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1. INTRODUCTION

Let us remind that accordingly to naive set theory, any definable collection is a set. Let R be the set of all sets

that are not members of themselves. If R qualifies as a member of itself, it would contradict its own definition as a

set containing all sets that are not members of themselves. On the other hand, if such a set is not a member of itself,
it would qualify as a member of itself by the same definition. This contradiction is Russell's paradox. In 1908, two
ways of avoiding the paradox were proposed, Russell's type theory and Zermelo set theory, the first constructed

axiomatic set theory. Zermelo's axioms went well beyond Frege's axioms of extensionality and unlimited set

abstraction, and evolved into the now-canonical Zermelo--Fraenkel set theory ZFC . "But how do we know that

ZFC s a consistent theo , free of contradictions? The short answer is that we don't; it is a matter of faith (or of skepticism)"-
7)),
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— E.Nelson wrote in his unpublished paper [17]. However, it is deemed unlikely that even ZFC,  which
significantly stronger than ZFC harbors an unsuspected contradiction; it is widely believed that if ZFC;, were

inconsistent, that fact would have been uncovered by now. This much is certain —- Z Fcz is immune to the

classic paradoxes of naive set theory: Russell's paradox, the Burali-Forti paradox, and Cantor's paradox.

Remark 1.1. Note that in this paper we view the second order set theory ZFC; under the Henkin semantics [27;

[387] and under the full second-order semantics [47]; [5]. Thus we interpret the wif's of ZFC, language with the

full second-order semantics as required in Shapiro [47; Rayo and Uzquiano [5].

H
Designation 1.1. We will denote by ZFCZS set theory ZFCz with the Henkin semantics and we will denote

fss
by ZFCz set theory ZFC; with the full second-order semantics.

Remark 1.2.There is no completeness theorem for second-order logic with the full second-order semantics. Nor do

fss
the axioms of ZFCZ imply a reflection principle which ensures that if a sentence Z of second-order set theory

fss fss
is true, then it is true in some (standard or nonstandard) model MZFC2 of ZFCZ [5]. Let Z  be the

fss fss
conjunction of all the axioms of ZFC2 . We assume now that: Z is true, i.e. C0n<ZFC2 ) It is known

that the existence of a model for Z requires the existence of strongly inaccessible cardinals, i.e. under ZFC it

fss
can be shown that ¥ is a strongly inaccessible if and only if ‘H!ﬁ Fe 1s a model of ZFCz + Thus

f s f
*CONEFC, OA *Con@FC [ELA 1, is paper we prove that ZFCH EIMZFCE | ZFCy®

inconsistent.

Remark 1.3.We remind that in Henkin semantics, each sort of second-order variable has a particular domain of its
own to range over, which may be a proper subset of all sets or functions of that sort. Henkin [27] defined these
semantics and proved that Goédel's completeness theorem and compactness theorem, which hold for first-order
logic, carry over to second-order logic with Henkin semantics. This is because Henkin semantics are almost
identical to many-sorted first-order semantics, where additional sorts of variables are added to simulate the new
variables of second-order logic. Second-order logic with Henkin semantics is not more expressive than first-order
logic. Henkin semantics are commonly used in the study of second-order arithmetic. Vaananen [67] argued that the
choice between Henkin models and full models for second-order logic is analogous to the choice between ZFC and
V as a basis for set theory: "As with second-order logic, we cannot really choose whether we axiomatize
mathematics using V or ZFC. The result is the same in both cases, as ZFC is the best attempt so far to use V as an

axiomatization of mathematics."

We will start from a simple naive consideration. Let C  be the countable collection of all sets X such that

ZFCZHS = CIXP & Uwhere ) Gs a 1-place open wit, Le.,
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VA B O® ZFCHS 1h HIIX€ X O%Y FX .10
XZ Y g Y ® ZFCs 25X 2 Y.

Let E>ZFCZH5 be a predicate such that E>ZFCE'S 2 Let A be the countable
collection of all sets such that

@fx[xx@x& ] x} Q.20

ZFChs

From (1.2) one obtain

AR ADAE, A .30

ZFChS

Hs
But obviously this is a contradiction. However contradiction (1.8) it is not a contradiction inside ZFCZ for the

g, Y

. Hs . . ZFCHs . C
reason that predicate ZFCy is not a predicate of 2 and therefore countable collections and

Hs
A are hot sets of ZFCz . Nevertheless by using Godel encoding the above stated contradiction can be shipped

Hs
in special consistent completion of ZFCZ .

