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The Hidden Markov Model (HMM) is a powerful statistical tool for modeling 
generative sequences that can be characterized by an underlying process generating an 
observable sequence. Hidden Markov Model is one of the most basic and extensively 
used statistical tools for modeling the discrete time series. In this paper using transition 
probabilities and emission probabilities different algorithm are computed and modeled 
the series and the algorithms to solve the problems related to the hidden markov model 
are presented. Hidden markov models face some problems like learning about the 
model, evaluation process and estimate of parameters included in the model. The 
solution to these problems as forward-backward, Viterbi, and Baum Welch algorithm 
are discussed respectively and also useful for computation. A new hidden markov model 
is developed and estimates its parameters and also discussed the state space model. 
 

 

1. INTRODUCTION 

The Hidden Markov Model (HMM) is a powerful statistical tool for modeling generative sequences that can be 

characterized by an underlying process generating an observable sequence. HMMs have found application in many 

areas interested in signal processing and particularly in speech processing. Hidden Markov Model is one of the 

most basic and extensively used statistical tools for modeling the discrete time series. 

A Hidden markov model is a limited learnable stochastic device. It is the summation of stochastic process 

having the following two aspects. Firstly, stochastic process is a limited set of states, so that every state is 

connected with multidimensional probability distribution function. The transitions among the different states are 

located as a set of probabilities known as transition probabilities. Secondly in stochastic process, the states are 

„hidden‟ to the observer are to be observed on its occurrence. So that it is named as “hidden markov model”. The 

states, symbols, transition probabilities, emission probabilities and initial probabilities joined together to form a 

hidden markov model. 

Time series data have a natural chronological order. So time series analysis differs from cross-sectional study, 

in which there is no natural ordering of the observations. Time series analysis is also dissimilar from spatial data 

analysis where the observations usually relate to geographical locations (e.g. accounting for house prices by the 
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location as well as the inherent characteristics of the houses). A stochastic model for a time series will generally 

return the fact that observations close together in time will be more closely related than observations further apart. 

Time series analysis can be applied to real-valued, continuous data, discrete numeric data, or discrete symbolic data. 

Prediction can be done when the model is in the form of transferred function or in terms of state space 

parameters, smoothed and filtered. If the model is linear than a minimum-variance Kalman filter and minimum 

variance smoothers are used. Prediction of chaotic and noisy time series is done provided by the Dangelmayr and 

his co-workers in 1999. 

In this paper using transition probabilities and emission probabilities different algorithm are computed and 

modeled the data.  

 

2. EXISTING WORK AND ALGORITHMS 

 The rest of the paper is organized as algorithms of hidden markov model which consist of two or more states. 

One state transits to other state at time t to t+1. Probability of one state transit to another state is said to be 

transition probability state and it is represented as . These transition probabilities join together to form a 

transition probability matrix say F. 

F=  

Probability distribution for symbol observation in state j is  

  

          

As it is representing the probability of observation symbol used in model at time t in state j. 

The primary state distribution π= { } 

    ]    

By combining above three elements, a hidden markov model is defined and represented as  

          

Observation sequence is generated by using the appropriate values of the M, Y, F, S, . The observation series is 

expressed as follows 

         

Where x is the number of observation in the sequence and  is the each observation with one of the symbol 

W. There are different problems associated with HMMS as follow: 
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In evaluation problem, given the observation sequence  and a model  

How well calculate P (A/ ), the possibility of the inspection series, specified the form. In assessment problem, 

sequence of observation and model is given; the task is to calculate the possibility that experimental series was 

created by model. 

 In learning with the observation sequence   and the model . How can we 

decide a equivalent status chain Q =  2which is optimal in several significant sense. Hidden part of 

model is uncovered in this problem by finding the “correct” state sequence. Degenerate models, could not found 

“correct” sequence. Practically, an optimality principle is used to solve this difficulty. 

In estimation problem adjusting the model parameters to maximize P ( ) Solving the 

problem the examination series use to alter the model parameter is called “training sequence”. Using trained 

observation it is possible to obtain optimal model parameters that create the best model.  

