Journal of Asian Scientific Research

Special Issue: International Conference on Emerging Trends in Scientific Research, 2014

journal homepage: http://www.aessweb.com/journals/5003

WEAK SEPARATION AXIOMS VIA Ω –OPEN SET AND Ω –CLOSURE OPERATOR

Mustafa. H. Hadi

University of Babylon, College of Education for pure sciences, Mathematics Department, Iraq

Luay. A. Al-Swidi

University of Babylon, College of Education for pure sciences, Mathematics Department, Iraq

ABSTRACT

AESS

In this paper we introduce a new type of weak separation axioms with some related theorems and show that they are equivalent with these in [1].

© 2014 AESS Publications. All Rights Reserved.

Keywords: Weak separation axioms, Weak ω –open sets, Weak regular spaces, $\omega - ker(A)$, Sober $\omega - R_0$, $\omega - R_0$ space, $\omega - R_1$ space.

1. INTRODUCTION

In this article let us prepare the background of the subject. Throughout this paper, (X,T) stands for topological space. Let A be a subset of X. A point x in X is called *condensation* point of A if for each U in T with x in U, the set $U \cap A$ is uncountable [2]. In 1982 the ω -closed set was first introduced by Hdeib [2], and he defined it as: A is ω -closed if it contains all its condensation points and the ω -open set is the complement of the ω -closed set. It is not hard to prove: any open set is ω -open. Also we would like to say that the collection of all ω -open subsets of X forms topology on X. The closure of A will be denoted by cl(A), while the intersection of all ω -closed sets in X which containing A is called the ω -closure of A, and will denote by $cl_{\omega}(A)$. Note that $cl_{\omega}(A) \subset cl(A)$.

In 2005 Caldas, et al. [3] introduced some weak separation axioms by utilizing the notions of $\delta - pre$ –open sets and $\delta - pre$ –closure. In this paper we use Caldas, et al. [3] definitions to introduce new spaces by using the ω –open sets defined by Hdeib [2], we ecall it $\omega - R_i$ –Spaces i = 0,1,2, and we show that $\omega - R_0$, $\omega^* - T_1$ space and ω –symmetric space are equivalent.

For our main results we need the following definitions and results:

Definition-1.1.

Noiri, et al. [4] A space (X, T) is called a *door space* if every subset of X is either open or closed.

Definition-1.2.

Hadi [1] The topological space X is called $\omega^* - T_1$ space if and only if, for each $x \neq y \in X$, there exist ω -open sets U and V, such that $x \in U, y \notin U$, and $y \in V, x \notin V$.

Lemma-1.3.

Hadi [1] The topological X is $\omega^* - T_1$ if and only if for each $x \in X$, $\{x\}$ is ω -closed set in X.

Definition-1.4.

Hadi [1] The topological space X is called $\omega^* - T_2$ space if and only if, for each $x \neq y \in X$, there exist two disjoint ω -open sets U and V with $x \in U$ and $y \in V$.

For our main result we need the following property of ω –closure of a set:

Proposition-1.5.

Let $\{A_{\lambda}, \lambda \in \Lambda\}$ be a family of subsets of the topological space (X, T), then

1. $cl_{\omega}(\cap_{\lambda \in \Lambda} A_{\lambda}) \subseteq \cap_{\lambda \in \Lambda} cl_{\omega}(A_{\lambda}).$

2. $\cup_{\lambda \in \Lambda} cl_{\omega}(A_{\lambda}) \subseteq cl_{\omega}(\cup_{\lambda \in \Lambda} A_{\lambda}).$

Proof:

1. It is clear that $\bigcap_{\lambda \in \Lambda} A_{\lambda} \subseteq A_{\lambda}$ for each $\lambda \in \Lambda$. Then by (4) of Theorem 1.5.3 in Hadi [1], we have $cl_{\omega}(\bigcap_{\lambda \in \Lambda} A_{\lambda}) \subseteq cl_{\omega}(A_{\lambda})$ for each $\lambda \in \Lambda$. Therefore $cl_{\omega}(\bigcap_{\lambda \in \Lambda} A_{\lambda}) \subseteq \bigcap_{\lambda \in \Lambda} cl_{\omega}(A_{\lambda})$.