Remark 1.4.More formally I can explain the gist of the contradiction derived in this paper (see Proposition 2.5) as

H
follows. Let M be a full model of ZFCZS .Let C be the set of the all sets of M provably definable in

H . H
ZFCzss and let A =X O: 0 3 xu where CJA means ‘sentence A derivable in ZFCZS ', or

some appropriate modification thereof. We replace now (1.1) by
AYAY B O @ O (MIX € XORY JiIX S Q.40

H
Assume that ZFCZS =>4 HO Then, we have that 4 E A if and only if Ok 2 AQ  hich
immediately gives us A A if and only if A Z A We choose now DA in the following form

OA +Bew@A Ok Bew@HAOA A-> Q.50

H
Here BEWEAL 5 4 canonical Godel formula which says to us that there exist proof in ZFCZ ® of the formula

A with Godel number #A.

H
Remark 1.5. Notice that definition (1.5) holds as definition of predicate really asserting provability in ZFCZ °.

#
Remark 1.6.In addition under assumption Con <Th1 > ' we establish a countable

sequence ZFCY® ETh] ¥ .. Thi & Thiy .. ThE, where
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# #
(1) Thigﬂ is a finite consistent extension of the Thi )
(ii) Th E®izo ThY

#
(i) Thgg proves the all sentences of the Thl, which valid in M, ie., MIAA Thé) =A,

see Proposition 2.1.
. #
Remark 1.7.Let Q,l 51,2,--- be the set of the all sets of M provably definable in Thia
wY{Y €3, o2, 3P(AX[P(X)AY = X], (1.6)
. #
and let )‘i E’R Q . D|Q g Xu where D|A means “sentence A derivable in Th| Then, we have

that *i Ai if and only if I:Ii(li b3 *iu which immediately gives us *i *i if and only if

A 8 A We choose now OA, 1 H1,2,... in the following form
DiA *BEWK#A%G@WN#AU’ A~> Q.70
Here Bew;@AQI H1,2,... s a canonical Godel formula which says to us that there exist proof in

# -
Thi i Hl! 2,... of the formula A with Godel number #A.

Remark1.8. Notice that definitions given by formulae (1.7) hold as definitions of predicates really asserting

provability in Th?’ i al’ 2,...
Remark1.9. Of course all the theories Th?a i |12, are inconsistent, see Proposition 2.10.
Remark1.10.Let O be the set of the all sets of M provably definable in Th )
ANAY B Qs © O (MITXE XOkY HXS Q.80
and let *@ =X (19 : D@‘)) g X u where I:I©A means ‘sentence A derivable in Th% Then, we
have that @ Ao ifand only if Ootre £ 40Q which immediately gives us C) Ao ifand only if
Ao & A@. We choose now CeA,i HL,2,... inthe following form
OcA +C0Bew; A Q% Sew GAOA A Q.90
Remark 1.11.Notice that definition (1.9) holds as definition of a predicate really asserting provability in Thé Oof

# . . . ..
course theory Th@ is also inconsistent, see Propos1t10n 2.14.
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Remark 1.12.Notice that under intuitive and naive consideration the set Q@ can be defined directly using a truth

predicate, which of course is not available in the language of

ZFC?S by well-known Tarski's undefinability theorem: Let Thgs be second order theory with

Henkin semantics and formal language O, which includes negation and has a Godel numbering QQ( such that

for every O _formula AR there is a formula B such that B A‘G‘Bu holds.

Assume that Thgs has a standard Model M. Let T be the set of Godel numbers of O -sentences true in

M. Then there is no O formula Trueé@¢ (truth predicate) which defines T°. That is, there is no Q -

formula True (¢ such that for every o -formula A,
True @AW N A Q.100

holds.Thus under naive definition of the set g Tarski's undefinability theorem blocking the biconditional

Lol Lo N Lo Z Ao

Remark 1.12.In this paper we define the set Os using generalized truth predicate

True %@“UA( such that

Trueo @AOQAON CiBew; FA Ok Bew; FAOA AN
True o @AW % Fruec @AW A AN A, Q.110
Truec @AW AN CiBew; #AQ

holds. Thus in contrast with naive definition of the sets O and 4@ there is no any problem which arises from
Tarski's undefinability theorem.

