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ABSTRACT 

There are multiple applications in medical physics and space radiation health, such as hadron 

therapy for cancer treatment ofthe irradiation of  biological systems by energetic ion beams. 

Therefore, for a better control and understanding of the effects of radiation damage in living 

tissues, it is necessary to advance an accurate description of the energy loss from the ion beam to 

the target. In the present work  PPA of the dielectric formalism has been used to calculate the 

probability for an energetic proton to produce electronic excitations in DNA as well as the average 

energy of the target electronic excitations as a function of the projectile energy. Our results show 

that the protons with energy between 0.05 MeV to 2.5 MeV are very efficient in producing 

secondary electrons in DNA, which are able to produce strand breaks and could be very effective 

for the biological damage of malignant cells. 

The ionization potential (the so-called I-value) is the most important material quantity in the 

calculation of the electronic stopping power of energetic ions (>1 MeV u−1) through Bethe’s 

formula and represents its main source of uncertainty at high energies, I DNA  found to be   80.01 

eV and I H2O         . Our present results are compared with previous work  and show good 

agreement. 

Keywords: Energy-loss function, Dielectric formalism, DNA target, Liquid water,  Energy loss,  

Proton beam, Avarge energy,  Ionization potential. 

 

1. INTRODUCTION 
The interaction of heavy ions with matter and the transference of their energy to matter are key 

for understanding the biological effects of radiation on living tissue. Ionizing  radiation defines 

those radiations that primarily interact with matter by charged particles[1]. 

Using energetic ion beams for radiation therapy has become a promising  technique because 

high doses can be deposited locally at tumor sites, reducing the damage to the surrounding critical 

organs.Hadron therapy exploits the enhanced energy deposition taking place at the end of the range 

of energetic ion beams (the so-called Bragg peak) [2]. 

Most calculations of the energy loss of ions in solids are based on the Bethe theory [3], where 

the most important factor is the mean excitation energy of the target. At high projectile energies (in 

the Bethe region), the stopping powers predicted by the Bethe theory are within a few percent of 

the experimental data [4]. 

An effort to study the interaction of energetic ion  beams with liquid water at intermediate 

energies has been carried out recently, since water represents over 80% of the content of the cells 
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of soft tissues [5, 6]. A little work has been done concerning the electron energy loss of energetic 

ions in DNA targets. 

Research on the effects of radiation on DNA, the most important biological material, is very active, 

because determining the relationship between the energy deposited by fast particles in the target 

and the damage they cause is important to radiation biophysics [7, 8]. DNA damage can be 

produced by direct ionization and excitation of DNA electrons [9] or by indirect chemical reactions 

of water radiolysis products with DNA [10]. Even electrons with subionizing energies can cause 

lethal lesions in DNA [11, 12]. 

Therefore, a detailed study of the energy loss of ions in biological targets (such as DNA or 

liquid water) is desirable to improve our understanding and modeling capabilities of the action of 

radiation in ion-beam cancer therapy [8, 13, 14] 

In this paper we calculate the ionization potential  in DNA and the probability  per unit path 

length P (T, E) and the mean energy        of the electronic excitations produced in DNA for a 

wide range of projectile energy (0.05 Mev/nucleon to 2.5 Mev/nucleon) by using program of 

Fortran 60. 

 

2. THEORETICALBACKGROUND 
2.1.Description of the Target ELF 

The key parameter to obtain reliable results for the energy losses is the energy-loss function 

(ELF) of the material, Im[-1/ϵ(k,ω)], since it contains all the information about the electron 

excitation spectrum of  the target. Thus it is essential to use a good description of the target ELF for 

the whole k-ω plane (that is, the Bethe surface) [2]. 

The well-known Lindhard dielectric function is applicable to only a limited number of so-

called nearly-free-electron materials, like  aluminum. For other targets, a commonly used method 

for obtaining the ELF is to employ the experimental energy-loss function at k = 0 (optical limit) 

and extend it to k > 0 by introducing suitable dispersion relationship schemes [15]. 

