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This paper was discretizing numerically the links of the mechanism using finite element 
to develop model of unconstrained flexible mechanisms considering both axial and 
transverse deformations. The augmented Lagrange equations were used to drive the 
global governing equations. The equations of motion were solved for mechanisms with 
frequently varying mass, gyroscopic and stiffness matrices to compute the eigenvalues 
of the mechanism. The model of the mechanism was combination of flexible links 
connected by rotational pairs. The critical running speeds were calculated based on 
stability criterion method. The methods for determining critical operating speeds of 
linkage mechanisms with all links assumed as elastic members were applied in this 
work. 
 

Contribution/ Originality: This study is one of very few studies which have investigated the equation of 

motion of flexible mechanism considering gyroscopic matrix in computing the eigenvalues of the mechanism.   

 

1. INTRODUCTION 

During last years, several researches discussed the problems of dynamic and stability of high speed flexible 

linkage system. The stability and dynamic response of high speed slider crank mechanism with uniform elastic 

connecting rod and a rigid crank were studied by Jasinski, et al. [1]. The Euler-Bernoulli and Timoshenko beams 

was considered to study the stability of a slider-crank mechanism by Badlani and Kleinhenz [2]. It was shown that 

new zones of instability appear when both rotary inertia and shear deformation were considered in the analysis. 

Liou and Erdman [3] stated that derivative from the principle of virtual displacement, a general finite element 

analysis of the flexible four bar linkage was developed a general finite element computer code. The perturbation 

method was used by Zhu and Chen [4] to investigate the dynamic stability of a connecting rod. Dynamic analysis 

of general planar linkage using a finite element approach was presented by Bahgat and Willmert [5]. The 

mechanism can be modeled as a set of links connected by rotating or translating pairs. The kineto-elastodynamic 

study was carried out using finite element method for high speed mechanisms by Nath and Ghosh [6].  

Cleghorn, et al. [7] analyzed in detail a planar four-bar angular function generating mechanism. Maher, et al. 

[8] composed the domain of the displacements for the rigid and elastic components by discretizing domain into two 
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distinctive types of subdomains. The critical operating speeds were determined by Kalaycioglu and Bagci [9] based 

on the calculation of the natural frequencies of the considered type of free vibrations. Linkage mechanisms change 

their original geometries as a function of time during the cycle of kinematics motion. The analysis of the dynamic 

response of a completely elastic planar linkage was presented theoretically and experimentally by El-Hag [10].  

Vasanti and Gupta [11]; Vasanti and Gupta [12] studied the dynamic stability of the practical four bars 

mechanism at various speeds in different regions considering damping. Equations of motion were derived by 

Nagarajan and David [13] using Lagrange’s equation for elastic mechanism systems and solved using the finite 

element method. The dynamic stability of rigid four-bar and slider-crank mechanisms was studied by [14, 15]. The 

governing differential equation was obtained and transformed to a set of coupled Hill's equations by using 

Galerkin's method. The critical speeds ranges for an elastic mechanism were determined by Nagarajan and David 

[16]. 

Gasparetto [17] decomposed the motion of the mechanism into a rigid motion of a suitably defined ERLS 

(Equivalent Rigid Link Mechanisms) and an overlapped elastic motion. The equations of motion for the flexible 

mechanism were derived by applying of the virtual work principle. Integrated structural and control design of 

linkage mechanism for noise attenuation was studied by Xianmin, et al. [18]. Based on the integral of energy and 

numerical integration, a general algorithm was developed by Jazar [19]. The algorithm is then used to get 

parameters of a parametric equation to induce a periodic response. 

The eigenvalues characterize the system stability. The stable linear system has no positive real part in 

eigenvalue. Furthermore, the asymptotically stable system has negative real parts (no zero real parts allowed) in 

eigenvalue. However, calculation all the eigenvalues of the state matrix of a system is not always desirable. In fact, 

computing the solution of the system is easier than calculation of the eigenvalue criteria, Inman [20]. 

 

2. EQUATION OF MOTION OF A MOVING LINK 

Consider a flexible Link subject to translation and rotations of the rigid body shown in Figure (1). Also, 

consider a finite degrees of freedom are allowed as shown in Figure (2). 

 

 
Figure-1. Configuration of a planer four-bar mechanism 

                                          Source: Autocad Drawing 
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Figure-2. Deflection variables of flexible element 

                    Source: Autocad Drawing 

 

The considered link is referred to two frames of references, the global ‛OXY’ and the local ‛oxy’ frames. 

Rotations and deflections were represented by a quintic polynomial [7] as follows: 

        (1) 

And the longitudinal deformations of the point "C" were presented by a linear polynomial as follows: 

        (2) 

Where C’s are functions of time only, x is the distance measured from the left end of the element, as shown in 

Figure (2). 