Hs ZFCYs , , .
Remark 1.18.In order to prove that set theory ZFC2 [ZTM“™2" i inconsistent without any refference to the
set ,Jnotice that by the properties of the extension © follows that definition given by (1.11) is correct,

H Hs
Le,for every ZFCZS -formula » such that MZFC2™ A the following equivalence

AN Trueg@AQAL 11ds.

Proposition 1.1.(Generalized Tarski's undefinability theorem) (see Proposition2.30).Let

Thgs be the second order theory with Henkin semantics and with formal language o, which includes negation
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and has a Godel encoding g‘& such that for every O _formula AQ¢ there is a formula B such that

B * A(Q‘ng% @(‘@‘BU’ B- holds. Assume that Thgs has an standard Model M. Then there is no

O _formula True(n), such that for every O formula A such that M <A, the following equivalence

AN True@AW:* <Frue@RPW A A> 0.120

holds.

. # Hs ZFCHs . .
Proposition 1.2.Set theory Thl E ZFCz [ETM™2 5 inconsistent (see Proposition 2.31).

#
Proof. Notice that by the properties of the extension Thé of the theory Thl follows that

MZFC" 2 % 2 Thi o, 0.130

#
Therefore (1.11) gives generalized "truth predicate” for set theory Thl By Proposition 1.1 one obtains a

contradiction.

H H
Remark 1.14.We note that in order to deduce ~COI’]QFC2 *¢ from COHQFCZ *¢ by using Godel encoding,

Hs Hs ZFCYs
one needs something more than the consistency of ZFC2 , e.g. that ZFCZ has an omega-model M, 2 or
ZFCls o . . .
a standard model Mst i.e., a model in which the integers are the standard integers [7]-[107].To put it another

. Hs - . . Hs
way, why should we believe a statement just because there's a ZFCz -proof of it? It is clear that if ZFCZ is
. . , . ZECHs . N . . .
inconsistent, then we won't believe 2 -proofs. What is slightly more subtle is that the mere consistency of

Hs.
ZFC;, isn't quite enough to get us to believe arithmetical theorems of ZFC3”; we must also believe that these

Hs
arithmetical theorems are asserting something about the standard naturals. It is "conceivable" that ZFCZ might

be consistent but that the only nonstandard models MNst it has are those in which the integers are

. . . . . . Hs . . .
nonstandard, in which case we might not "believe" an arithmetical statement such as " ZFCZ is inconsistent"

H
even if there is a ZFC2 ° -proof of it.

. EMZFCZHS : , MZ?S .
Remark1.15. However, assumption st is not necessary. Note that in any nonstandard model Nst of

H —_ —_ —_ —_ —_
the second-order arithmetic ZzS the terms 0, SO |E1,SS0 =2, ¢ comprise the initial segment

Z; Z5° z5°
isomorphic to Ms¢ gMNst- This initial segment is called the standard cut of the MNst- The order type of
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zf
any nonstandard model of MNst is equal to O[=A <L for some linear order A [77; [8]. Thus one can choose
zHs
S 2
Godel encoding inside Mst .
Remark 1.16. However there is no any problem as mentioned above in second order set theory ZFC; with the

fss
full second-order semantics because corresponding second order arithmetic Zz is categorical.

Remark 1.17. Note if we view second-order arithmetic Z2 as a theory in first-order predicate calculus. Thus a
model MZ2 of the language of second-order arithmetic Zy consists of a set M (which forms the range of
individual variables) together with a constant 0 (an element of M ), a function S from M to M , two binary
operations = and < on M, a binary relation G on M , and a collection D of subsets of M , which is the

range of the set variables. When D is the full power set of M, the model M?2 i called a full model. The use of

full second-order semantics is equivalent to limiting the models of second-order arithmetic to the full models. In
fact, the axioms of the second-order arithmetic have only one full model. This follows from the fact that the axioms

of Peano arithmetic with the second-order induction axiom have only one model under second-order semantics, i.e.

Zy, with the full semantics, is categorical by Dedekind's argument, so has only one model up to isomorphism.

