is applied at the final temperature of the second phase. 

However, DEP uses a particular heuristic for detection of stochastic equilibrium by employing a 

least squares method during its execution. Finally, SABBE parameters are tuned with an analytical 

method, which considers the maximal and minimal deterioration of SAT instances. 

Keywords: C630 - Computational techniques, Simulated annealing, Heuristic algorithms. 

 

1. INTRODUCTION 

Satifiability problem (SAT) plays a significant role in combinatorial optimization and 

computational complexity theory. It is well known that SAT is NP-Complete [1], and any instance 

of an NP problem may be converted to a SAT instance. Thus, any efficient algorithm for SAT 

problem might be used for solving other NP-Complete problems. In this paper, a particular SAT 

problem known as Max Sat is boarded. The goal of Max Sat is to maximize the number of clauses 

of a boolean formula. Satisfiability problem consists in finding a truth assignment such that it 

satisfies a well formed arbitrary boolean expression [2]. Usually, any SAT instance is in the 

Conjunctive Normal Form (CNF). A SAT (or Max SAT) instance is defined as follows: a) a set of 

m clauses:  C1, C2,…Cm, b) a set of n variables  x1, x2,..,xn, and c) a set of literals, where a literal is 

a variable or a negation of it. Max SAT can be solved by several efficient algorithms as Simulated 

Annealing (SA) [3, 4], Genetic Algorithms [5, 6], Neural Networks [7], Spears [8] Guided Local 

Search [9], Swarm optimization [10], Extreme optimization [11, 12], and so on. SA has shown to 

be very efficient for solving combinatorial optimization problems, specifically the SAT problem. 
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SA is a heuristic algorithm, which has shown a high performance solving SAT instances in a 

reasonable processing time [13]. 

In order to obtain high quality solutions efficiently, our approach tunes SA parameters using an 

analytical method [14] for determining system temperature and the length of the Markov Chain of 

the Metropolis Cycle (MC). This technique establishes the temperature values based on maximum 

and minimum deterioration of a SAT instance. In order to enhance exploration process of the 

solution space and avoid local optima, Boltzmann and Bose-Einstein distribution are applied by the 

SABBE algorithm. Boltzmann distribution is used at high temperatures, and Bose-Einstein 

distribution is used at low temperatures. As a means to reduce system temperature, two different 

cooling schemes are employed.  

This paper is organized as follows: Section 2 describes the classic Simulated Annealing 

algorithm. Section 3 explains the analytical tuning method, and section 4 introduces SABBE 

algorithm. Finally section 5 presents the experimental results, and paper conclusions are explained 

in section 6.  

 

2. SIMULATED ANNEALING ALGORITHM 

In this section, classical Simulated Annealing is briefly described; we discuss how this 

algorithm uses the Boltzmann distribution in order to accept poor quality solutions and escape from 

local optima. Later, Bose-Einstein distribution is described, and the new algorithm based on 

Boltzmann and Bose-Einstein distribution is introduced 

 

2.1. Classical Simulated Annealing 

Simulated Annealing (SA) algorithm based on Boltzmann Distribution was introduced in the 

combinatorial optimization area by Kirkpatrick [15], and  Cerny [16]. Boltzmann distribution is 

fundamental for statistical mechanics, and it is defined by the assumption that all particles are 

distinguishable, and all possible energy divisions occur with the same probability. Simulated 

Annealing can find optimal or near-optimal solutions of a specific combinatorial optimization 

problem. SA randomly explores the solution space of a specific instance, while an objective 

function is maximizing (or minimizing). Therefore, SA is an approximation algorithm for finding 

the global optimum. For the MaxSAT problem, the ideal solution is obtained when all clauses are 

satisfied. SA approach always accepts better solutions. However, when a new solution does not 

improve the previous one, it is accepted or rejected in accordance to the Boltzmann distribution (1). 

This function is related to the difference of energy between two solutions (Si and, Sj), and the 

current temperature value. 

