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ABSTRACT 

This paper describes the implementation of an ant colony algorithm (ACA), applied to a 

combinatorial optimization problem called job shop scheduling problem (JSSP). At first, a rather 

good solution is generated in negligible computation time and then, the trail intensities areinitiated 

based on this solution. Moreover, the trail intensities are limited between lower and upper bounds 

which change dynamically in a new manner. It is noteworthy that in initializing, updating as well 

as limiting the trail intensities, the goal is to guide the search towards the neighborhood around 

the best solution found. This paper outlines the algorithm’s implementation and performance when 

applied to job shop scheduling. The computer simulations on a set of benchmark problems are 

conducted to assess the merit of the proposed algorithm compared to some other heuristics in the 

literature. The solutions were of good quality and demonstrated the effectiveness of the proposed 

algorithm. 
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Contribution/ Originality 

This study is one of the common studies which have investigated to solve the well-known job 

shop scheduling problem using meta-heuristic algorithms, specially ant colony algorithms. 

 

1. INTRODUCTION 

One of the most difficult problems in the planning and managing of manufacturing processes is 

the job shop scheduling problem, which has been proved to be a NP-complete problem [1]. The 

JSSP can be described as follows: There are n different jobs to be processed on m different 

machines. Each job needs m operations and each operation needs to be processed without 

preemption for a fixed processing time on a given machine. There are several constraints on jobs 

and machines: 

 A job can visit a machine once and only once. 
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 There are no precedence constraints among the operations of different jobs.  

 Preemption of operations is not allowed. 

 Each machine can process only one job at a time. 

 Each job can be processed by only one machine at a time. 

 Neither release times nor due dates are specified. 

The problem is to find a schedule to minimize the makespan, that is, to minimize the time 

required to complete all jobs. 

A job shop problem instance can be visualized by a directed graph G = (N, A, B), where N 

represents the set of nodes, A the set of conjunctive arcs and B the set of disjunctive arcs. The set 

of nodes contains one element for each job operation ijo , a source node S connected to the first 

operation of each job and a sink node T linked with the last operation of each job. Conjunctive arcs 

are used to represent the routings of the different operations of the jobs and connect each pair of 

consecutive operations of the same job. Pairs of disjunctive arcs connect two operations, belonging 

to different jobs, which are to be processed on the same machine. The disjunctive arcs form a 

clique for each machine. A feasible solution corresponds to an acyclic subgraph that contains all 

conjunctive arcs and that contains exactly one disjunctive arc for each pair of disjunctive arcs 

between two nodes. An optimal solution corresponds to the feasible subgraph with the minimal 

makespan. An example of a disjunctive graph for a JSSP with three machines and three jobs is 

given in Fig 1. 

 
Fig-1.Disjunctive graph representation of a 3×3 job shop 

 

The JSSP with a minimum makespan objective is widely acknowledged as one of the most 

difficult combinatorial optimization problems. A comprehensive survey of approximation 

algorithms can be found in, Jain and Meeran [2]. Moreover, real-life application of the JSSP was 

discussed in Sels, et al. [3].  

The most common metaheuristic approaches for makespan minimization include genetic 

algorithm [4] tabu search [5] simulated annealing [6] ant colony optimization [7] particle swarm 

optimization [8]. A fair number of authors tried to increase the performance of the genetic 

algorithm by incorporating other traditional heuristics in the algorithm. This hybridization can 

happen with local search operator [9] tabu search technique [10] and simulated annealing approach 



Journal of Asian Scientific Research, 2015, 5(5):261-268 

 

© 2015 AESS Publications. All Rights Reserved. 

 

263 

 

[11]. Additionally, a genetic algorithm and a scatter search procedure is proposed by Sels, et al. 

[12] to solve the job shop scheduling problem.  

More recent research often focused on extensions of the JSSP. Examples are the inclusions of 

setup times[13] the adaptation of JSSP to the no-wait job shop [14] the incorporation of alternative 

objective functions [15] or the extension to the multi-objective JSSP [16].  

In this paper, we apply an ant colony algorithm (ACA) to solve the JSSP with the objective of 

minimizing the maximum completion time, or makespan. The proposed algorithm is based on 

model designed by Ahmadizar [17] for the permutation flow shop problem. The performance of the 

proposed approach is evaluated on a set of benchmark problems. 

 

2. ANT COLONY ALGORITHM 

The main idea in ant colony optimization algorithms is to mimic the pheromone trails used by 

real ants searching for feed as a medium for communication and feedback. In the ACA, a rather 

good solution is firstly generated in negligible computation time, and then the pheromone trails are 

initialized depending on this solution. In other words, unlike most applications of ant colony 

optimization algorithms, at the beginning of the ACA an equal initial value is not assigned to all 

pheromone trails. Each artificial ant starts with an empty sequence and chooses one of the jobs. 