Experimental information about the ELF at k = 0 can be obtained for a number of materials, 

including liquid water and DNA, from the measurements of optical magnitudes[16].However, 

experimental information about the ELF at k≠ 0 is limited. For this reason, it is necessary to model 

the evolution of the optical ELF with finite k in order to calculate magnitudes such as P and 〈 〉 
The Plasmon Pole Approximation (PPA) is applicable for a projectile of  high velocity 

compared to the Fermi velocity
Fvv


 , to give a good approximation to the Lindhard dielectric 

function. It accounts for the collective electron-gas behavior at small k


and the free-particle 

behavior at large k


, are included [17]. 
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The constant 
F

v
2/1)5/3(  is the propagation of density disturbances in an electron gas, 

Fv


 being the Fermi velocity of the electrons in the  medium [18, 19]. 

At high velocities     one can use the Plasmon Pole Approximation (PPA) [20] for the 

dielectric function in the limit of no damping process(i.e.,      [21]. 

                                                                                    (2) 

With 4/42222 kkA p    

At low velocities     , the dielectric function is described as [21]. 
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                                                                     (3) 

with a screening constant,  

  
  

   

 
 

 

2.2.The Probability and Average Energy of Electronic Excitation 
When a swift projectile with mass M1, atomic number Z1, kinetic energy T and charge q 

moves inside a solid, it induces electronic excitations in the material, losing energy in the process. 

In the energy range (from 0.05 Mev / nucleon to 2.5 Mev/ nucleon). These electronic excitations 

can correspond to excitations or ionizations of individual electrons or even excitations of collective 

modes in the target electron gas. 

The dielectric formalism [22] provides a way of studying the response of the electronic system 

of the target to the perturbation represented by the projectile. Within this framework the probability 

per unit path length   (T, E) that a projectile with charge state q and energy T produces in the 

target an excitation of energy E =ћω irrespective of its momentum, ћk, is  

given by: 

                                                            (4) 

      k min      √     , e is the absolute value of the electron charge and ρ q (k) is the Fourier 

transform of the projectile charge density. Hence, the mean energy lost by the projectile per unit 

path length (the so called stopping power or stopping force) can be calculated integrating over all 

possible energy transfer E 

 

                                                                                     (5) 

 

 The mean energy of the electronic excitations ˂E q (T)˃ induced by the projectile can be 

written as 

                                                                           (6) 

The charge state q of the projectile inside the target can vary through capture and loss 

processes and depends on its energy T. However, when charge equilibrium is reached, the 

probability Φ q (T) of finding the projectile in a charged state remains constant for each incident 

energy T. Here we obtain the values of Φ q(T)  for hydrogen projectiles in DNA using the 

parameterization provided by the CasP code [23], which uses Bragg’s additivity rule for compound 

targets. We average over all possible charge states (q = 0 and 1 for H) in order to obtain the energy 

distribution, P (T, E) and the mean energy, ˂E (T)˃  of the electronic excitations produced in the 

target as 

 

       ∑              
                                                                         (7) 

〈     〉  
∫    ∑   

 
             

 
 

∫   ∑       
          

 
 

                                                                    (8) 

Where the calculation of  probability and mean energy requires the description of the projectile 

charge density through ρ q (k), and of the target excitation spectrum by means of its energy-loss 

function (ELF), Im[-1/ϵ(k,ω)]. 
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2.3. The Ionization Potential 

The mean excitation energy (the so-called I-value) is the most important material quantity in 

the calculation of the electronic stopping power of energetic ions (>1 MeV u 
−1

) through Bethe’s 

formula and represents its main source of uncertainty at high energies [24].Basically, the average 

ionization potential is defined [25] as the average value of the excitation energies over all atomic 

states (E I ) weighted by their transfer probability to continuum (f i ). 

The I-value can be generally determined in three ways: (i) from an analysis of stopping power 

(and range) measurements, (ii) from optical absorption data and (iii) by ab initio calculations. The 

last method is not yet applicable to condensed targets (liquids and solids) [6]. 