 

        (     )         (1) 

 

Where )( EP   is the solution probability acceptance, E  is the energy difference between Si 

and Sj solutions, and T is the current temperature value. SA is composed by two cycles: The 

external cycle which diminish the temperature, and the internal Metropolis Cycle (MC) which 
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explores solution neighborhood by using a distribution function in accordance to the current system 

temperature. Boltzmann distribution function is applied in MC to examine the space of solutions in 

a neighborhood for a given temperature. According to the classical thermodynamics properties at 

high temperatures the probability to change between two energy states is very high. Therefore, the 

probability of accepting bad solutions at very high temperatures can be taken as number close to 

one. However, as the system is cooled, this probability decreases towards zero. 

 

2.2. Simulated Annealing Based on Bose-Einstein Distribution 

Statistical mechanics consists of a set of methods to analyze the properties of large numbers of 

atoms in the physical environment. The systems modeled by these mechanics contain very large 

quantities of atoms, therefore only the most probable behavior of the system in thermal equilibrium 

at a given temperature is observed [17]. In classical physics particles obey Maxwell-Boltzmann 

distribution; nevertheless quantum particles, like Bosons and fermions, are expressed by a different 

behavior. While bosons tend to overlap at the same energy level following a Bose-Einstein 

distribution, only one fermion can occupy an energetic state. If we compare bosons with classical 

particles at very high temperatures or a high density system, Bose–Einstein becomes Maxwell–

Boltzmann statistics. Nevertheless at low temperatures, bosons behave differently from other 

particles and tend to congregate at the same lowest-energy state, the result is known as a Bose–

Einstein condensate [18]. Thus, bosons and classical particles behavior is totally different at low 

temperatures. Therefore, the hypothesis explored in this paper is that Simulated Annealing 

Algorithm applying both Boltzmann and Bose-Einstein distributions for accepting bad solutions for 

high and low temperatures will enhance SABBE performance (promoting a fast quality 

convergence at low temperatures) over the classical Simulated Annealing based exclusively on 

Boltzmann distribution. Bose-Einstein distribution is given by equation (2). 

 1
1

)(
)/( 


 KTEee

Eh


    (2) 

Where T is the temperature parameter,  is the total bosons in the system and k is the 

Boltzmann's constant. Notice that (2) becomes Boltzmann distribution when   is equal to one. The 

use of this distribution as acceptance criteria is detailed in section 3. 

 

3. ANALYTICAL TUNING METHOD 
In this section, we firstly describe the tuning method used in this paper. Secondly, the process 

to determine the length of the Markov chain is shown. 

 

3.1 Setting Initial and Final Temperatures 

The parameters of SABBE are tuned by an analytical method [13, 14, 19]. This computation is 

based on the deterioration (maximal and minimal) of the SAT instances, and the acceptance 

probability of solutions. As mentioned before, probability for accepting any new solution is close to 

one at high temperatures; consequently, the cost function deterioration is maximal. Thus, the initial 

temperature T0 is associated with the maximal deterioration ΔZmax. On the other hand, the 

probability for accepting any new solution is close to zero at low temperatures; in this case, the cost 

function deterioration is minimal. Therefore, the final temperature Tf is related to the minimal 
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deterioration ΔZmin. The acceptance probability based on Boltzmann distribution is defined by (3). 

At extremely high or low temperatures, this equation leads respectively to equation (4) and (5). The 

later equation is used to determine the final temperature at the end of the process. 
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In a similar way, as the system is cooled, initial and final temperatures are obtained by 

applying Bose-Einstein distribution (see equation 6). Equations (7) and (8) are obtained from 

equation (6) using the maximum and minimum energy deterioration. SABBE starts its Boltzmann 

Phase (BP) with the initial temperature defined by equation (4); BP is stopped at the initial 

temperature defined by equation (7). Once PB finishes, BEP starts. This second phase stops in 

accordance to the temperature defined by equation (8) which corresponds to the stochastic 

equilibrium. After BEP finishes, DEP starts using Bose-Einstein distribution dynamically detecting 

the equilibrium of the process. 
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3.2 Setting the Markov Chain Length 