 

Forward-Backward Algorithm 

Forward Probabilities 

For forward probalities following computations are required 

Initialization: 

    1   

Induction: 

   =    1  

                                                                                    1  

Termination: 

   P (A/ω) =       

 

Backward Probabilities 

For computing the backward probabilities, we have to follow these steps 

 

Initialization: 

     = 1   1   

Induction: 

    =  t=X-1, X-2,...,1  
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Initially  is defined as to be 1. It may be possible to select the state  which is most likely. In this form 

variable is defined as follows 

     = P ( )     

Viterbi Algorithm 

A known method based on vibrant programming methods is used for decision particular best circumstances 

chain known as Viterbi algorithm. For only most excellent situation progression Q= {  for specified 

study 

     (25) 

It is defined to be  

=[   /ω]  (26) 

As equation (26) is calculated for t observations along a single path at time t and ends in state . The whole 

process used for ruling top status series can be declared as follow. 

Initialization: 

                           (i) =   1    

    (i) = 0       

Recursion: 

   (j) =  2   

       1  

    (j) =   2   

        1  

  Termination: 

    = (i)]     

               = (i)]    

Path (state sequence) backtracking: 

   =  t=X-1, X-2,…X  

The difference between Viterbi and forward algorithm is just of summing and maximizing the calculations 

 



Journal of Asian Scientific Research, 2017, 7(5): 196-205 

 

 
200 

© 2017 AESS Publications. All Rights Reserved. 

Baum-Welch Algorithm 

In HMM, for the estimation of model parameters a method is defined in which probability of observation 

sequence is maximizes. For this purpose select a model as ω= (F, S, π) So that P(A/ω) is maximized locally in 

Baum-Welch technique as it is alike to the EM (probability maximization) method. The iterative procedure is define 

λ(i,j), it is the chance of status  at moment t and state j at instant t+1, given the form and examination 

progression as 

     = P (    

By using the definition of forward and backward variables, we be able to define λ(i,j) as  follows.  

    λ(i, j) =    

    =  

Now the model ω= (F, S, π) is helpful for the reestimation of parameters so the reestimated model is defined as 

 

 

3. LITERATURE REVIEW 

Deng [1] proposed non stationary Hidden Markov models where every state was connected with different 

regression function of higher order with Gaussion process. They implemented and evaluated the special class of 

Hidden markov model. Model parameter of speech recognition included the standard stationary-state HMM. They 

developed a well-organized active programming technique which included optimization variable in combination 

with a state-dependent orthogonal polynomial regression method for estimating the model parameters. Such types 

of methods are applicable for speech information and finite-alphabets in speech process. Non-stationary state HMM 

superior to the usual stationary state HMM‟s. 

Crouse, et al. [2] introduced a technique for modeling the wavelet coefficients which are either independent or 

jointly Gaussian. Such type of models is impractical in many situations. Wavelet-domain hidden Markov models 

(HMMs) are useful for signal processing. Wavelet-domain HMMs are considered with the essential characteristics 

of the wavelet alter in mind and offer powerful, probability based signal models. For fitting the HMMs to 

observational signal data expectation maximization algorithms were developed. It is widely applicant for signal 

estimation, detection, classification, prediction, and also for synthesis. They developed the new techniques used in 

denoising, classification, and detection of signals. 

Bahl [3] discussed that estimation of parameter can be done by hidden markov word models in speech process. 

They argued that estimating the parameters by maximum likelihood did not give the required accuracy and 

described another estimation method known as corrective training and proposed the minimum recognition errors. 

For linear classifiers corrective training correspondent to a procedure say error correcting training so used for 

adjusting the parameter values. Corrective training and maximum mutual information estimation are strongly 

parallel to each other. The evidences suggested that this method give the results more accurate and give 

significantly less errors than maximum likelihood estimation in recognition process.  

Boreczky and Wilcox [4] described hidden markov models (HMM) technique for video segmentation. Video is 

partitioned into two regions say shooting limits and camera movement in taking shots. 
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Dangelmayr [5] used the algorithms to predict the future events from time series by generating maps. 

