
 

 

 
263 

© 2017 AESS Publications. All Rights Reserved. 

 

 

 

A NEW APPROACH ON NUMERICAL SOLUTIONS OF BURGER'S 
EQUATION USING PMEDG ITERATIVE METHOD 

 

 

 

Abdulkafi Mohammed 
Saeed1+ 
Badiea Abdulkarem 
Mohammed2 

 

1Department of Mathematics, College of Science, Qassim University, Saudi 
Arabia 
2School of Computer Sciences, Universiti Sains Malaysia, Malaysia 
 

 
(+ Corresponding author) 

 ABSTRACT 
 
Article History 
Received: 22 May 2017 
Revised: 20 June 2017 
Accepted: 30 June 2017 
Published: 17 July 2017 
 
 

Keywords 
Preconditioning method 
MEDG method 
Burger's equation. 

 

 
Modified Explicit Decoupled Group (MEDG) scheme from the rotated finite difference 
discretization to the numerical solution of the nonlinear steady two dimensional 
Burgers' Equation introduced by Saeed [1].  The objective of this paper is to develop 
the MEDG method in combination with suitable preconditioned iterative scheme for 
solving the Burgers' Equation. Numerical experiments are carried out to confirm the 
effectiveness of the preconditioner in terms of number of iterations and execution 
timings. Comparison with its unpreconditioned counterpart will also be reported. 
 

Contribution/ Originality: This study contributes in the existing literature about the foundation of fast group 

iterative schemes for solving Burgers' Equation. It is one of the few studies which combine a suitable splitting-type 

block preconditioner with the group iterative scheme as a way to further improve the convergence rate of the 

method in solving the this equation.  

 

1. INTRODUCTION 

Consider steady two dimensional Burgers’ equation ([1]; [2]) as the following: 
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with Dirichlet boundary conditions on u and v. This equation is considered to be a simplified form of the Navier-

Stokes equation, where the pressure term is neglected. Here, Re is the Reynolds number. Saeed [1] introduced 

MEDG scheme from the rotated finite difference discretization to the numerical solution of the nonlinear steady 

two dimensional Burgers' Equations (1) and (2) and this iterative scheme has shown improvements in the number of 

iterations and the execution time experimentally. 
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Several methods have been developed on the preconditioned iterative methods for the last 15 years, but this 

quest is still going on ([3]; [4]; [5]). The aim of this paper is to propose new preconditioned iterative scheme and 

apply it to the MEDG iterative method for solving the steady two dimensional Burgers’ equation.  

The paper is organized as follows. In Section 2, we briefly describe the formulation of the proposed 

preconditioned modified explicit decoupled group (PMEDG) for solving the steady two dimensional Burgers’ 

equation. The numerical results are presented in Section 3 in order to show the efficiency of the new preconditioned 

method. Finally, the conclusion is given in Section 4. 

 

2. THE PROPOSED PRECONDITIONED MEDG FORMULATION 

 Let n be a fixed positive integer. Determine the grid size h = 2/n so that a uniformly spaced square network 

( x y h    ) with 1 0 1 2ix ih, y jh, i, j , , ,...,n,       is imposed on S. By using the centred difference approximation 

and neglecting the error terms, equations (1) and (2) can be discretised at the grid points (xi, yj) by the following 

finite difference equations: 
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It can be seen that if v is known, then we can solve (3) iteratively for u, while if u is known, we can solve (4) 

iteratively for v, and vice versa. By the same manner of the schemes presented for the Navier-Stokes problem, we 

can devise a similar algorithm by first making initial guesses 0

iju and 0

ijv , and then generate an alternating sequence of 

outer iterates. The iteration is continued until for some k such that ( 1) ( )k k

ij iju u    and ( 1) ( )k k

ij ijv v    for some given 

tolerance (  ). The solutions ( 1)k

iju  and ( 1)k

ijv  generated are then taken to be the numerical solutions of the given 

problem ([6]; [7]).  

