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ABSTRACT 

Multicollinearity and autocorrelation are two major problems often encounter in regression analysis. 

Estimators for their separate investigation have been developed even though they are not without 

challenges. However, the two problems occasionally do occur together. In this paper effort is made to 

provide some combined estimators based on Feasible Generalized Linear Estimator (CORC and ML) 

and Principal Components (PCs) Estimator that estimate the parameters of linear regression model 

when the two problems are in the model. A linear regression model with three explanatory variables 

distributed normally and uniformly as well as exhibiting multicollinearity and autocorrelation was 

considered through Monte Carlo experiments at four levels of sample size .The experiments were 

conducted and the performances of the various proposed combined estimators with their separate 

ones and the Ridge estimator were examined and compared using the Mean Square Error (MSE) 

criterion by ranking their performances at each level of multicollinearity, autocorrelation and 

parameter. The ranks were further summed over the number of parameters. Results show that the 

proposed estimator MLPC1 is generally best even though the CORCPC1 and PC1 often compete 

favorably with it.  Moreover with increased sample size, the CORCPC12 and MLPC12 are often best. 
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Contribution/ Originality 

This study combines the Feasible Generalized Least Square Estimators (Cochrane and Maximum 

Likelihood Estimators) with Principal Components Extraction method to jointly handle the problem 

of Multicollinearity and Autocorrelation problem in Linear Regression Model. 
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1. INTRODUCTION 

Multicollinearity is a problem associated with strong intercorrelation among the explanatory 

variables of linear regression model which is often encountered in social sciences [1, 2]. Solving this 

problem has attracted and is still attracting the attention of many researchers because of the 

challenges associated with parameter estimation and hypothesis testing while the Ordinary Least 

Square (OLS) estimator is used. These challenges include imprecise estimates, large standard error, 

non-conformity of the sign of regression coefficient estimates with the prior and insignificance of the 

true regression coefficients [2-4]. Various estimation developed methods to overcome this problem 

include the Ridge Regression Estimator [5, 6] estimator based on Principal Component Analysis 

Regression [7-9] and estimator based on Partial Least Squares [10-12].  

When the error terms of linear regression model are no longer independent as often encountered 

in time series data there is a problem of autocorrelation. Parameter estimation of linear model with 

autocorrelated error tem using the OLS estimator is known to produce inefficient but unbiased 

estimates and inefficient predicted values with underestimated sampling variance of the 

autocorrelated error terms [2, 3, 13, 14]. Adjusting for this lost of efficiency has lead to the 

development of several feasible generalized least squares (FGLS) estimators including Cochrane and 

Orcutt [15];  Paris and Winstein [16]; Hildreth and Lu [17]; Durbin [18]; Theil [19]; the maximum 

likelihood and the maximum likelihood grid Beach and Mackinnon [20] and Thornton [21].  

However, these two problems occasionally occur together in practice. 

Consequently, this paper provides estimators for parameter estimation of the linear regression 

model when these two problems are evident in a data setby combing the two feasible generalized 

linear squares estimators (CORC and ML) with the Principal Component Estimator (PCs). The 

performances of these combined estimators, their separate ones and the Ridge Estimator were 

examined through Monte Carlo Studies by examining the Mean Square Error (MSE) property of 

estimator.   

 

2. MATERIALS AND METHODS 

Consider the linear regression model of the form: 

ttttt UXXXY  3322110                                                             (1) 

Where 1t t tU U   ,  2~ 0, , t 1,2,...,nt N    

For Monte-Carlo simulation studies, the parameters of equation (1) were specified and fixed 

asβ0 = 4, β1 = 2.5, β2 = 1.8 and β3 = 0.6. The levels of multicollinearityamong the independent 

variables and autocorrelation were respectively specified as 0.9,0.95,0.99  and

0.7,0.8,0.9,0.95,0.99  . Furthermore, the experiment was replicated in 1000 times (R 

=1000) under four (4) levels of sample sizes (n =10, 20, 30, 50). The correlated uniform regressors 

were generated by using the equations provided by Ayinde [22] and  Ayinde and Adegboye [23] to 

generate normally distributed random variables with specified intercorrelation. With P= 3, the 

equations give: 

X1 = µ1 + σ1Z1                                                                                                                     

X2 = µ2 + ρ12 σ2Z1 + 22m Z2                                                                                    (2)                                                                     

X3 = µ3 + ρ13 σ3Z1 + 
23

22

m

m
Z2 + 33n Z3 
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Where m22 =  2 2

2 121  , m23 =  2 3 23 12 13      and n33 = m33 -

2

23

22

m

m
 ;  

andZi  N (0, 1) i = 1, 2, 3. The study assumed Xi N (0, 1), i = 1, 2, 3 and further utilized the 

properties of random variables that cumulative distribution function of Normal distribution 

produces U (0, 1) without affecting the correlation among the variables [24] to generate