The end conditions are: 

1 - At x = 0: 

, ,   and      (3) 

2 - At x = L: 

, ,   and      (4) 

By substituting in Equations (1), (2), the resulting equation can be expressed as follows: 

        (5) 

and 

        (6) 

Where:  
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From Equations (5) and (6), one can obtain: 

    (7) 

 

        (8)

 

The transverse and longitudinal deflection can be expressed as: 

        (9) 

       (10) 

Where: 
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3. VELOCITY DISTRIBUTION OF FLEXIBLE TRANSLATING AND ROTATING LINK 

 

 
Figure-3. Position vector and velocity components of the finite beam element 

                     Source: Autocad Drawing 

 

The position vector of the point G, as shown in figure (3), is given by: 

         (11) 

Where:  

        (12) 

Differentiating Equation (11) with respect to time the velocity of point G can be given by: 

         (13) 

       (14) 

Where: 

 is the velocity vector of center point G. 

 is the velocity vector of the point o. 

 is the angular velocity of the beam element. 

From equations (11) through (14), one can obtain that: 
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     (15) 

 

4. KINETIC ENERGY OF FREE ROTATING BEAM ELEMENT 

Let ρ be the mass per unit volume of element material, and A is the element cross sectional area, then the 

kinetic energy of the link is: 

 (16) 

By differentiating Equations (9) and (10) with respect to time and substituting them into equation (16), one can 

obtain that: 

      (17) 

Where: 

      (18) 

        (19) 

[Me]: is the mass matrix (symmetric) 

     (20) 

       (21) 

[Be]: Coriolis acceleration contribution matrix (skew-symmetric). 

      (22) 

       (23) 

     (24) 

        (25) 

Where: 

     (26) 
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       (27) 

    (28) 

      (29) 

     (30) 

      (31) 

    (32) 

    (33) 

        (34) 

Where: 

    (35) 

     (36) 

and 

    (37) 

 

5. STRAIN ENERGY OF THE FREE ROTATING BEAM ELEMENT 

The strain energy due to elastic deformations of a uniform link with modulus of elasticity E and area moment 

of inertia I about neutral axis can be expressed as: 

        (38) 

   (39) 

Where: 

V1 is the flexural strain energy. 
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V2 is the longitudinal strain energy. 

V3 is the strain energy due to longitudinal loads acting in an element undergoing transverse deflection. 

 is the longitudinal rigid body inertia forces distributed on a moving beam element, as shown in Figure (4). 

  (40) 

Where: 

 PR is an external rigid body pin force. 

aox is the acceleration of the point o in the x direction. 

One can sum V1 and V2 to obtain Vs, where: 

      (41) 

Where: 

[Ke] is as given in the appendix. 

 

 
Figure-4. The longitudinal rigid body inertia forces distributed on a moving beam element 

                                                   Source: Autocad Drawing 

                                   

                (42) 

Where: 

Matrices [A*], [B*] and [C*] are dimensional matrices, constant, symmetric and given in the appendix. 

 

6. LAGRANGE EQUATIONS 

The Lagrange for an arbitrarily translating and rotating flexible link is: 

}0{)
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       (43) 

Where: 

eL  is the Lagrangian which is given by 



Journal of Asian Scientific Research, 2017, 7(4): 99-118 

 

 
107 

© 2017 AESS Publications. All Rights Reserved. 

         (44) 

Substituting Equations (39) and (16) in Equation (44), yields 
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  (45) 

where  

, 

 

Matrices [D*] and [E*] are given in the appendix. 

Substituting Equation (45) in Equation (43), one can obtain the governing equation for beam element in general 

motion: 

    (46) 

Where: 

 

{Pe} is the element load vector. 

  

 is the dynamic stiffness matrix. 

 

7. TRANSFORM FROM LOCAL TO GLOBAL VARIABLES 

The coordinates of every link are referred to the directions of the global variables, as shown in Figure (5). 

 

 
Figure-5. Transformation orientated from local to global coordinates 

    Source: Autocad Drawing 
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The set of variables can be put into a set of global variables as: 

                (47) 

The relation between local and global variables is given through the transformation matrix [R] such that:  

        (48) 
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   (49) 

The Lagrangian of the global system can be also expressed as: 

        (50) 

 (51) 

Thus, the global equation of motion for N elements mechanism can be put in the form: 

  (52) 

Where: 

        (53) 

       (54) 

        (55) 

    (56) 

        (57) 



Journal of Asian Scientific Research, 2017, 7(4): 99-118 

 

 
109 

© 2017 AESS Publications. All Rights Reserved. 

       (58) 

        (59) 

  (60) 

        (61) 

        (62) 

8. CRITICAL RUNNING SPEEDS 

Predefining of the critical speeds increase efficiency and reduce computation time during the design process. 

Figure (6) shows comparison between the first four natural frequencies for theoretical presented model and 

experimental analysis of the dynamic response of a completely elastic planar linkage was presented by El-Hag [10]. 

 

 
Figure-6. Comparison between the first four natural frequencies for theoretical and experimental works 

 

Figure (6) shows a good agreement between the presented model and the experimental work of El-Hag [10]. 

Also it can be noted that the presented model is nearly approach to experimental work, which reflects the accuracy 

of the presented model. 

The considered mechanism has thirty elastic degrees of freedom.  The system matrices [M], [B], [Kd] and [Ks] are 

of order 30x30 and vectors {u), { } and { } are of length thirty. The engineering and geometrical properties of 

the elements of the mechanism are shown in Table (1). 