In SABBE, the length of the Markov Chain (MC) is defined by the number of iterations into 

the Metropolis Loop (ML), and can be modeled as constant or variable. In constant MC, any ML 

has the same length; in contrast, when MC is variable, the length of each ML may be different 

during SABBE execution. Let Lk be the chain size given a k temperature for a ML. In classical SA 

implementation, ML stops when a specific number of accepted solutions is reached. In contrast, the 

analytical method determines Lk with a simple Markov model [14]; at high temperatures, only a 

few iterations are required due stochastic equilibrium is rapidly reached. Nevertheless, at low 

temperatures a more exhaustive exploration is required; as consequence, a larger Lk is used by this 

analytical method. In the present paper, Lk is modeled by using equation (9). 

 

Kk LL 1  
(9) 

 

Where βrepresents the increase factor of MC. βis calculated by (10). 

 








 


n
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(10) 

Let L1 be Lk at T0, Lmax be the maximum MC length, and n is the number of times that the 

temperature will be decreased during the algorithm. System temperature is reduced using a cooling 

scheme, such as, (11) or (12). 
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17.0,...;1,01   kTT kK  
(11) 

17.0,...;1,01  
  kTeT kK  

(12) 

 

Whether cooling function (11) is applied, n is calculated by equation (13). Thus, if cooling function 

(12) is used, n is obtained by equation (14). 
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4. SABBE ALGORITHM 

As mentioned before, SABBE is a hybrid algorithm which has three phases (see Figure 1): i) 

Boltzmann Phase (BP) from high to low temperatures, ii)  Bose-Einstein Phase (BEP) from low to 

very low temperatures, and iii) Dynamical Equilibrium Phase (DEP). For accepting bad solutions, 

BP and BEP apply Boltzmann and Bose-Einstein distributions respectively. This is performed in 

order to escape from local optima. DEP is a kind of BEP extension, where the stochastic 

equilibrium is detected in a dynamical way. This is done by using a regression method into the 

metropolis cycle; the number of iterations is considered as the independent variable, while each 

energy value represents the dependent variable. The criteria used to find equilibrium is the slope of 

the energy function of the metropolis cycle. Figure 2 shows the BP pseudo code. During each phase 

depicted in figure 1, better solutions are always accepted. On the other hand, worse solutions are 

accepted or rejected in accordance to an acceptance function. The length of the Markov chain (i.e. 

the internal cycle length) for each MC is determined by equation (9), where the increment factor β 

is calculated by equation (10). In Figure 3, BEP and DEP pseudo code are shown. In BEP, the 

external cycle decreases temperature accordingly to cooling function (11) or (12). The metropolis 

cycle length is constant and equal to the maximum length of last metropolis cycle of BP. 

 

Fig- 1. SABBE phases 
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Fig- 2.BP pseudo code. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

For practical reasons DEP is considered as a third phase. DEP goal is to detect system energy 

equilibrium by analyzing the energy slope between two solutions in accordance to an objective 

function. Let define xi as the iteration number for the metropolis cycle (1, 2,..., n), and Ei as the 

current energy (number of satisfied clauses) found by the algorithm in iteration xi. Using a standard 

least squares method, the slope for n iterations is defined by equation (15). 
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The former formula becomes 
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Notice that the complexity of computing equation (16) is O(n) because both of the summations 

are computed using a simple data structure (as is shown in Fig. 3), and K1 and K2 are only constants 

for a particular n value. 

Fig-3. BEP/DEP Pseudo code. 