~ (0,1),i 1,2,3.iX U   

The error terms were generated by assuming ~ N(0,1), t 1,2,3,4,...nte  and using one of 

the distributional properties of the autocorrelated error terms 

2

2
~ 0,

1
tU N 



 
 

 
and the AR(1) 

equation as follows: 

1
1

21
U







                                                                                                                                 (3)                                                                                                                                                                                                

Ut = ρUt-1 + εt     t = 2,3,4,…n                                                                                                           (4)  

 

After the data have been simulated, we adopted the same technique of how the Principal 

Component does its estimation using OLS estimator by regressing the extracted components (PCs) on 

the standardized dependent variable for the combined estimators. The technique is such we regressed 

the extracted components (PCs) on the standardized dependent variable using the FGLS estimators, 

Cochrane and Orcutt [15] and the Maximum Likelihood (ML) estimators [20] instead of using the 

OLS estimator. Since the FGLS estimators require an iterative methodology for its estimation, the 

proposed combined estimators do not result back into the FGLS feasible estimators when all the 

possible PCs are used like the OLS estimator does. Consequently, the parameters of (1) are estimated 

by the following twelve (12) estimators: OLS, PC1, PC12, CORC,CORCPC1, CORCPC12, 

CORCPC123,ML, MLPC1, MLPC12, MLPC123 and Ridge as suggested by Sclove [25] and 

described in Amemiya [26]. This Ridge estimator is an empirical Bayesian estimator. The prior is that 

coefficients are zero with a variance estimated from the data as the sums of squared of the fitted 

values of the dependent variable divided by the trace of the design matrix. The Ridge parameter in 

this case is a consistent estimate of the residual variance divided by the variance of the coefficient 

prior. 

Since some of these estimators have now been incorporated into the Time Series Processor (TSP 

5.0, 2005) software, a computer program was written with TSP software and the Mean Square Errors 

of each parameter of the model for all twelve estimators are computed. 

Mathematically for any estimator 
i

^

of i  i = 0, 1, 2, 3 of (1), the Mean Square Error (MSE) is 

defined as follows: 

  

2
^^

1

1
( )

R

i

j

MSE iji R




 
  

 
 

                                                         (5) 

This was used to evaluate and compare the estimators. The mean square errors of the estimators 

were ranked at each level of multicollinearity, autocorrelation and parameter. The ranks were further 

summed over the number of parameters.An estimator is best if it has minimum total ranks. 
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3. RESULTS AND DISCUSSION 

The summary of the performances of the estimators in term of their total rank over the model 

parameters of three explanatory variables at various levels of multicollinearity and sample size is 

given for both normal and uniform regressors in Table 1 and 2 respectively. The effect of the constant 

term is same at each level of multicollinearity in each sample size. A sample of the Mean Square 

errors of the estimators that were ranked when autocorrelation level is 0.9 and sample size is 20 is 

provided in the appendix.   

 

Table-1. Total rank of the Mean Square Error of the Estimators over the Parameters at 

different levels of multicollinearity, autocorrelation and sample size [Normally Distributed 

Regressors] 

 

 



Journal of Asian Scientific Research, 2015, 5(5): 243-250 

 

© 2015 AESS Publications. All Rights Reserved. 

 

247 

 

 
 

From Table 1, it can be observed that estimator is generally MLPC1. Specifically, it is best when the 

sample size is very small, n=10. At 20 30n  , MLPC1 is best when multicollinearity tends to 

unity and either ML or MLPC123 or CORC is best when multicollinearity is severe. With increased 

sample size, the MLPC12 or CORCPC12 is often best. Moreover, the CORCPC1 and PC1 estimators 

often compete favorably with the PC1 estimator. 

From Table 2, it can be seen that the best estimator is still generally MLPC1. However, at

20 30n   with high autocorrelation and severe multicollinearity, the best estimator is either ML, 

MLPC12, MLPC123, CORC, or CORCPC12. With increased sample size (n =50), the   MLPC12 and 

CORCPC12 are generally best even though MLPC1 performs much better with multicollinearity level 

tending to unity.  

 

Table-2. Total rank of the Mean Square Error of the Estimators over the Parameters at different levels of 

multicollinearity, autocorrelation and sample size [Uniformly Distributed Regressors] 
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4. CONCLUSION 

In this study, efforts have been made to combine two feasible Generalized Estimators with the 

estimator based on the principal components regression and compared their performances with that of 

the existing ones. These combined estimators when all the principal components are not used 

generally performed better thanthe OLS estimator and very precisely, the recommended combined 

MLPC1 is generally best even though the CORCPC1 and PC1 often compete favorably with it.  

Moreover with increased sample size, the CORCPC12 and MLPC12 are often best. 
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APPENDIX 

 

Table-3. The Mean Square Error of the Estimators of the Parameters at different levels of multicollinearity when n = 20 and 

0.9 
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