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The purpose of this paper is to examine the stability analysis of a three species ecology 
with mortality rate for the host. The system comprises of a commensal (S1), two hosts 
S2 and S3 ie, S2 and S3 both benefit S1, without getting themselves affected either 
positively or adversely. Further the first species has unlimited resources. The model 
equations constitute a set of three first order non-linear coupled ordinary differential 
equations. Criteria for the asymptotic stability of all the four equilibrium states are 
established. Trajectories of the perturbations over the equilibrium states are illustrated 
and the global stability of the system is established with the aid of suitably constructed 
Liapunov’s function and finally fourth order Runge-Kutta method is applied to obtain 
numerical solutions of the growth rate equations. 
 

Contribution/ Originality: The paper contributes the first logical analysis in biological investigations with an 

iterative procedure of information collection. If such models are properly developed and used, they can provide 

insight into the relations between the physical variables and process influencing the system being studied. The 

resulting interplay between the experimental investigation and the theoretical model can be an essential factor in 

designing experiments and in the interpretation of data. 

 

1. INTRODUCTION 

Ecology is a branch of life sciences connected to the existence of diverse species in the same environment and 

habitat. It is natural that two or more species living in a common habitat interact in different ways. Significant 

research in the area of theoretical ecology has been thresholded by Lotka [1] and by Volterra [2]. Several 

mathematicians and ecologists contributed to the growth of this area of knowledge. Mathematical ecology can be 

broadly divided into two main sub-divisions, Aut-ecology and Multi-ecology, which are described by several 

authors. Multi-ecology is an ecosystem comprised of two or more distinct species. Species interact with each other 

in one way or other. The Ecological interactions can be classified as Ammensalism, Competition, Commensalism, 

Neutralism, Mutualism, Predation, Parasitism and so on.  

Journal of Asian Scientific Research 
ISSN(e):   2223-1331 
ISSN(p):   2226-5724 
DOI: 10.18488/journal.2.2017.74.134.144 
Vol. 7, No. 4, 134-144. 
© 2017 AESS Publications. All Rights Reserved. 
URL: www.aessweb.com  

 

 

 

http://crossmark.crossref.org/dialog/?doi=10.18488/journal.2.2017.74.134.144&domain=pdf&date_stamp=2017-01-14
http://www.aessweb.com/


Journal of Asian Scientific Research, 2017, 7(4): 134-144 

 

 
135 

© 2017 AESS Publications. All Rights Reserved. 

Mathematical modeling has been playing an important role for the last half a century in explaining several 

phenomena concerned with individuals and groups of populations in nature. The general concept of modeling has 

been presented in the monographs of Meyer [3]; Kushing [4]; Paul [5]; Kapur [6]. Srinivas [7] studied 

competitive ecosystem of two species and three species with limited and unlimited resources. Lakshmi [8]; Lakshmi 

and Pattabhiramacharyulu [9] studied prey-predator ecological models with partial cover for the prey and alternate 

food for the predator. Stability analysis of competitive species was carried out by Archana, et al. [10] and by 

Bhaskara and Pattabhiramacharyulu [11] while Ravindra [12] investigated mutualism between two species. 

Further Phani [13] studied some mathematical models of ecological commensalism. The present author [14-20] 

discussed on the stability of a three and four species multi-ecosystems.  

The present investigation is on an analytical study of a three species (S1, S2, S3) multi ecology with mortality 

rate for the host and the first species has unlimited resources. The system comprises of a commensal (S1), two hosts 

S2 and S3 ie, S2 and S3 both benefit S1, without getting themselves affected either positively or adversely. Further S2 

is a commensal of S3 and S3 is a host of both S1, S2. Commensalism is a symbiotic interaction between two 

populations where one population (S1) gets benefit from (S2) while the other (S2) is neither harmed nor benefited due 

to the interaction with (S1). The benefited species (S1) is called the commensal and the other (S2) is called the host. 

Some real-life examples of commensalism are presented below. 

i. A squirrel in an oak tree gets a place to live and food for its survival, while the tree remains neither benefited 

nor harmed. 

ii. A flatworm attached to the horse crab and eating the crab’s food, while the crab is not put to any disadvantage. 

iii.   Sucker fish (echeneis) gets attached to the under surface of sharks by its sucker. This provides easy transport 

for new feeding grounds and also food pieces falling from the sharks prey, to Echeneis. 