Note that the opposite direction is not true . For example consider the usual topology T for \mathbb{R} , If

$$A_i = \left(0, \frac{1}{i}\right), i = 1, 2, ..., \text{ and } \bigcap_{i \in \mathbb{N}} cl_\omega(A_i) = \{0\}.$$
 But $cl_\omega(\bigcap_{i \in \mathbb{N}} A_i) = cl_\omega(\emptyset) = \emptyset$. Therefore

 $\cap_{\lambda \in \Lambda} cl_{\omega}(A_{\lambda}) \not\subseteq cl_{\omega}(\cap_{\lambda \in \Lambda} A_{\lambda}).$

2. Since $A_{\lambda} \subseteq \bigcup_{\lambda \in \Lambda} A_{\lambda}$, for each $\lambda \in \Lambda$. Then by (4) of Theorem 1.5.3 in Hadi [1], we get $cl_{\omega}(A_{\lambda}) \subseteq cl_{\omega}(\bigcup_{\lambda \in \Lambda} A_{\lambda})$, for each $\lambda \in \Lambda$. Hence $\bigcup_{\lambda \in \Lambda} cl_{\omega}(A_{\lambda}) \subseteq cl_{\omega}(\bigcup_{\lambda \in \Lambda} A_{\lambda})$.

Note that the opposite direction is not true. For example consider the usual topology T for \mathbb{R} , If $A_i = \{\frac{1}{2}\}, i = 1, 2, ..., cl_{\omega}(A_i) = \{\frac{1}{2}\}, and \bigcup_{i \in \mathbb{N}} cl_{\omega}(A_i) = \{1, \frac{1}{2}, \frac{1}{2}, ...\}$. But $cl_{\omega}(\bigcup_{i \in \mathbb{N}} A_i) = \{1, \frac{1}{2}, \frac{1}{2}, ...\}$.

$$\left\{1, \frac{1}{2}, \frac{1}{3}, \dots, 0\right\}. \text{ Thus } cl_{\omega}(\cup_{\lambda \in \Lambda} A_{\lambda}) \not\subseteq \cup_{\lambda \in \Lambda} cl_{\omega}(A_{\lambda}) \qquad \Box$$

2. $\Omega - R_I - SPACES$, FOR i = 0, 1

In this section we introduce some types of weak separation axioms by utilizing the ω –open sets defined in Hdeib [2].

Definition-2.1.

Let $A \subset (X, T)$, then the ω -kernal of A denoted by ω -ker(A) is the set ω -ker(A) = \cap {O,where O is an ω - open set in (X, T) containing A }.

Proposition-2.2.

Let $A \subset (X, T)$, and $x \in X$. Then

 $\omega - ker(A) = \{x \in X : cl_{\omega}(\{x\}) \cap A \neq \emptyset\}.$

Proof:

Let *A* be a subset of *X*, and $x \in \omega - ker(A)$, such that $cl_{\omega}(\{x\}) \cap A = \emptyset$. Then $x \notin X \setminus cl_{\omega}(\{x\})$, which is an ω -open set containing *A*. This contradicts $x \in \omega - ker(A)$. So $cl_{\omega}(\{x\}) \cap A \neq \emptyset$. Then Let $x \in X$, be a point satisfied $cl_{\omega}(\{x\}) \cap A \neq \emptyset$. Assume $x \notin \omega - ker(A)$, then there exists an ω -open set *G* containing *A* but not *x*. Let $y \in cl_{\omega}(\{x\}) \cap A$. Hence *G* is an ω -open set containing *y* but not *x*. This contradicts $cl_{\omega}(\{x\}) \cap A \neq \emptyset$. So $x \in \omega - ker(A)$

Definition-2.3.

A topological space (X, T) is said to be sober $\omega - R_0$ if $\bigcap_{x \in X} cl_{\omega}(\{x\}) = \emptyset$.

Theorem-2.4.

A topological space (X, T) is sober $\omega - R_0$ if and only if $\omega - ker(\{x\}) \neq X$ for each $x \in X$. **Proof:**

Suppose that (X, T) is sober $\omega - R_0$. Assume there is a point $y \in X$, with $\omega - ker(\{y\}) = X$. Let $x \in X$, then $x \in V$ for any ω – open set V containing y, so $y \in cl_{\omega}(\{x\})$ for each $x \in X$. This implies $y \in \bigcap_{x \in X} cl_{\omega}(\{x\})$, which is a contradiction with $\bigcap_{x \in X} cl_{\omega}(\{x\}) = \emptyset$.

Now suppose ω -kernal({x}) $\neq X$ for every $x \in X$. Assume X is not sober $\omega - R_0$, it mean there is y in X such that $y \in \bigcap_{x \in X} cl_{\omega}(\{x\})$, then every ω - open set containing y must contain every point of X. This implies that X is the unique ω - open set containing y. Therefore ω -kernal({y}) = X, which is a contradiction with our hypothesis. Hence (X, T) is sober $\omega - R_0$

Definition-2.5.

A map $f: X \to Y$ is called ω -closed, if the image of every ω -closed subset of X is ω -closed in Y.

Proposition-2.6.

If *X* is a space, *f* is a map defined on *X* and $A \subseteq X$, then $cl_{\omega}(f(A)) \subseteq f(cl_{\omega}(A))$.