In this paper we will discuss the calculation of  I (eV) from the analysis of stopping power 

measurements. 

 

2.3.1. The Born Approximation 

The electronic (or collision) stopping power (    ) of a material for a charged projectile 

represents its mean energy loss per unit path length due to inelastic Coulomb collisions with target 

electrons and is formally obtained from the differential-in-energy-transfer inelastic cross section as 

follows [26]: 

     = ∫  
  

  

     

 
                                                                               (9) 

where σ  is the macroscopic inelastic cross section (or inverse inelastic mean free path) and E is the 

energy transfer from the projectile to the target electrons leading to ionization and/or (discrete) 

excitation events. 

For protons the upper limit of integration is     ≈ 4T where T = mυ
2
/2 or T = (m/M)τ  with m 

the electron rest mass (mc
2
= 511 keV), and υ, τ and M are the proton velocity, kinetic energy and 

rest mass (Mc
2
= 938 MeV), respectively.Assuming sufficiently fast (but still non-relativistic) 

projectiles of fixed charge leads to the following expression for the electronic stopping power [27], 

      = 
  

     
∫     

    

 
∫

 

 

    

    
   [

  

      
]                                                 (10) 

The limits of integration over the q in equation (10) are          = √    √    √    . It 

follows from equation (10) that the imaginary part of the inverse dielectric function, Im [−1/ϵ(E, 

q)], the so called target energy-loss function (ELF). It should be highlighted that in order to 

calculate the electronic stopping power according to equation (10), the ELF must be known over 

the whole energy–momentum plane; this is the so-called Bethe surface of the material [28]. There 

are, a numerical evaluation of the Bethe surface of a liquid or amorphous solid is not feasible, and 

even for simple molecules [29]. 

 

2.3.2. The Bethe Approximation 

Bethe showed that equation (10) reduces to the following asymptotic form in powers of 1/T 

[30]: 

                                                                                        (11) 

By using the f sum rule and a distinction between low- and high-q collisions [31] : 

ƒ sum rule: 
 

   
 ∫                      

 

 
 ,                                            (11a) 

conductivity sum rule :
 

   
 ∫                   

 

 
,                                 (11b) 

perfect screening sum rule:
 

 
∫

 

 

 

 
                         

                                                                                                                      (11c) 

Since the Born approximation is essentially a high-T approximation, equation (11) 

automatically provides the most important contributions to the stopping power. Specifically, the 

terms of order T 
−1 

will be dominant at high energies, whereas the term of order T 
−2

 provides the 

principal correction at lower energies. The coefficients A, B and C depend on target properties 

related to the ELF. Importantly, the coefficients A and B of the first-order terms (T 
−1

) are obtained 

solely from the optical limit of the ELF [6]: 
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    A= 
  

 

   
                                                                                                                       (12)                                                                                

   B= A ln (
 

 
                                                                                                                 (13) 

where I is the ionization potential which, for condensed systems, is defined by : 

ln(I) = 
∫                         
 
 

∫                   
 
 

                                                                                     (14)  

Eqs. (11- 14) leads to uncorrected Bethe stopping power formula,  

      = 
    

 

    
 ln (

  

 
)                                                                                                      (15) 

 

3. RESULTS AND DISCUSSION 
In the present work the calculation of the probability per unit path length, P(T,E) based on Eqs. 

(4,7), for the proton beam (having incident energies (T = 0.05MeV - 2.5 MeV)  of producing an 

electronic excitation of energy E in DNA and H2O  is shown in Figs. (1) & (2) By using PPA has 

given in Eq. (1). The probability P decreases as the proton energy increases, indicating that a larger 

number of electronic excitations are produced when lower incident energies T are used.  The value 

of P predicted by PPA agree at large T, and  this is very important because this range of T 

corresponds to the Bragg peak, where most of the projectile energy is deposited. Good agreement 

achieved with previous work given in [32, 33]. 