Another type of approximation that can represent the Burgers’ equation under study is the cross 

orientation which can be obtained by rotating the i-plane axis and the j-plane axis clockwise by45 as the following: 
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When i-plane axis and the j-plane axis are rotated clockwise 450 with grid spacing 2h, then equations (5) and 

(6) become as the following equations: 
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The four-point MEDG for solving the problem (1)-(2) can now formulated by using the above rotated finite 

difference approximation (7)-(8). Without loss of generality, assume the generation of ( 1)k

ijv  is done first using 

equation (2) followed by the generation of ( 1)k

iju   using equation (7).Using the equation (8) for ijv any group of four 

points on a discretised solution domain can be solved resulting in a (4×4) system of equations as the following [2]: 
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The system (7) leads to a decoupled system of (2×2) equations which can be made explicit as follows: 
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By the same manner, from the generation of 
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The system (01) leads to a decoupled system of (2×2) equations whose explicit forms can be obtained as follows: 
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A preconditioner is a matrix that transforms the system into one that is equivalent in the sense that it has the 

same solution, but that has more favourable spectral properties. A good preconditioner should be constructed 
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inexpensively and should be a good approximation to the inverse of coefficient matrix of the iterative method. By 

multiplication the following preconditioner matrix 
1P  for both sides of equation (9): 
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The effectiveness of this preconditioned MEDG method will be shown in the next section. 

 

3. NUMERICAL EXPERIMENTATION AND RESULTS 

 In order to demonstrate the feasibility of the proposed method in solving steady two dimensional Burgers’ 

equation, numerical experiments have been carried out to solve the Burgers’ Equations (0)-(2) with the exact 

solution  
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with the boundary conditions satisfying the exact solutions. Here, 1 2 3 4 5, , , , ,a a a a a   and 
0x can be chosen to 

produce different behavior of exact solutions [8]. To compare the numerical results among EDG iterative method, 

MEDG iterative method with the previous work [1] we randomly chose 

1 2 3 4 5 01.0, 0.0, 1.0a a a a a x      and 0.3   for Re 100 and1000 . Throughout the 

experiment, a tolerance of 
1110    was used as the termination criteria for both the outer and inner 

iterations.  

The software used to implement and generate the results was Developer C++ Version 4.9.9.2. Tables 1 and 2 

list the iteration counts and timings for both the MEDG and PMEDG iterative methods respectively. 

The results from PMEDG scheme portray similar behavior as the MEDG. However, it can be seen that the 

PMEDG requires only about 58-63% of the time required by the original MEDG system. Furthermore, the 

iteration count for the PMEDG system increases at a slower rate than the MEDG system. The best results were 

obtained when the model problem was solved using the four-point PMEDG inner iterative scheme. In conclusion, 

the new iterative schemes serve as viable alternatives in solving the two dimensional Burger’s equation. 

 

 

 



Journal of Asian Scientific Research, 2017, 7(7): 263-270 

 

 
268 

© 2017 AESS Publications. All Rights Reserved. 

Table-1. Number of iterations and Elapsed Time for 4-points MEDG outer-inner scheme 

  Source: software results 

N Re 
Ave-Abs. 
Error for 
u  

Ave-Abs. 
Error for 
v  

Number of 
outer 
iterates 

Number of  
inner iteration 
for v  

Number of 
inner iteration 
for u  

 
Time 
(secs) 

 
 
 
 
