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ABSTRACT 

In this paper we introduce a new type of weak separation axioms with some related theorems and 

show that they are equivalent with these in [1].  
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1. INTRODUCTION 

In this article let us prepare the background of the subject. Throughout this paper , (   ) 

stands for topological space. Let   be a subset of  . A point   in   is called condensation point of 

  if for each   in   with   in  , the set U     is uncountable [2]. In 1982 the   closed set was 

first introduced by Hdeib [2], and he defined it as:   is   closed if it contains all its condensation 

points and the   open set is the complement of the   closed set. It is not hard to prove: any 

open set is   open. Also we would like to say that the collection of all   open subsets of   

forms topology on  . The closure of   will be denoted by   ( ), while the intersection of all 

  closed sets in   which containing   is called the   closure of  , and will denote by    ( ). 

Note that    ( )    ( ). 

In 2005 Caldas, et al. [3] introduced some weak separation axioms by utilizing the notions of 

      open sets and       closure. In this paper we use  Caldas, et al. [3] definitions to 

introduce new spaces by using the   open sets defined by Hdeib [2], we ecall it      Spaces 

       , and we show that      ,  
     space and   symmetric space are equivalent. 

For our main results we need the following definitions and results: 

 

Definition-1.1. 

Noiri, et al. [4] A space (   ) is called a door space if every subset of   is either open or 

closed. 
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Definition-1.2.  

Hadi [1] The topological space   is called       space if and only if, for each        

there  exist   open sets    and  , such that        , and        . 

 

Lemma-1.3.  

Hadi [1] The topological   is       if and only if for each     * + is   closed set in  . 

 

Definition-1.4.  

Hadi [1] The topological space   is called       space if and only if, for each        

there exist two disjoint   open sets   and   with     and    . 

For our main result we need the following property of   closure of a set: 

 

Proposition-1.5.  

Let *      +  be a family of subsets of the topological space  (     ), then  

1.     (      )         (  ). 

2.        (  )     (      ). 

Proof:  

1. It is clear that           for each    .  Then by (4) of Theorem 1.5.3 in Hadi [1], we have 

   (       )     (  ) for each    . Therefore      (       )         (  ). 

Note that the opposite direction  is not true . For example  consider the usual topology   for    , If 

   (  
 

 
)         , and        (  )  * +. But      (      )     ( )   . Therefore  

       (  )     (       ). 

2. Since            for each    .  Then by (4) of Theorem 1.5.3 in Hadi [1], we get 

          (  )     (      ),   for each    .  Hence        (  )     (      ) . 

Note that the opposite direction  is not true . For example  consider the usual topology   for    , If 

   {
 

 
}         ,     (  )  {

 

 
}   and        (  )  {  

 

 
 
 

 
  }. But      (      )  

{  
 

 
 
 

 
    } . Thus      (      )         (  )           

 

2.      SPACES , FOR       

In this section we introduce some types of weak separation axioms by utilizing the   open 

sets defined in Hdeib [2]. 

 

Definition-2.1.  

Let   (   ), then the   kernal of   denoted by      ( ) is the set 

     ( )   {O,where O is an ω- open set in  (   )  containing  }. 

 

Proposition-2.2. 

 Let    (   ), and    . Then  
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     ( )  *       (* +)     +. 

Proof: 

Let   be a subset of  , and        ( ), such that    (* +)     . Then        (* +), 

which is an   open set containing  . This contradicts         ( ). So     (* +)     . 

Then Let      be a point satisfied      (* +)     . Assume        ( )  then there exists 

an   open set   containing   but not  . Let      (* +)   . Hence   is an   open set 

containing   but not  . This contradicts      (* +)     . So        ( )           

 

Definition-2.3.  

A topological space (     ) is said to be sober      if        (* +)     

 

Theorem-2.4.  

A topological space (     ) is sober      if and only if      (* +)    for each      

Proof: 

Suppose that (     ) is sober     . Assume there is a point    , with      (* +)   . 

Let    , then     for any    open set   containing   , so      (* +) for each    . This 

implies          (* +), which is a contradiction with         (* +)   . 

Now suppose   kernal(* +)    for every    . Assume   is not sober     , it mean 

there is   in    such that          (* +) , then every    open set containing   must contain 

every point of  . This implies that   is the unique  - open set containing  . Therefore 

  kernal(* +)   , which is a contradiction with our hypothesis. Hence (     ) is sober               

 

 

Definition-2.5.  

A map       is called   closed, if the image of every   closed subset of   is 

  closed in  . 

 

Proposition-2.6.  

If   is a space,   is a map defined on   and    , then   

   ( ( ))   (   ( ). 

Proof: 

We have      ( ), then  ( )   (   ( )) This implies    ( ( ))     ( (   ( )))  

 (   ( ))  Hence    ( ( ))   (   ( )           

 

Theorem-2.7. 