The elastic displacements of the nodes that lie on the boundary between the input crank and the crank shaft are 

constrained to be zero. This boundary condition requires the base of the input crank to be given a known angular 

displacement as a function of time, which acts as the input to the system. Additionally, during the assembly of the 

link matrices to form the system matrices, the elastic degrees of freedom of nodes common to two or more links, are 

required to satisfy compatibility conditions, which ensure continuity in elastic motion at these nodes. 
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Table-1. Four bar mechanism parameters 

                      Link 
Properties 

Crank (2) Coupler (3) Follower (4) 

Area 107        mm2 40.6       mm2 40.6       mm2 

Link length  107.95    mm 279.2      mm 270.51    mm 

Area moment of inertia  162          mm4 8.67         mm4 8.67         mm4 

Modulus of elasticity  71  GPa 

Weight density  2.66*10-5  N/mm3 

Distance between ground pivots = 254 mm 

Lamped mass of Bearing assembly = 0.42 N 

                   

After decoupling the system equations, the natural frequencies ω for the different modes of vibration are 

obtained as functions in the mechanism positions, as shown in Figure (7). 

The natural frequencies taking the gyroscopic  are function in the mechanism positions and in the angular 

speeds of input link, are shown in Figure (8) and Figure (9). This natural frequencies  and  function for a 

particular mode of vibration are then used to obtain the monodromy matrix, for that mode of vibration and for a 

given speed of operation. The stability characteristics of the system at that operating speed is based on the 

eigenvalues of the monodromy matrix as per Floquet theory. This procedure can be carried out for all the desired 

number of modes of vibration.  

 

 
Figure-7. Variation of first four natural frequencies ‛ω’ throughout one cycle of crank rotation. 

 

 

Figure-8. Variation of the first natural frequency  throughout angular position and angular operating speeds 
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Figure-9.Variation of the second natural frequency  throughout angular position and angular operating speeds 

 

In addition, the stable and unstable boundaries for elastic linkage of four bar mechanism considering the mass 

matrix [M] and static stiffness matrix [ ] only, as shown in Figure (10). 

 

 
Figure-10. Excitation parameter Ω/ω1 as a function of instability boundary zones ([M] and [Ks] are considered) 

 

The area of instability in Figure (10) is small because the effect of input link speeds is not considered in this 

case of study and the area of instability by second mode is very small because the variation of second mode of 

natural frequency with angular position of input link is very small as in Figure (7). 

In Figure (11), the unstable areas are markedly larger than the unstable areas in Figure (10) as the dynamic 

stiffness matrix [Kd] has been considered with [M] and [Ks] where [Kd] serves as a function with angular speed of 

input link . 
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Figure-11. Excitation parameter Ω/ω1 as a function of instability boundary zones ([M], [Ks] and [Kd] are considered) 

 

Figure (12) shows the effect of gyroscopic parameter on the dynamic stability. This parameter causes an 

increase in the range of the stability areas at low operating speeds as well as the range of the instability areas at 

high operating speeds. 

 

 
Figure-12. Excitation parameter Ω/ω1 as a function of instability boundary zones ([M], [Ks], [Kd] and [B] are considered) 

 

9. CONCLUSION 

The finite element method is used to simulate the flexible mechanism. The equation of motion of flexible 

mechanisms has been derived using Lagrange equations. The method is applied to study the gyroscopic effect. 

Considering gyroscopic effect gives a good results and agreement with experimental results. A comparison of 

the three stability charts gives a clear idea on the gyroscopic effect for an elastic linkage mechanism. The instability 
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bands are narrow in the absence of gyroscopic effect. The presence of gyroscopic effect yields wider instability 

bands. Finally, gyroscopic effect causes a decrease in the instability areas at low operating speeds. 

 

NOTATIONS 

A Cross section area 
[Be] Gyroscopic element matrix 

[B] Total global gyroscopic matrix 

Ci Constants 

E Modulus of elasticity  

[7] Global load vector for mechanism 

{Fe-g} Global load vector for link 

I Second moment of area 

[Kd] Dynamic stiffness matrix 

[Ks] Static stiffness matrix 

[K] Global overall stiffness matrix 

L Element length  

L 

Lagrange of global system 

[M] Global overall mass matrix 

m Curvature 

Te Kinetic energy 

t Time 

PR External rigid body pin force 

[R] Transformation matrix 

ue Axial displacement 

ve Transverse deformation 

Ve Strain energy 

αi Angular accelerations for i link 

ρ Density 

ψ Slope 

Ω Forced frequency 

ω Natural frequency without gyroscopic effect 

ωB Natural frequency with gyroscopic effect 

ωi Angular velocity for i link 
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Appendix 

Listed this appendix are load vector and matrices associated with the governing equation of an element. 
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Where aox and aoy are the absolute acceleration components of point o in the x-y coordinate system, which can also 

be expressed as 

aox= oyox VV   .           (2) 

aoy= oxoy VV   .         (3) 
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[Be] = ρA
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[Ke] = EI
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[D*] = ρA 
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[E*] = ρA
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