BEP() 

Begin 

 T = equation (7) 

Tfinal = equation (8) 

 While (T >Tfinal) do 

  k = 1 

  while (k<=CM) do 

Sj = perturbate_system(Si) 

   If E(Sj)=total_clausule then stop() 

DEP() 

Begin 

 While (m≈0)do 

  n = 1 

  while (k<=CM) do 

Sj = perturbate_system(Si) 

   If E(Sj)=total_clausule then stop() 

   ΔE = Ej – Ei 

   If (ΔE ≥0) then 

BP() 

Begin 

 T = value calculated by equation (4) 

 n = value calculated by equation(13)or(14) 

 Si = Create_initial_solution() 

 i = 1 

While (i < n) do 

  k = 1 

while (k<=CM) do 
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   ΔE=  Ej – Ei 

 If (ΔE ≥0) then 

Si = Sj 

ElseIf ((1/(exp(ΔE/T)-1))[0,1])then 

    Si = Sj 

End if 

   K = k + 1 

  end while 

T = α*T or T = e-α*T 

End while 

End 

Si = Sj 

ElseIf ((1/(exp(ΔE/T)-1))[0,1])then 

    Si = Sj 

End if 

   n = n + 1 

   ∑iE=∑iE + n*Ei 

∑E=∑E + Ei 

  end while 

  T = α*T or T = e-α*T 

k1=12/(n^3-n) 

k2=6/(n^2+n) 

 

 End while 

End 

 

5. EXPERIMENTAL RESULTS & DISCUSSION 

SABBE algorithm was tested with 36 SAT instances taken from the 2009 SAT competition
1
 

which are shown in Table 1. These instances are grouped by their ρ value (number of 

clauses/number of variables) between 2.07 to 4.25. The temperature ranges for Boltzmann and 

Bose-Einstein Phases were calculated by applying equations (4), (5), (7), and (8). Table 2 shows 

the values for T0 for Boltzmann Phase, as well as T0 and Tf for Bose-Einstein Phase. Observe that 

Tf for all instances is equal to 0.68 with the minimum deterioration equal to one; P(ΔZmin) was 

taken as 0.3. Table 3 shows n and β parameters for these instances. Results obtained applying the 

cooling function (11) and (12) are shown in Table 4 and 5 respectively. The number of satisfied 

clauses, average time (minutes), and percentage of satisfied clauses are included in these tables. 

The mean percentage of satisfied clauses is 90.70% (with 1.81 minutes of executing time), and 

89.4868 (with 0.1732 minutes) respectively. Whether only satisfiable instances are evaluated, these 

figures are 88.71% and 87.4269%. 

 

6. CONCLUSIONS 

SABBE algorithm is proposed in this paper. This algorithm can generate high quality solutions 

for SAT instances. The obtained results show that applying Boltzmann and Bose-Einstein 

distributions along with a Dynamical Equilibrium heuristic provide a good method for solving SAT 

instances. SABBE is a hybrid algorithm based on two acceptance distribution functions; these 

improve SA exploration capacity of solution space by exploiting bosons behavior at low 

temperatures, altering the acceptance probability of bad solutions in relation to system’s 

temperature. In addition, the processing time required to find an optimal or near-optimal solution is 

reduced applying a tuning process over the SA parameters (i.e. number of Metropolis cycles) and 

the Dynamical Equilibrium heuristic. The processing cost required for these techniques is 

polynomial. Experimentation show that when simulated annealing is executed with both 

distribution functions at different temperature levels along with DEP, solutions quality is improved 

over the classical SA with only the Boltzmann distribution function. 

                                                             
1
 SAT Competition, 2009. Satcompetition.Org. Available from http://www.satcompetition.org/2009. 
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Table- 1.Instances tested 

# Name C V  SA

T  

# Name C V  SA

T 

1 sat-140-

100 

336 140 2.

4 

Y 19 unsat-109-100 228 109 2.09 N 

2 sat-160-

100 

384 160 2.

4 

Y 20 unsat-115-100 244 115 2.12 N 

3 sat-180-

100 

432 180 2.

4 

Y 21 unsat-121-100 252 121 2.08 N 

4 sat-200-

100 

480 200 2.

4 

Y 22 unsat-127-100 268 127 2.11 N 

5 sat-220-

100 

528 220 2.

4 

Y 23 unsat-133-100 276 133 2.08 N 

6 sat-230-

100 

552 230 2.