 

2. METHODOLOGY 

2.1. Notation 

 iN t  : The population strength of iS  at time t , 1,2,3i                                                                             

t  : Time instant                                                                                                                                                

2d  : Natural death rate of 2S                                                                                                                             

ig  : Natural growth rate of iS , 1,3i                                                                                                                              

iia  : Self inhibition coefficients of iS , 2,3i                                                                                       

12 13,a a  : Interaction coefficients of 1S  due to 2S  and 1S  due to 3S                                                                  

23a  : Interaction coefficient of 2S  due to 3S                                                                                                   

2
2

22


d

e
a

       : Extinction coefficient of 2S                                                                                                               

3
3

33


g

k
a

        : Carrying capacities of 3S  
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Further the variables 1 2 3, ,N N N  are non-negative and the model parameters 1 2 3 12, , , ,g d g a  

22 33 13 23 2 3, , , , ,a a a a e k  are assumed to be non-negative constants. 

 

2.2. Theoretical Framework and Basic Equations 

The model equations for the three species multi-ecosystem is given by the following system of first order non-

linear ordinary differential equations. 

 (i) Equation for the first species ( 1N ): 

1
1 1 12 1 2 13 1 3  

dN
g N a N N a N N

dt
                                                                                  (1) 

(ii) Equation for the second species ( 2N ): 

22
2 2 22 2 23 2 3   

dN
d N a N a N N

dt
                                                                               (2) 

(iii) Equation for the third species ( 3N ): 

23
3 3 33 3 

dN
g N a N

dt
                                                                                                        (3) 

The system under investigation has four equilibrium states given by 0, 1, 2, 3idN
i

dt
    

(i)   Fully washed out state.  

           
1 1 2 3: 0, 0, 0  E N N N  

(ii)  Only the third species is washed out and the other two are not.  

           
2 1 2 3 3: 0, 0,E N N N k    

(iii) Only the second species is washed out and the other two are not. 

 
3 1 2 2 3: 0, , 0   E N N e N  

(iv) Only the first species is washed out and the other two are not. 

 23 3
4 1 2 2 3 3

22

: 0, ,   
a k

E N N e N k
a

 

 

2.3. Stability of the Equilibrium States 

Let us consider small deviations from the steady state 

i.e., ( ) ( ), 1,2,3  i i iN t N u t i                                                                                       (4) 

where ( )iu t  is a small perturbations in the species iS . 

The basic equations are quasi-linearized over the equilibrium state  321 ,, NNNN   to obtain the equations for 

the perturbed state as 
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                  1
1 12 2 13 3 1 12 1 2 13 1 3    

du
g a N a N u a N u a N u

dt
                                             (5) 

                2
2 22 2 23 3 2 23 2 32    

du
d a N a N u a N u

dt
                                                            (6) 

              3
3 33 3 32 

du
g a N u

dt
                                                                                                      (7) 

The characteristic equation for the system is   

|A – I| = 0                                                                                                                               (8) 

The equilibrium state is stable, if all the roots of the equation (8) are negative in case they are real or have 

negative real parts, in case they are complex. 

 

2.3.1. The Stability of  

1 1 2 3: 0, 0, 0  E N N N  

The basic equations are quasi-linearized to obtain the equations as 

31 2
1 1 2 2 3 3;  ;     

dudu du
g u d u g u

dt dt dt
                                                                        (9) 

The characteristic equation is    1 2 3 0   g d g                                                          (10) 

The characteristic roots of (10) are 1 2 3, ,g d g . Since two of these three roots are positive. Hence the state is 

unstable and the solutions of the equations (9) are 

31 2

1 10 2 20 3 30;  ;    
g tg t d tu u e u u e u u e                                                                        (11) 

where 10 20 30, ,u u u  are the initial values of 1 2 3, ,u u u  respectively. 

 

Trajectories of Perturbations 

The trajectories in  1 2u u  and 2 3u u  planes are  

              
1 2 3

1 1 1

31 2

10 20 30



     
      

     

g d guu u

u u u
             

 

2.3.2. The Stability of  

2 1 2 3 3: 0, 0,E N N N k    

In this state, the basic equations can be quasi-linearized, we get                                                                              

             31 2
13 3 1 23 3 2 2 3 3;  ( ) ;      

dudu du
a k u a k d u g u

dt dt dt
                                                   (12) 

The characteristic roots are 13 3 23 3 2 3,  and  a k a k d g . Since one of these three roots is positive, hence the state 

is unstable.  