Then, the ant iteratively appends an unscheduled job to the partial sequence constructed so far until 

a complete solution is built. At each step, a job is chosen by applying a transition rule based on the 

pheromone trails. The performance quality of the constructed solution is then improved by means 

of a local search procedure. Once all ants in the colony have built their solutions, to make the 

search more directed, the pheromone trails are modified by applying a global updating rule. 

Moreover, the trail intensities are limited between lower and upper bounds which change 

dynamically in a new manner. The general structure of the proposed algorithm is represented as 

follows: 

General structure of the ACA: 

Step 1. Set parameters; generate a seed solution and initialize the pheromone trails. 

Step 2. While the termination condition is not met, do the following: 

                2.1. For each ant in the colony do: 

                       By repeatedly applying the transition rule, construct a solution; 

                 Improve the solution quality by the local search; 

                       In case of an improved solution, update the best solution generated so far. 

2.2.  Modify the pheromone trails according to the global updating rule. 

2.3.  Update the minimum and maximum trail bounds, and limit the pheromone trails. 

Step 3. Return the best solution found. 

Once a complete sequence of jobs has been generated by an ant, the performance quality of the 

solution is improved by means of alocal search procedure. Since searching a large neighborhood 

requires more computational time, a new local search procedure is proposed to achieve a good 

trade off between the number of solutions constructed by ants and the local search time. Tohandle 

this issue, a threshold probability T is incorporated for choosing a job to insert into the other 
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positions of a given sequence. Higher value of T suggests that a larger neighborhood is expected to 

be searched (see details in Ahmadizar [17]). 

The proposed local search procedure is then represented as follows: 

Local search procedure: 

For each job j (j = 1,…,N), do the following: 

      1. Generate a random number R uniformly distributed in [0, 1]; 

      2. If R T do:  

            2.1. For each position i (i = 1,…,N), do: 

                   If job j is not in the ith position of the current sequence, insert job j in position i without 

any change in the other sequence, and then calculate the makespan of the newly 

obtained sequence. 

            2.2. Determine the best sequence among the N-1 newly obtained sequences. 

            2.3. If the makespan is improved, replace the current sequence by the best one found. 

Moreover, in the ACA the procedure with T being equal to 10/N is applied five times to 

improve y the quality of each ant-sequence. 

 

3. COMPUTATIONAL RESULTS 

In order to verify the good performance of the proposed algorithm, we use 43 instances from 

two classes of standard JSSP test problems: Fisher and Thompson [18] instances FT06, FT10, 

FT20 and Lawrence [19] instances LA01–LA40. Due to the stochastic nature of the ACA, each of 

the problem instances has been tested for five trials. The best solution has been taken for the five 

trials. 

The proposed algorithm has been coded in Visual C++ and all test runs have been carried out 

on a 2.0 GHz Intel Core 2 Duo Processor with 2 GB memory. The ACA was compared with some 

algorithms reported in literature such as: Qing-dao-Er-Ji and Wang [9]; Yang and Sun [20]; 

Goncalves, et al. [21]; Ombuki and Entresca [22]; Coello, et al. [23] and Binato, et al. [24]. The 

parameters used in experiments are set similar to Ahmadizar [17]. Moreover, the algorithm 

terminates when the total number of iterations reaches 150. 

Table 1 shows the experimental results. It lists problem name, problem size (number of jobs × 

number of operations), the best known solution (BKS) found in the literature and the solution 

obtained by each of the compared algorithms. 

As seen from Table 1, the proposed algorithm is able to find the best known solution for 31 

instances. For small problems FT06, FT10, FT20 and LA01–LA15, almost all the algorithms can 

find the optimal solution. For relatively large problems LA16–LA40, the results of the proposed 

algorithm ACA are better than most of the algorithms. 

For each algorithm, we can use formula RD = 100×(MFM-BKS)/BKS for each instance to 

calculate the relative deviation, where MFM means the minimum makespan found and BKS means 

the best known solution. We use ARD to denote the average value of relative deviations for all the 

instances. Table 2 shows the number of instances solved (NIS), and the average relative deviation 

(ARD). The ARD was calculated for the ACA and the other algorithms. From Table 2, the 
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proposed algorithm yields a significant improvement in solution quality with respect to other 

algorithms except the HGA. 