 If       is one to one    closed map and   is sober      , then   is sober     . 

Proof: 

From Proposition 1.5, we have 

        (* +)         (* ( )+)       (   (* +)) 

                                                             (       (* +)) 

                                                             ( )   . 
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Thus   is sober               

 

Definition-2.8.   

A topological space (    ) is called      if every    open set contains the   closure of 

each of its singletons. 

 

Theorem-2.9.  

The topological door space is      if and only if it is      . 

Proof: 

Let     are distinct points in  . Since (     ) is door space so that for each   in  , * + is open or 

closed. 

i. 1. When * + is open, hence   open set in  . Let    * + , then    , and     . Therefore 

since (     ) is      space, so that    (* +)     Then        , while      , where     

is an   open subset of  . 

  2. Whenever * + is closed, hence it is   closed,     * +, and   * + is   open set in  . 

Then since (    ) is      space, so that      (* +)     * +. Let          (* +), then    , 

but    , and   is an   open set in X. Thus we obtain (     ) is      . 

ii. For the other direction assume  (     ) is      , and let   be an   open set of  ,  and    

 . For each      , there is an   open set      such that     , but     . So      (* +)  

      which is true for each        Therefore      (* +)  (        )     Then since   

  ,             , and    (* +)   . Hence (     ) is                 

 

Definition-2.10. 

A topological space (    ) is   symmetric if for   and   in the space  ,      (* +) 

implies       (* +)  

 

Proposition-2.11.   

Let   be a door   symetric topological space . Then for each      ,  the set * + is 

  closed. 

Proof:  

Let      , since   is a door space so * + is open or closed set in  . When * + is open, so it is 

  open, let    * +. Whenever * + is   closed ,   * +     (* +). Since   is   symetric 

we get      (* +). Put         (* +), then      and     , and    is   open set in  . 

Hence we get for each     * + there is an   open set    such that      and     . 

Therefore   * +         * +   is   open,  and * + is   closed           

 

Proposition-2.12.  

Let (    ) be        topological space, then it is   symetric space. 

Proof: 

Let       .  Assume      (* +), then since   is      there is an open set   containing   

but not  , so      (* +). This completes the proof           
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Theorem-2.13.  

The topological door space is    symmetric if and only if it is      . 

Proof:  

Let (     ) be a door    symmetric space. Then using Proposition 2.11 for each    , * + is 

  closed set in  . Then Lemma 1.3, we get that (     ) is      . On the other hand, assume 

(     ) is      , then directly by Proposition 2.12. (     ) is    symmetric space           

 

Corollary-2.14.  

Let (     ) be a topological door space, then the following are equivalent: 

1. (      ) is      space. 

2. (      ) is       space. 

3. (      ) is    symmetric space. 

Proof: 

The proof follows immediately from Theorem 2.9 and Theorem 2.13           

 

 

Corollary-2.15.  

If (     ) is a topological door space, then it is      space if and only if for each    , the 

set * + is   closed set. 

Proof: 

We can prove this corollary by using Corollary 2.14 and Lemma 1.3          

 

Theorem-2.16. 

Let (     ) be a topological space contains at least two points. If   is      space, then it is 

sober      space. 

Proof: 

 Let   and   are two distinct points in  . Since (     ) is      space so by Theorem 2.8 it is  

     . Then Lemma 1.3 implies      (* +)  * +  and      (* +)  * +. Therefore  

       (* +)     (* +)    (* +)  * + * +     Hence (     ) is sober      space. 

 

Definition-2.17.   

A topological door space (     ) is said to be       space if for   and   in  , with 

   (* +)     (* +), there are disjoint   open set   and   such that    (* +)   , and 

   (* +)   . 

 

Theorem-2.18.  

The topological door space is       if and only if it is       space. 

Proof:  

Let   and   be two distinct points in  . Since   is door space so 

for each   in  , The set * + is open or closed. 

i. If * + is open. Since * + * +   , then * +    * +   . Thus    (* +)     (* +)  
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ii. Whenever  * + is closed, so it is   closed and    * + * +  * + * +   . Therefore 

   (* +)     (* +). We have ( X, T ) is      space, so that there are disjoint   open sets   

and V such that      (* +)   , and      (* +)   , so X is       space. 

For the opposite side let   and   be any points in  , with    (* +)     (* +). Since every 

      space is       space so by (3) of Theorem 2.2.15     (* +)  * +  and      (* +)  * + 

, this implies    . Since   is       there are two disjoint   open sets   and   such that 

   (* +)  * +   , and    (* +)  * +    . This proves   is      space           

 

Corollary-2.19.  

Let (     ) be a topological door space. Then if    is       space then it is      space. 

Proof: 

Let   be an      door space. Then by Theorem 2.17    is       space. Then since every 

      space is      , so that by Theorem 2.9,     is       space. 
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