Case (i): When 23 3 2a k d   



Journal of Asian Scientific Research, 2017, 7(4): 134-144 

 

 
138 

© 2017 AESS Publications. All Rights Reserved. 

In this case, the solutions of (12) are 

             
 2 23 313 3 3

 

1 10 2 20 3 30; ;
  

  
d a k ta k t g t

u u e u u e u u e                                                              (13) 

Case (ii): When 23 3 2a k d   

In this case, the solutions are given by 

              
 2 23 313 3 3

 

1 10 2 20 3 30; ;
 

  
d a k ta k t g t

u u e u u e u u e                                                              (14) 

Case (iii): When 23 3 2a k d   

In this case, the solutions are 

               13 3 3

1 10 2 20 3 30; ;


  
a k t g t

u u e u u u u e                                                                                (15) 

Trajectories of perturbations  

The trajectories in the 1 2u u  and 2 3u u planes are given by 

              
13 3 23 3 2 3

1 1 1

31 2

10 20 30


     

      
     

a k a k d guu u

u u u
                                                                 

 

2.3.3. The Stability of  

3 1 2 2 3: 0, , 0   E N N e N   

The basic equations can be quasi-linearized, we get                                                                                           

             31 2
1 12 2 1 2 2 23 2 3 3 3( ) ;  ;      

dudu du
g a e u d u a k u g u

dt dt dt
                                         (16)  

The characteristic roots are 1 12 2 2 3,  and g a e d g . Since two of these three roots are positive, hence the state is 

unstable.  

Case (i): When 1 12 2g a e      

In this case, the equations (16) yield the solutions, 

              
   1 12 2 3 32

 

1 10 2 20 30 30 3 30; ;
 

    
g a e t g t g td tu u e u u u A e Au e u u e                              (17) 

where 23 2
2 3

2 3

,  with  


a e
A d g

d g
                                                                                                  (18) 

Case (ii): When 1 12 2g a e      

In this case, the solutions of (16) are 

              
   1 12 2 3 32

 

1 10 2 20 30 30 3 30; ;


    
g a e t g t g td tu u e u u u A e Au e u u e                               (19) 

Case (iii): When 1 12 2g a e      

In this case, the solutions are 
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                3 32

1 10 2 20 30 30 3 30; ;    
g t g td tu u u u u A e Au e u u e                                                (20) 

 

Trajectories of Perturbations  

The trajectories in the 1 2u u  and 2 3u u planes are  

                

32

1 12 2 1 12 2
1 1

2 20 30 30

10 10

    
     

   

gd

g a e g a eu u
u u Au u A

u u
;   

2

3
3

2 20 30 3

30

 
   

 

d

gu
u u u A Au

u
                                                                                                     

2.3.4. The Stability of 23 3
4 1 2 2 3 3

22

: 0, ,   
a k

E N N e N k
a

 

In this state, the basic equations can be quasi-linearized,                                                                        

We have 

                    23 31 2
1 12 2 1 2 23 3 2 23 3 2 3 3 3

22

;  ;         
a dudu du

a e u d a k u a k d u g u
dt dt a dt

     (21) 

where 12 23 3
1 1 13 3

22

( ) 0   
a a k

g a k
a

                                                                                                 (22) 

The characteristic roots are 1 12 2 2 23 3 3 ,  and   a e d a k g . The equations (21) yield the solutions. 