 

Table-2. Average relative deviation to the BKS 

Algorithm NIS ARD ARD 

   (ACA) 

Qing and Wang (HGA) 43 0.17 0.25 

Yang  and Sun (MA) 23 0.034 0.033 

Goncalves et al. (Param. Active) 43 0.39 0.25 

Ombuki and Entresca (LSGA) 25 5.22 0.44 

Coello et al. (AIS) 24 1.51 0.21 

Binato et al. (GRASP) 43 1.68 0.25 

 

Table-1. Numerical Results 

    Qing 

and 

Wang 

Yang  

and 

Sun  

Goncalves 

et al.  

Ombuki 

and 

Entresca  

Coello 

et al. 

Binato 

et al.  

Problem Size BKS ACA HGA MA Param. 

active 

LSGA AIS GRASP 

FT06 6×6 55 55 55 55 55 - - 55 

FT10 10×10 930 930 930 930 930 - 941 938 

FT20 20×5 1165 1165 1165 1165 1165 - - 1169 

LA01 10×5 666 666 666 666 666 - 666 666 

LA02 10×5 655 655 655 655 655 - 655 655 

LA03 10×5 597 597 597 597 597 - 597 597 

LA04 10×5 590 590 590 590 590 - 590 590 

LA05 10×5 593 593 593 593 593 - 593 593 

LA06 15×5 926 926 926 926 926 - 926 926 

LA07 15×5 890 890 890 890 890 - 890 890 

LA08 15×5 863 863 863 863 863 - 863 863 

LA09 15×5 951 951 951 951 951 - 951 951 

LA10 15×5 958 958 958 958 958 - 958 958 

LA11 20×5 1222 1222 1222 1222 1222 - - 1222 

LA12 20×5 1039 1039 1039 1039 1039 - - 1039 

LA13 20×5 1150 1150 1150 1150 1150 - - 1150 

LA14 20×5 1292 1292 1292 1292 1292 - - 1292 

LA15 20×5 1207 1207 1207 1207 1207 - - 1207 

LA16 10×10 945 946 945 945 945 959 945 946 

LA17 10×10 784 789 784 784 784 792 785 784 

LA18 10×10 848 848 848 848 848 857 848 848 

LA19 10×10 842 842 844 844 842 860 848 842 

LA20 10×10 902 902 907 907 907 907 907 907 

LA21 15×10 1046 1050 1046 - 1046 1114 - 1091 

LA22 15×10 927 938 935 - 935 989 - 960 

LA23 15×10 1032 1032 1032 - 1032 1035 - 1032 

LA24 15×10 935 959 953 - 953 1032 - 978 

LA25 15×10 977 977 981 - 986 1047 1022 1028 

LA26 20×10 1218 1218 1218 - 1218 1307 - 1271 

LA27 20×10 1235 1242 1236 - 1256 1350 - 1320 

LA28 20×10 1216 1227 1216 - 1232 1312 1277 1293 

         Continue 
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LA29 20×10 1152 1177 1160 - 1196 1311 1248 1293 

LA30 20×10 1355 1355 1355 - 1355 1451 - 1368 

LA31 30×10 1784 1784 1784 - 1784 1784 - 1784 

LA32 30×10 1850 1850 1850 - 1850 1850 - 1850 

LA33 30×10 1719 1719 1719 - 1719 1745 - 1719 

LA34 30×10 1721 1725 1721 - 1721 1784 - 1753 

LA35 30×10 1888 1888 1888 - 1888 1958 1903 1888 

LA36 15×15 1268 1275 1287 - 1279 1358 1323 1334 

LA37 15×15 1397 1412 1407 - 1408 1517 - 1457 

LA38 15×15 1196 1196 1196 - 1219 1362 1274 1267 

LA39 15×15 1233 1240 1233 - 1246 1391 1270 1290 

LA40 15×15 1222 1222 1229 - 1241 1323 1258 1259 

 

We plot the best solution found by the ACA for all of the instances. As shown in Fig 2, for 

most of the problems the proposed ACA provides the results that are equal to the best known 

solution. 

 

 
Fig-2. Comparison of the results 

 

4. CONCLUSION 

To solve the JSSP more effectively, an ant colony algorithm is developed with the makespan 

criterion. A novel mechanism is employed in initializing the pheromone trails based on an initial 

sequence. Moreover, the pheromone trail intensities are limited between lower and upper bounds 

which change dynamically. The performance quality of a solution constructed by an artificial ant is 

improved by a job-index-based local search procedure incorporated with a threshold probability for 

choosing a job to insert into the other positions of the sequence. Once all ants in the colony have 

generated their solutions, the pheromone trails are modified by applying a global updating rule. The 

experimental results show that the proposed algorithm is competitive when compared with the best 

known solutions in the literature. 
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