51 

10 6.38E-08 3.92E-08 

1 
2 
3 
4 

43 
31 
22 
1 

46 
33 
12 
1 

36.29 

100 5.78E-09 3.83E-09 

1 
2 
3 
4 

29 
19 
12 
1 

33 
11 
3 
1 

27.69 

1000 5.26E-09 3.85E-09 

1 
2 
3 
4 

23 
13 
6 
1 

25 
15 
1 
1 

25.14 

87 

10 6.36E-08 3.59E-08 

1 
2 
3 
4 

54 
39 
21 
1 

56 
33 
12 
1 

43.56 

100 5.33E-09 3.91E-09 

1 
2 
3 
4 

29 
16 
8 
1 

32 
11 
4 
1 

30.72 

1000 5.48E-10 3.63E-10 

1 
2 
3 
4 

23 
10 
7 
1 

27 
13 
1 
1 

26.36 

121 

10 3.79E-09 1.98E-09 

1 
2 
3 
4 

96 
81 
31 
1 

102 
73 
15 
1 

101.61 

100 3.66E-09 1.74E-09 

1 
2 
3 
4 

71 
43 
14 
1 

78 
39 
1 
1 

99.33 

1000 3.55E-10 1.64E-10 

1 
2 
3 
4 

63 
37 
14 
1 

70 
31 
1 
1 

82.79 

 
 
 
141 

10 2.97E-08 1.61E-08 

1 
2 
3 
4 

113 
89 
38 
1 

119 
78 
13 
1 

116.38 

100 2.86E-09 1.57E-09 

1 
2 
3 
4 

83 
62 
21 
1 

88 
57 
3 
1 

107.36 

1000 2.37E-10 1.49E-10 

1 
2 
3 
4 

72 
46 
19 
1 

79 
36 
1 
1 

98.63 
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Table-2. Number of iterations and Elapsed Time for 4-points PMEDG outer-inner scheme 

  Source: software results 

 

4. CONCLUSION AND FUTURE WORK 

This study focused on the formulation of new Preconditioned Modified Explicit Decoupled Group (PMEDG) 

for solving two dimensional steady Burgers' Equation. The proposed PMEDG scheme has shown improvements in 

the number of iterations and the execution time experimentally. Hence, we conclude that the PMEDG iterative 

method is superior to the original MEDG method for solving the two dimensional Burgers' Equation. However the 

estimation of implementing the family of explicit group methods for solving general type of Partial Differential 

Equations such as the Fractional Partial Differential Equations (FPDEs) remains a challenging task and therefore it 

will be a worthwhile effort to venture more into this group iterative method. 

N Re 
Ave-Abs. 
Error for 
u  

Ave-Abs. 
Error for v  

Number of 
outer iterates 

Number of  
inner iteration 
for v  

Number of inner 
iteration for u  

 
Time 
(secs) 

 
 
 
 
51 

10 5.71E-08 3.12E-08 

1 
2 
3 
4 

31 
23 
17 
1 

37 
28 
9 
1 

21.87 

100 5.25E-09 3.63E-09 

1 
2 
3 
4 

22 
14 
8 
1 

28 
10 
2 
1 

19.37 

1000 5.29E-09 3.71E-09 

1 
2 
3 
4 

14 
7 
5 
1 

17 
8 
1 
1 

16.92 

87 

10 5.97E-08 3.34E-08 

1 
2 
3 
4 

33 
21 
13 
1 

38 
25 
9 
1 

27.43 

100 5.33E-09 3.66E-09 

1 
2 
3 
4 

21 
14 
6 
1 

26 
11 
4 
1 

30.72 

1000 5.29E-10 3.47E-10 

1 
2 
3 
4 

19 
10 
7 
1 

24 
8 
1 
1 

18.17 

121 

10 3.47-09 1.38E-09 

1 
2 
3 
4 

63 
54 
17 
1 

73 
58 
13 
1 

82.74 

100 3.53E-09 1.63E-09 

1 
2 
3 
4 

52 
36 
11 
1 

57 
29 
1 
1 

72.75 

1000 3.67E-10 1.89E-10 

1 
2 
3 
4 

47 
31 
12 
1 

51 
37 
1 
1 

67.84 

 
 
 
141 

10 1.98E-08 0.99E-08 

1 
2 
3 
4 

79 
42 
27 
1 

84 
46 
11 
1 

92.47 

100 1.87E-09 1.04E-09 

1 
2 
3 
4 

71 
53 
17 
1 

77 
38 
2 
1 

88.95 

1000 1.27E-10 1.18E-10 

1 
2 
3 
4 

67 
29 
16 
1 

69 
31 
1 
1 

81.48 
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