                2 23 3 3 31 12 2 ( )( )

1 10 2 20 30 30 3 30; ;
      

d a k t g t g ta e tu u e u u Bu e Bu e u u e
                      (23) 

where 23 2 23 3
3 2 23 3

22 3 2 23 3

( )
 with 

( )


  

 

a d a k
B g d a k

a g d a k
                                                                   (24) 

Case (i): When 1 12 2 2 23 3 and  a e d a k  

In case all the three roots are negative, hence the state is stable. The solution (23) become 

                2 23 3 3 31 12 2 ( )( )

1 10 2 20 30 30 3 30; ;
        

d a k t g t g ta e tu u e u u Bu e Bu e u u e
                  (25) 

Case (ii): When 1 12 2 2 23 3 and  a e d a k  

In case the state is neutrally stable and the solution (23) become 

                2 23 3 3 3( )

1 10 2 20 30 30 3 30; ;
   

    
d a k t g t g t

u u u u Bu e Bu e u u e                                      (26) 

Case (iii): When 1 12 2 2 23 3 and  a e d a k  

In case the state is neutrally stable and the solutions are 31 12 2( )

1 10 2 20 3 30; ;
   

g ta e tu u e u u u u e
  (27) 

Case (iv): When 1 12 2 2 23 3 and  a e d a k  

In case the state is neutrally stable and the solutions are given by 
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              3

1 10 2 20 3 30; ;


  
g t

u u u u u u e                                                                                         (28) 

Case (v): When 1 12 2 2 23 3 and  a e d a k  

In case the state is unstable and the equations (21) yield the solutions. 

                2 23 3 3 31 12 2 ( )( )

1 10 2 20 30 30 3 30; ;
      

d a k t g t g ta e tu u e u u Bu e Bu e u u e
                  (29) 

Case (vi): When 1 12 2 2 23 3 and  a e d a k  

In case the state is unstable and solutions are 

                 2 23 3 3 31 12 2 ( )( )

1 10 2 20 30 30 3 30; ;
      

d a k t g t g ta e tu u e u u Bu e Bu e u u e
                 (30) 

Case (vii):  When 1 12 2 2 23 3 and  a e d a k or 1 12 2 2 23 3 and  a e d a k   

                   When 1 12 2 2 23 3 and  a e d a k or 1 12 2 2 23 3 and  a e d a k                                                                                                                                                                             

In case the state is unstable.  

Trajectories of perturbations  

The trajectories in the 1 2u u  and 2 3u u planes are given by 

              

2 23 3 3

1 12 2 12 2 1
1 1

2 20 30 30

10 10



    
     

   

d a k g

a e a eu u
u u Bu Bu

u u

 

;  

23 3 2

3
3

2 20 30 3

30



 
   

 

a k d

gu
u u Bu Bu

u
                   

 

3. LAPUNOV’S FUNCTION FOR GLOBAL STABILITY 

In section 5 we discussed the local stability of all four equilibrium states. From which only one state 

 4 2 30, ,E N N  is stable and rest of them are unstable. We now examine the global stability of dynamical system 

(1), (2) and (3) at this state by suitable Liapunov’s function. 

Theorem: The equilibrium state 
23 3

4 2 3

22

0, ,
 

 
 

a k
E e k

a
 is globally asymptotically stable. 

Proof:   Let us consider the following Liapunov’s function 

   32
2 3 2 2 2 1 3 3 3

2 3

, ln ln
   

        
    

NN
L N N N N N l N N N

N N
                        (31) 

where 1l  is a suitable constant to be determined as in the subsequent steps. 

Now, the time derivative of L, along with solutions of (2) and (3) can be written as 

              
3 3 32 2 2

1

2 3

   
    
   

N N dNN N dNdL
l

dt N dt N dt
                                                                  (32) 

                          2 2 2 22 2 23 3 1 3 3 3 33 3       N N d a N a N l N N g a N        



Journal of Asian Scientific Research, 2017, 7(4): 134-144 

 

 
141 

© 2017 AESS Publications. All Rights Reserved. 

                           
2 2

22 2 2 23 2 2 3 3 1 33 3 3a N N a N N N N l a N N         
 

 

Choosing, 

2

23
1

22 33

0
4

a
l

a a
   and with some algebraic manipulation, we get   

                  
2

23
22 2 2 3 3

22

0
2

 
      

  

adL
a N N N N

dt a
                                               (33) 

Hence, the steady state is globally asymptotically stable. 

 

4. NUMERICAL EXAMPLES 

The numerical solutions of the growth rate equations computed employing the fourth order Runge-Kutta 

method for specific values of the various parameters that characterize the model and the initial conditions. The 

results are illustrated in Figures from 1 to 6. 