Transition probalities are computed and modeled. They applied this procedure in two types of data as Stochastic 

and Deterministic. Chaotic data estimated the quality of predictions. Prediction of chaotic and noisy time series is 

done. 

Schliep, et al. [6] presented that the cellular processes cause changes over time. Reason behind the regulations 

can be observed and measured those changes over time. The essential time series data suggested that through 

clustering performance can be improved those dependencies. Use Hidden Markov Models (HMMs) to account 

dependencies along the time axis in time series data and also concern with missing values. As this method 

maximizes the joint likelihood of clustering and models and supporting partially supervised learning process, 

adding groups of labeled data in collection of clusters at the start. They also proposed a heuristic approach for 

determination of the number of clusters. They evaluated the method for yeast cell cycle and fibroblasts serum 

response datasets, and compare them with encouraging results, to the autoregressive curves method. 

Ben and Marc [7] presented that observation data for communicable nosocomial pathogens usually consist of 

short time series of low numbered counts of infected patients. Dispersion and autocorrelation may occur in time 

series data. Inferences that depend on such analyses cannot be considered as reliable when patient-to-patient 

communication is important. They proposed a method for analyzing the data based on a mechanistic model of the 

plague process. They developed a „structured‟ hidden Markov model is generated by a simple communication model. 

They applied both structured and standard (unstructured) hidden Markov models to time series for three important 

pathogens. They found that both methods can offer marked improvements more than currently used approaches 

Hassan and Nath [8] presented hidden Markov models (HMM) approach for forecasting stock price. They 

applied HMM to forecast the airlines stock. HMMs have been extensively used for pattern recognition and 

classification problems. However, it is not very simple to use HMM for predicting future events. So they used only 

one HMM that is trained on the past dataset of the chosen airlines. By interpolating the neighboring values of the 

datasets forecasts were ready. The results obtained using HMM is hopeful and HMM offers a new pattern for stock 

market forecasting. 

 

4. PROPOSED WORK 

In this dissertation we represented hidden markov model in a very compact form as follow 

                              

Observation sequence is generated by using the appropriate values of the M, Y, F, S, . The observation sequence 

is expressed as follows 

         

   

Where x is the number of observation in the sequence and  is the each observation with one of the symbol W. 

We have presented our hidden markov model consisting of two states and one hidden state as bellow 

Hidden Markov Model 

 

Sequence 

A sequence of observation symbols that is wearing sun glasses (hidden state) is generated. Its order is 

depending on the number of observation symbols used in the model. It is basis of emission matrix which further 

facilitate for computation of algorithm. 
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States of Model 

As the states of the model are cloudy and partly cloudy coded as 1 and 2 respectively and shown as in the model 

above. As the states of the model build up the order of transition matrix which is very helpful for further analysis. 

The sequence and states are taken from a known model, through specified changeover likelihood matrix and 

production likelihood matrix and we generated  

1. An arbitrary chain „seq‟ of emission signs. 

2. A chance state series of „states‟. 

The extent of sequence as well as state is same.  

       

 Hidden markov model with observation sequence 

  In above Figure it is representing the hidden markov model as  and  are the two states of the model 

and   ,  and  is the observation sequence with probability   , ,  with state 1 and ,  and 

with state 2. 

 

Forward Algorithm 

For this procedure probabilities calculated are as      

 

Table-4.1. forward probabilities 

No. of obs Forward probabilities 

[1-10]  
State 1 1.0000    0.1753    0.6380    0.3664    0.5218    0.4316    0.4835    0.4534    0.4708    0.4608 
State 2 0    0.8247    0.3620    0.6336    0.4782    0.5684    0.5165    0.5466    0.5292    0.5392 
[11-20]  

State 1 0.4666    0.4632    0.4652    0.4640    0.4647    0.4643    0.4645    0.4644    0.4645    0.4644 
State 2 0.5334    0.5368    0.5348    0.5360    0.5353    0.5357    0.5355    0.5356    0.5355    0.5356 
[21-30]  
State 1 0.4645    0.4644    0.4644    0.4644    0.4644    0.4644    0.4644    0.4644    0.4644    0.4644 
State 2 0.5355    0.5356    0.5356    0.5356    0.5356    0.5356    0.5356    0.5356    0.5356    0.5356 