 

Fig-1.Probability  per unit path P that  H projectile induces electronic excitation of energy E in 

DNA for T=(0.05- 2.5) Mev/a.u when modeling the ELF for (a)    (b)    . 
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Fig-2. Probability  per unit path P that  H projectile induces electronic excitation of energy E in 

Liquid water  for T=(0.05- 2.5) Mev/a.u when modeling the ELF for (a)    (b)    . 

 (a) 

 
 

 

(b) 

 
 

 

The mean energy 〈    〉, Eq. (8), of the electronic excitations produced by a proton in DNA 

and Liquid water is depicted in Figs. (3) & (4). It is seen that 〈    〉 increases with the proton 

energy T, being around 9-10 eV at T = 0.001 MeV and around 80 eV for T = 10 MeV.  This value 

agree with previous work [16, 34] taking in the considration screening length   . 

 

Fig-3.Mean energy 〈     〉of the excitations induced by a hydrogen projectile in DNA as a 

function of the projectile energy T  for  screening length     and    . 
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Fig-4.Mean energy 〈     〉of the excitations induced by a hydrogen projectile in H2O as a 

function of the projectile energy T  for  screening length     and    . 

 
 

 

Accurate values of the ionization potential  I( eV) for biological materials such as DNA are 

desirable because a difference in the I value of only a few percent might cause sizable changes in 

the range and stopping maximum of therapeutic ion beams [35, 36], which could be biologically 

relevant for the accuracy of the energy deposited in nanometer volumes [37]. 

The PPA allows an accurate description of the dielectric properties of DNA including 

information regarding the condensed state and the ionization  potential allows us to calculate how 

electrons in different shells contribute to the mean excitation energy I, which is obtained from Eq. 

(14) when the transfer energy        Figs.(5) & (6) show the value of I in (eV) of DNA and 

Liquid water as a function of the transferred energy E in eV. When       the ionization energy  

I = 80.01 eV using the program AuFa- H- DNA-1.For which is written in Fortran -90 [38].The 

value of  I we obtained is somewhat lower than that of 81.5 eV calculated previously  by Abril, et 

al. [2] and higher than that of 77.9 eV calculated by LaVerne and Pimblott [39] and clearly differs 

from that of ,85 eV obtained when applying Bragg’s rule in ICRU Report 49 [40] as well as from 

that of  86.64 eV calculated by Tan, et al. [41], because each author used the same experimental 

ELF  to calculate I values and that could be due to the different extrapolation of the ELF at 

intermediate energy transfers used by each group , where there are no experimental data. So it is 

interesting also to compare with an ionization potential I  of liquid water where a value of  

           78.17 eV was recently obtain by using a similar procedure that used before.  

 

Fig-5. The ionization potential  (I) of the stopping power theory is calculated as a function of the 

maximum energy transfer  in DNA from equation (14). 
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Fig-6. The ionization potential  (I) of the stopping power theory is calculated as a function of the 

maximum energy transfer  in liquid water H2O from equation (14). 

 
 

 

4. CONCLUSIONS 
In the present work the PPA of the dielectric formalism has been applied to calculate the 

probability, the average energy of electronic excitation and ionization potential of the hydrogen ion 

beam in DNA target by using a program AuFa- H- DNA-1.For. 

The spectral distribution of the electronic excitations induced by proton in DNA is calculated 

and found that , regardless of proton energy, the probability distribution P , of electronic excitations 

has a maximum around 20 eV.  Besides, P(E,T), which is related to the number of electronic 

excitations of a given energy E, decreases with the incident proton energy T. On the other hand the 

mean energy 〈    〉 of the electronic excitations increases monotonically with the proton energy T 

being around 9-10 eV at T = 0.001 MeV and around 80 eV for T = 10 MeV. 

The ionization potential which is calculated in present work  I = 80.01 eV gives a good 

agreement with  I. Abril et. al results I= 81.5 [2], and conclude that the protons with energy 

between 0.05 MeV to 2.5 MeV are very efficient in producing secondary electrons, which are able 

to produce strand breaks, and it was a significant to compare       with               , we found that 

              = 78.17 eV . In the other hand     is          larger  than                 by using the 

same procedure of calculation. 
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