Proof:

We have $A \subseteq cl_{\omega}(A)$, then $f(A) \subseteq f(cl_{\omega}(A))$ This implies $cl_{\omega}(f(A)) \subseteq cl_{\omega}(f(cl_{\omega}(A))) = f(cl_{\omega}(A))$. Hence $cl_{\omega}(f(A)) \subseteq f(cl_{\omega}(A)$

Theorem-2.7.

If $f: X \to Y$ is one to one ω -closed map and X is sober $\omega - R_0$, then Y is sober $\omega - R_0$.

Proof:

From Proposition 1.5, we have

$$\bigcap_{y \in Y} cl_{\omega}(\{y\}) \subset \bigcap_{x \in X} cl_{\omega}(\{f(x)\}) \subset \bigcap_{x \in X} f(cl_{\omega}(\{x\}))$$
$$= f(\bigcap_{x \in X} cl_{\omega}(\{x\}))$$
$$= f(\emptyset) = \emptyset.$$

Thus *Y* is sober $\omega - R_0$

Definition-2.8.

A topological space (X,T) is called $\omega - R_0$ if every ω -open set contains the ω -closure of each of its singletons.

Theorem-2.9.

The topological door space is $\omega - R_0$ if and only if it is $\omega^* - T_1$.

Proof:

Let x, y are distinct points in X. Since (X, T) is door space so that for each x in $\{x\}$ is open or closed.

i. 1. When {*x*} is open, hence ω –open set in *X*. Let $V = \{x\}$, then $x \in V$, and $y \notin V$. Therefore since (X, T) is $\omega - R_0$ space, so that $cl_{\omega}(\{x\}) \subset V$. Then $x \notin X \setminus V$, while $y \in X \setminus V$, where $X \setminus V$ is an ω –open subset of *X*.

2. Whenever $\{x\}$ is closed, hence it is ω -closed, $y \in X \setminus \{x\}$, and $X \setminus \{x\}$ is ω -open set in X. Then since (X, T) is $\omega - R_0$ space, so that $cl_{\omega}(\{y\}) \subset X \setminus \{x\}$. Let $V = X \setminus cl_{\omega}(\{y\})$, then $x \in V$, but $y \notin V$, and V is an ω -open set in X. Thus we obtain (X, T) is $\omega^* - T_1$.

ii. For the other direction assume (X, T) is $\omega^* - T_1$, and let V be an ω -open set of X, and $x \in V$. V. For each $y \in X \setminus V$, there is an ω -open set V_y such that $x \notin V_y$, but $y \in V_y$. So $cl_{\omega}(\{x\}) \cap V_y = \emptyset$, which is true for each $y \in X \setminus V$. Therefore $cl_{\omega}(\{x\}) \cap (\bigcup_{y \in X \setminus V} V_y) = \emptyset$. Then since $y \in V_y$, $X \setminus V \subset \bigcup_{y \in X \setminus V} V_y$, and $cl_{\omega}(\{x\}) \subset V$. Hence (X, T) is $\omega - R_0$

Definition-2.10.

A topological space (X,T) is ω -symmetric if for x and y in the space X, $x \in cl_{\omega}(\{y\})$ implies $y \in cl_{\omega}(\{x\})$.

Proposition-2.11.

Let X be a door ω -symetric topological space. Then for each $x \in X$, the set $\{x\}$ is ω -closed.

Proof:

Let $x \neq y \in X$, since X is a door space so $\{y\}$ is open or closed set in X. When $\{y\}$ is open, so it is ω -open, let $V_y = \{y\}$. Whenever $\{y\}$ is ω -closed, $x \notin \{y\} = cl_{\omega}(\{y\})$. Since X is ω -symetric we get $y \notin cl_{\omega}(\{x\})$. Put $V_y = X \setminus cl_{\omega}(\{x\})$, then $x \notin V_y$ and $y \in V_y$, and V_y is ω -open set in X. Hence we get for each $y \in X \setminus \{x\}$ there is an ω -open set V_y such that $x \notin V_y$ and $y \in V_y$. Therefore $X \setminus \{x\} = \bigcup_{y \in X \setminus \{x\}} V_y$ is ω -open, and $\{x\}$ is ω -closed

Proposition-2.12.

Let (X, T) be $\omega^* - T_1$ topological space, then it is ω -symetric space.

Proof:

Let $x \neq y \in X$. Assume $y \notin cl_{\omega}(\{x\})$, then since X is $\omega - T_1$ there is an open set U containing x but not y, so $x \notin cl_{\omega}(\{y\})$. This completes the proof

Theorem-2.13.

The topological door space is ω – symmetric if and only if it is $\omega^* - T_1$.

Proof:

Let (X, T) be a door ω – symmetric space. Then using Proposition 2.11 for each $\in X$, $\{x\}$ is ω –closed set in X. Then Lemma 1.3, we get that (X, T) is $\omega^* - T_1$. On the other hand, assume (X, T) is $\omega^* - T_1$, then directly by Proposition 2.12. (X, T) is ω – symmetric space

Corollary-2.14.