4 

Y 24 unsat-139-100 292 139 2.1 N 

7 sat-240-

100 

576 240 2.

4 

Y 25 unsat-145-100 300 145 2.07 N 

8 sat-250-

100 

600 250 2.

4 

Y 26 unsat-151-100 316 151 2.09 N 

9 sat-260-

100 

624 260 2.

4 

Y 27 V360-c1530-

S144043535-002 

153

0 

360 4.25 Y 

10 sat-270-

100 

648 270 2.

4 

Y 28 V360-c1530-

S368632549-051 

153

0 

360 4.25 Y 

11 sat-280-

100 

672 280 2.

4 

Y 29 V360-c1530-

S722433227-030 

153

0 

360 4.25 Y 

12 sat-290-

100 

696 290 2.

4 

Y 30 V360-c1530-

S1293537826-039 

153

0 

360 4.25 Y 

13 sat-300-

100 

720 300 2.

4 

Y 31 V360-c1530-

S1448866403-060 

153

0 

360 4.25 Y 

14 unsat-61-

100 

132 61 2.

16 

N 32 V360-c1530-

S1459690542-033 

153

0 

360 4.25 Y 

15 unsat-73-

100 

156 73 2.

14 

N 33 V360-c1530-

S1684547485-073 

153

0 

360 4.25 Y 

16 unsat-85-

100 

180 85 2.

12 

N 34 V360-c1530-

S1711406314-093 

153

0 

360 4.25 Y 

17 unsat-97-

100 

204 97 2.

1 

N 35 V360-c1530-

S1826927554-087 

153

0 

360 4.25 Y 

18 unsat-

103-100 

220 103 2.

14 

N 36 V360-c1530-

S2032263657-035 

153

0 

360 4.25 Y 

Table- 2.Initial and final temperatures for tested instances 

# T0 BP T0 BEP TfBEP   # T0 BP T0 BEP Tf BEP  

1 8009.68 115.92 0.68  19 3741.17 50.99 0.68 

2 8795.73 123.08 0.68  20 3847.3 56.72 0.68 

3 9067.69 128.71 0.68  21 3870.52 59.01 0.68 

4 9455.74 134.92 0.68  22 3960.07 56.15 0.68 

5 9721.07 141.03 0.68  23 4132.53 58.72 0.68 

6 10046.1 141.8 0.68  24 4119.27 60.73 0.68 

7 10377.76 143.37 0.68  25 4251.93 59.3 0.68 

8 10540.28 144.61 0.68  26 4311.63 62.16 0.68 

9 10434.14 148.34 0.68  27 8626.58 116.3 0.68 

10 11067.62 151.39 0.68  28 8799.04 134.35 0.68 
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11 11100.79 158.84 0.68  29 8377.83 115.44 0.68 

12 11190.34 158.89 0.68  30 8384.46 113.15 0.68 

13 11405.92 154.35 0.68  31 8487.28 125.18 0.68 

14 3081.16 42.11 0.68  32 8560.25 122.6 0.68 

15 3240.36 46.41 0.68  33 8643.16 122.32 0.68 

16 3419.45 49.27 0.68  34 8686.28 125.18 0.68 

17 3618.45 52.14 0.68  35 8606.68 123.46 0.68 

18 3638.35 52.42 0.68  36 8636.53 119.74 0.68 

Table- 3.n and  parameters for every tested instance 

 Cooling 

function (11) 

Cooling 

function (12) 

 Cooling 

function (11) 

Cooling 

function (12) 