 

0
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N1
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P
o

p
u
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o
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t* = 0.1 t* = 0.72

t* = 2.23

 
Figure-1. Variation of  N1, N2, N3 against time (t) for g1 = 0.02, a12 = 0.28, a13 = 0.52,   
d2 = 1.46, a22 = 0.32,  a23 = 1.64, g3 = 0.28, a33 = 3.52, N1 = 0.62,  N2 = 2.32, N3 = 1.16. 
Source: MS-Excel by using Runge-Kutta method 
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Figure-2.  Variation of  N1, N2, N3 against time (t) for g1 = 0.01, a12 = 5.16, a13 = 0.44,      
d2 = 8.64, a22 = 13.05,  a23 = 0.45, g3 = 0.17, a33 = 23.53, N1 = 0.3,  N2 = 0.2, N3 = 0.8. 
Source: MS-Excel by using Runge-Kutta method 
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Figure-3. Variation of  N1, N2, N3 against time (t) for g1 = 0.12, a12 = 3.96, a13 = 0.52,       
d2 = 17.76, a22 = 38, a23 = 33.24, g3 = 3.8, a33 = 13, N1 = 0.4,  N2 = 0.28, N3 = 1.04. 
Source: MS-Excel by using Runge-Kutta method 
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Figure-4. Variation of  N1, N2, N3 against time (t) for g1 = 0.68, a12 = 1.72, a13 = 0.001,      
d2 = 24.52, a22 = 0.001,  a23 = 0.4, g3 = 32.44, a33 = 3.32, N1 = 2.24,  N2 = 0.4, N3 = 8.76. 
Source: MS-Excel by using Runge-Kutta method 

 

 
Figure-5. Variation of  N1, N2, N3 against time (t) for g1 = 0.67, a12 = 7.8, a13 = 0.001,         
d2 = 2.3, a22 = 1.04,  a23 = 1.04, g3 = 3.16, a33 = 1.44, N1 = 0.001,  N2 = 0.28, N3 = 1.32. 

                                              Source: MS-Excel by using Runge-Kutta method 
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Figure-6. Variation of  N1, N2, N3 against time (t) for g1 = 0.28, a12 = 0.8, a13 = 0.8,           
d2 = 10.72, a22 = 15.48, a23 = 1.84, g3 = 0.68, a33 = 2, N1 = 10,  N2 = 10, N3 = 10. 
Source: MS-Excel by using Runge-Kutta method 

 

5. OBSERVATIONS OF THE ABOVE GRAPHS 

Case 1: In this case the first species has the least natural growth rate. Initially the second  and third species 

dominates over the first till the time instant  * 0.72t   and * 0.1t   respectively and thereafter the dominance is 

reversed. The second species dominates over the third initially up to the time * 2.23t   after which the dominance 

is reversed as shown in Figure 1. 

Case 2: This is a situation at the self inhibition coefficient of the third species is highest. Initially the third species 

dominates over the first till the time instant  * 0.1t   and thereafter the dominance is reversed. Further the 

coefficients a13 and a23 are almost equal. This is illustrated in Figure 2. 

Case 3: In this case the second species has the highest self inhibition coefficient. The third  species dominates over 

the first initially up to the time * 0.2t   after which the dominance is reversed as shown in Figure 3. 

Case 4: In this case the coefficients a13 and a22 are identical. Initially the third species dominates over the first till the 

time instant  * 2.1t   and thereafter the dominance is reversed. Further the second species has the least initial 

value. This is shown in Figure 4.  

Case 5: In this case the initial values of S1, S2, S3 are in increasing order.  The coefficients a22 and a23 are identical. 

Initially the second and third species dominates over the first till the time instant  * 4.42t   and * 2.56t   

respectively and thereafter the dominance is reversed. (Figure 5). 

Case 6: In this case the initial conditions of the three species are identical. This is a situation at the self inhibition 

coefficient of the second species is highest. Further we notice that the coefficient a12 is same as the coefficient a13. 

(Figure 6). 

 

6. CONCLUSION 

           The present paper deals with an investigation on the stability of a three species syn eco-system with 

mortality rate for the host. In this paper we established all possible equilibrium states. It is conclude that, in all four 

equilibrium states, only one state E4 is conditionally stable. Further the global stability is established with the help 

of suitable Liapunov’s function and the growth rates of the species are numerically estimated using Runge-Kutta 

fourth order method. 
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