Let (X, T) be a topological door space, then the following are equivalent:

- **1.** (X, T) is ωR_0 space.
- **2.** (*X*, *T*) is $\omega^* T_1$ space.
- **3.** (*X*, *T*) is ω symmetric space.

Proof:

The proof follows immediately from Theorem 2.9 and Theorem 2.13 $\hfill \square$

Corollary-2.15.

If (X, T) is a topological door space, then it is $\omega - R_0$ space if and only if for each $x \in X$, the set $\{x\}$ is ω -closed set.

Proof:

We can prove this corollary by using Corollary 2.14 and Lemma 1.3

Theorem-2.16.

Let (X, T) be a topological space contains at least two points. If X is $\omega - R_0$ space, then it is sober $\omega - R_0$ space.

Proof:

Let x and y are two distinct points in X. Since (X, T) is $\omega - R_0$ space so by Theorem 2.8 it is $\omega^* - T_1$. Then Lemma 1.3 implies $cl_{\omega}(\{x\}) = \{x\}$ and $cl_{\omega}(\{y\}) = \{y\}$. Therefore $\bigcap_{p \in X} cl_{\omega}(\{p\}) \subset cl_{\omega}(\{x\}) \cap cl_{\omega}(\{y\}) = \{x\} \cap \{y\} = \emptyset$. Hence (X, T) is sober $\omega - R_0$ space.

Definition-2.17.

A topological door space (X,T) is said to be $\omega - R_1$ space if for x and y in , with $cl_{\omega}(\{x\}) \neq cl_{\omega}(\{y\})$, there are disjoint ω -open set U and V such that $cl_{\omega}(\{x\}) \subset U$, and $cl_{\omega}(\{y\}) \subset V$.

Theorem-2.18.

The topological door space is $\omega - R_1$ if and only if it is $\omega^* - T_2$ space.

Proof:

Let x and y be two distinct points in X. Since X is door space so

for each x in X, The set $\{x\}$ is open or closed.

i. If $\{x\}$ is open. Since $\{x\} \cap \{y\} = \emptyset$, then $\{x\} \cap cl_{\omega}\{y\} = \emptyset$. Thus $cl_{\omega}(\{x\}) \neq cl_{\omega}(\{y\})$.

ii. Whenever $\{x\}$ is closed, so it is ω -closed and $cl_{\omega}\{x\} \cap \{y\} = \{x\} \cap \{y\} = \emptyset$. Therefore $cl_{\omega}(\{x\}) \neq cl_{\omega}(\{y\})$. We have (X, T) is $\omega - R_1$ space, so that there are disjoint ω -open sets U and V such that $x \in cl_{\omega}(\{x\}) \subset U$, and $y \in cl_{\omega}(\{y\}) \subset V$, so X is $\omega^* - T_2$ space.

For the opposite side let x and y be any points in X, with $cl_{\omega}(\{x\}) \neq cl_{\omega}(\{y\})$. Since every $\omega^* - T_2$ space is $\omega^* - T_1$ space so by (3) of Theorem 2.2.15 $cl_{\omega}(\{x\}) = \{x\}$ and $cl_{\omega}(\{y\}) = \{y\}$, this implies $x \neq y$. Since X is $\omega^* - T_2$ there are two disjoint ω -open sets U and V such that $cl_{\omega}(\{x\}) = \{x\} \subset U$, and $cl_{\omega}(\{y\}) = \{y\} \subset V$. This proves X is $\omega - R_1$ space

Corollary-2.19.

Let (X, T) be a topological door space. Then if X is $\omega - R_1$ space then it is $\omega - R_0$ space.

Proof:

Let X be an $\omega - R_1$ door space. Then by Theorem 2.17 X is $\omega^* - T_2$ space. Then since every $\omega^* - T_2$ space is $\omega^* - T_1$, so that by Theorem 2.9, X is $\omega - R_0$ space.

REFERENCES

- M. H. Hadi, "Weak forms of ω-open sets and decomposition of separation axioms," Babylon University, M. Sc. Thesis, 2011.
- [2] H. Z. Hdeib, "ω-closed mappings," Rev. Colomb. Mat., vol. 16, pp. 65-78, 1982.
- [3] M. Caldas, T. Fukutake, S. Jafari, and T. Norani, "Some applications of δ- preopen sets in topological spaces " *Bulletin of the Institute of Mathematics Academia Sinica*, vol. 33, pp. 261-276, 2005.
- [4] T. Noiri, Al-Omari, and M. S. M. Noorani, "Weak forms of ω-open sets and decomposition of continuity," *E.J.P.A.M.*, vol. 2, pp. 73-84, 2009.