#  n  

value 
 

value 

n  

value 

β 

value 

#  n  

value 

β  

value 

n  

value 

β 

value 

1 178.8

7 

1.03 9.66 1.82 19 164.03 1.03 8.86 1.84 

2 180.6

9 

1.03 9.76 1.83 20 164.57 1.03 8.89 1.84 

3 181.2

9 

1.03 9.79 1.84 21 164.69 1.03 8.89 1.85 

4 182.1 1.03 9.83 1.86 22 165.14 1.03 8.92 1.86 

5 182.6

4 

1.03 9.86 1.86 23 165.97 1.03 8.96 1.86 

6 183.2

8 

1.03 9.9 1.87 24 165.9 1.03 8.96 1.87 

7 183.9

2 

1.03 9.93 1.87 25 166.52 1.03 8.99 1.88 

8 184.2

2 

1.03 9.95 1.76 26 166.79 1.03 9.01 1.89 

9 184.0

2 

1.03 9.94 1.88 27 180.31 1.04 9.74 1.97 

10 185.1

7 

1.03 10 1.88 28 180.7 1.04 9.76 1.96 

11 185.2

3 

1.03 10 1.88 29 179.74 1.04 9.7 1.97 

12 185.3

9 

1.03 10.01 1.89 30 179.76 1.04 9.71 1.97 

13 185.7

6 

1.04 10.03 1.89 31 180.71 1.04 9.76 1.96 

14 160.2

4 

1.03 8.65 1.74 32 180.16 1.04 9.73 1.97 

15 161.2

3 

1.03 8.71 1.77 33 180.35 1.04 9.74 1.97 

16 162.2

7 

1.03 8.76 1.8 34 180.45 1.04 9.74 1.96 

17 163.3

8 

1.03 8.82 1.82 35 180.27 1.04 9.73 1.97 

18 163.4

8 

1.03 8.83 1.83 36 180.34 1.04 9.74 1.97 
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Table- 4.Results of SABBE with cooling function (11) 

# Satisfied 

Clauses 

Average 

Time 

(minutes) 

%  

Satisfied 

Clauses 

 # Satisfied 

Clauses 

Average 

Time 

(minutes) 

 %  

Satisfied 

Clauses 

1 299.87 0.58 89.25  19 214.87 0.24 94.24 

2 339.93 0.74 88.52  20 229.33 0.27 93.99 

3 381.13 0.91 88.22  21 236.43 0.28 93.82 

4 421.5 1.07 87.81  22 251.37 0.32 93.79 

5 461.33 1.32 87.37  23 258.93 0.33 93.82 

6 481.67 1.45 87.26  24 273.73 0.37 93.74 

7 501.6 1.5 87.08  25 281.17 0.4 93.72 

8 521.63 1.66 86.94  26 295.43 0.45 93.49 

9 542.57 1.8 86.95  27 1383.9 4.27 90.45 

10 560.7 1.97 86.53  28 1385.33 4.23 90.54 

11 581.1 2.04 86.47  29 1383.5 4.19 90.42 

12 601.9 2.2 86.48  30 1383.93 4.19 90.45 

13 622.47 2.28 86.45  31 1382.37 4.13 90.35 

14 125.93 0.09 95.4  32 1385.97 4.17 90.59 

15 148.27 0.12 95.04  33 1386.47 4.28 90.62 

16 170.77 0.16 94.87  34 1384.4 4.25 90.48 

17 192.7 0.2 94.46  35 1386.17 4.28 90.6 

18 207.50 0.24 94.32  36 1385.90 4.26 90.58 

Table- 5.Results of SABBE with cooling function (12) 

# Satisfied 

Clauses 

Average 

Time 

(minutes) 

%  

Satisfied 

Clauses  

# Satisfied 

Clauses 

Average 

Time 

(minutes) 