           Source: software results 

 

BACKWARD ALGORITHM 

Backward probabilities are as follows 

 

Table-4.2. backward probabilities 

No. of obs. Backward probabilities 

[1-10]  
State 1 1.0000    1.0699    1.0295    1.0528    1.0393    1.0471    1.0426    1.0452    1.0437    1.0446 
State 2 0.9208    0.9852    0.9480    0.9695    0.9571    0.9642    0.9601    0.9625    0.9611    0.9619 
[11-20]  
State 1 1.0441    1.0444    1.0442    1.0443    1.0443    1.0443    1.0443    1.0443    1.0443    1.0443 
State 2 0.9614    0.9617    0.9615    0.9616    0.9616    0.9616    0.9616    0.9616    0.9616    0.9616 
[21-30]  
State 1 1.0443    1.0443    1.0443    1.0443    1.0443    1.0443    1.0443    1.0443    1.0443    1.0443 
State 2 0.9616    0.9616    0.9616    0.9616    0.9616    0.9616    0.9616    0.9616    0.9616    0.9616 
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The State Sequence 

The transition and emission matrices along with initial state probability vector are used in Viterbi algorithm to 

compute the most likely sequence of states the model. 

 

Table-4.3. Likely states of the model 

 [1-17]   2     1     2     1     2     1     2     1     2     1     2     1     2     1     2     1     2 
 [18-34]  1     2     1     2     1     2     1     2     1     2     1     2     1     2     1     2     1 
 [35-51]  2     1     2     1     2     1     2     1     2     1     2     1     2     1     2     1     2 

               

Estimation of Parameters 

Parameters of the model estimated using the Baum Welch Algorithm is given as follows: 

 

Table-4.4. estimated transition matrix 

States cloudy Partly cloudy 

Cloudy 0.244898 0.755102 
Partly cloudy 0.74 0.26 

 

In transition probability matrix, there is .244 probability of moving from cloudy state to cloudy state in next 

iteration. Algorithm gives probability of .74 moving from partly cloudy state to cloudy state. Transition matrix is 

satisfying the property that row sum should be equal to 1. 

 

Table-4.5. estimated emission matrix 

Observation symbol emission probability 

Wear sunglasses 0.5 
Not wear sunglasses 0.5 

 

There is 50% chance of wearing sunglasses in both the states as cloudy and partly cloudy. 

So the new model is created by using these results 

   

Where  

  =  

  =  

   

  M= two number of states in the model called cloudy and partly cloudy 

  Y=Number of Hidden state in the model called sunglasses 

 

State Space Model 

The inner state variables are the smallest probable division of system variables that can represent the whole 

state of the system at any specified instance. The minimum number of state variables required to represent a given 

system, , is usually equal to the order of the system. The most general state-space representation of a linear 

system with p inputs, q outputs and M state variables is written in the following form. 
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Where 

   

   Y(t) is the state vector, Y(t) ϵ R. 

   X(t) is the output vector, X(t)  ϵ R. 

    is input or control vector. 

F(y) is the state matrix. 

S(x) is output matrix 

 

Prediction 

After estimating the parameters we perform the prediction of states given in the model. For this purpose we 

predict 200 values and results are as follows     

 

 
Figure-4.1. prediction 

 

In the above figure prediction is done as each peak value is showing the each state. Graph is showing the 

transitions from one state to the second state. 

In our study we run the algorithms to solve the problems related to the hidden markov model as the evaluation 

problem, learning problem, and estimating problem. As the evaluation problem is solved by using forward 

backward algorithm so as calculating the forward probabilities and backward probabilities. In this algorithm 

sequence is partitioned and forward backward probabilities are calculated as sum of both probabilities is same. 

Further more in learning problem tells us the likely state sequence followed by model as Viterbi algorithm is used 

for this purpose. Nextly estimation of parameters of model is done by Baum-Welch algorithm. We estimate the 

transition matrix and emission matrix through this procedure. 
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