%  

Satisfied 

Clauses 

1 292.87 0.05 87.16  19 212.47 0.02 93.19 

2 331.73 0.08 86.39  20 226.37 0.03 92.77 

3 371.93 0.06 86.09  21 234.4 0.03 93.02 

4 411.53 0.09 85.74  22 248.83 0.03 92.85 

5 450.97 0.11 85.41  23 255.7 0.03 92.64 

6 470.47 0.11 85.23  24 269.87 0.04 92.42 

7 491.5 0.13 85.33  25 277.1 0.03 92.37 

8 512.57 0.16 85.43  26 292.63 0.06 92.6 

9 532.9 0.17 85.4  27 1373.93 0.39 89.8 

10 550.47 0.17 84.95  28 1373.4 0.4 89.76 

11 570.93 0.21 84.96  29 1375.9 0.4 89.93 

12 590.4 0.23 84.83  30 1374.37 0.35 89.83 

13 614.6 0.36 85.36  31 1374.2 0.38 89.82 

14 124.83 0.01 94.57  32 1374.77 0.47 89.85 

15 146.97 0.01 94.21  33 1375.87 0.38 89.93 

16 168.17 0.01 93.43  34 1376.17 0.42 89.95 

17 190.37 0.01 93.32  35 1374.90 0.43 89.86 

18 205.30 0.02 93.32  36 1374.13 0.37 89.81 
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Table- 6.Results of Classical Simulated Annealing with cooling function (11) 

Instanc

e 

Satisfied 

Clauses 

Average 

Time 

(minutes) 

%  

Satisfied 

Clauses 

 Instance Satisfied 

Clauses 

Average 

Time 

(minutes) 

% 

Satisfied 

Clauses 

1 298.4 0.44 88.81  19 214.83 0.19 94.22 

2 338.57 0.57 88.17  20 229.37 0.21 94 

3 379.57 0.71 87.86  21 236.67 0.22 93.92 

4 420.93 0.86 87.69  22 251.03 0.25 93.67 

5 461.5 1.01 87.41  23 258.73 0.25 93.74 

6 481.8 1.11 87.28  24 273.43 0.28 93.64 

7 500.57 1.18 86.9  25 280.5 0.3 93.5 

8 519.83 1.3 86.64  26 295.03 0.33 93.36 

9 541.73 1.39 86.82  27 1383.03 3.28 90.39 

10 559.63 1.5 86.36  28 1383.83 3.24 90.45 

11 581.47 1.59 86.53  29 1383.8 3.22 90.44 

12 601.07 1.69 86.36  30 1384.43 3.21 90.49 

13 620.6 1.77 86.19  31 1382.7 3.26 90.37 

14 125.83 0.07 95.33  32 1383.63 3.3 90.43 

15 148.37 0.1 95.11  33 1383.2 3.28 90.41 

16 170.4 0.12 94.67  34 1383.37 3.27 90.42 

17 192.13 0.15 94.18  35 1383.9 3.27 90.45 

18 207.23 0.17 94.2  36 1383.43 3.28 90.42 

Table- 7.Results of Classical Simulated Annealing with cooling function (12) 

Instance Satisfied 

Clauses 

Average 

Time 

(minutes) 

%  

Satisfied 

Clauses 

 Instance Satisfied 

Clauses 

Average 

Time 

(minutes) 

%  

Satisfied 

Clauses 

1 289.1 0.02 86.04  19 211.93 0.01 92.95 

2 328.13 0.03 85.45  20 226.4 0.01 92.79 

3 369.3 0.03 85.49  21 233.13 0.01 92.51 

4 411.17 0.06 85.66  22 247.47 0.02 92.34 

5 447.8 0.07 84.81  23 254.4 0.02 92.17 

6 466.03 0.07 84.43  24 269.3 0.02 92.23 

7 486.63 0.08 84.48  25 276.13 0.02 92.04 

8 505.07 0.08 84.18  26 290.57 0.03 91.95 

9 525.97 0.09 84.29  27 1369.7 0.16 89.52 

10 546.93 0.09 84.4  28 1370.57 0.16 89.58 

11 565.8 0.12 84.2  29 1369 0.16 89.48 

12 587.63 0.13 84.43  30 1367.5 0.16 89.38 

13 606 0.14 84.17  31 1367.47 0.16 89.38 

14 123.87 0 93.84  32 1368 0.16 89.41 

15 145.3 0.01 93.14  33 1368.93 0.16 89.47 

16 167 0.01 92.78  34 1369.1 0.16 89.48 

17 189.37 0.01 92.83  35 1370.67 0.16 89.59 

18 203.87 0.01 92.67  36 1370.70 0.16 89.59 
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