(0]

When M is the usual set of natural numbers with its usual operations, M?2 s called an -model. In this case

we may identify the model with D, its collection of sets of naturals, because this set is enough to completely

fss
Z
determine an @ -model. The unique full omega-model M , which is the usual set of natural numbers with its

usual structure and all its subsets, is called the intended or standard model of second-order arithmetic.

f:
Main results are: *COHQFCZHS Emwj -model of ZFCZHS(”*ConaFCZSSU

Hs
2. DERIVATION INCONSISTENT COUNTABLE SET IN ZFC® [ZTWM#C2"

Hs
Remark 2.1.In this section we use second-order arithmetic Zz with first-order semantics. Notice that any

zts
standard model Mst

Hs
of second-order arithmetic Zz consists of a set @ of usual natural numbers (which
forms the range of individual variables) together with a constant 0 (an element of C ), a function S from € to

Q two binary operations = and on € , a binary relation G on € , and a collection D &20 of subsets of

O which is the range of the set variables. Omitting D produces a model of the first order Peano arithmetic.
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ZHs
When D azo is the full power set of C , the model Mstz is called a full model. The use of full second-order

semantics is equivalent to limiting the models of second-order arithmetic to the full models. In fact, the axioms of

fss
second-order arithmetic Zz have only one full model. This follows from the fact that the axioms of Peano

arithmetic with the second-order induction axiom have only one model under second-order semantics, see section 3.
Let Th be some fixed, but unspecified, consistent formal theory. For later convenience, we assume that the encoding

is done in some fixed formal second order theory S and that Th contains S. We assume throughout this paper that

formal second order theory S has an Y -model MS% The sense in which S is contained in Th is better exemplified

. . . . . ZHS . ZFC Hs
than explained: if' S is a formal system of a second order arithmetic <2 and Th is, let us say, 2 1+ then Th

contains S in the sense that there is a well-known embedding, or interpretation, of S in Th. Since encoding is to

take place in Msiq , it will have to have a large supply of constants and closed terms to be used as codes. (e.g. in
formal arithmetic, one has (_), 1, -++ ) S will also have certain function symbols to be described shortly.To each

formula, * , of the language of Th is assigned a closed term, *-S , called the code of #  We note that if

*0 ( is a formula with free variable X, then QOS5 is a closed term encoding the formula *0 ¢ with X

viewed as a syntactic object and not as a parameter. Corresponding to the logical connectives and quantifiers are the

function symbols, neg@ ) |mp‘8 , etc., such that, for all formulae * , P:S = neg({*%(,a @*%
S = im m%’ E€HN B ®OP3 o of particular importance is the substitution operator,
represented by the function symbol SUDE X | For formulae WAL , terms T with codes e

S =sub@QG O SOHE WOV @.10
It is well known [97] that one can also encode derivations and have a binary relation Provm, Q,y( (read " X
proves Y "or" X isaproofof Y ")such that for closed t,t; 1S =Provn @, i 1 is the code of a
derivation in Th of  the formula with code t> . It follows that

Th = #*iff S = Prov, M, >0 .20

for some closed term {. Thus one can define

Prmi @OD [XProv, Q,yQ Q.30

and therefore one obtain a predicate asserting provability. We note that it is not always the case that [97:
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Th = #*iff S = Pr, G50 Q.40
unless S s fairly sound, e.g. this is a case when S and Th replaced by Sy HS WWUT; and

Thy ETh WTKE correspondingly (see Designation 2.1).

Remark 2.2.Noticee that it is always the case that:

Thy, = #yiff S y, = Pry, G50 Q.50
Le. that 18 the case when predicate I:)r'l'h yo@(a,y MTUE :
Prm OO XQ& & M, @rovy, Q,yO Q.60

really asserts provability.

It well known [97 that the above encoding can be carried out in such a way that the following important conditions
D1,D2 and D3 are meet for all sentences [97:
D1.Th = #implies S = Pry, (8->

D3.S = Pry, G#-5O%Pr;, 3% © ¢ 505 Pry, & 30

Conditions D1, D2 and D3 are called the Derivability Conditions.

Remark 2.3.From (2.5)-(2.6) follows that

D4.Thyo':>*iff5yo':>PrTh%m%%
D5.S = Proy, %({*yo Pro, %(Prm %({iyﬁ(% .80
D6.S .= Prm %W%WP%%«#%@ 200 Pro, 6 50

%

Conditions D4,D5 and D6 are called the Strong Derivability Conditions.

Definition 2.1. Let  be well formed formula (wft) of Th. Then wit ¥ is called
Th _sentence iff it has no free variables.
Designation 2.1.(i) Assume that a theory Th hasan Y -model M-IVE and ® isan

Th -sentence, then:

*,5 + %MD

M1 we will write ¥ ¥ instead *MTnD )is a Th _sentence ¥ with all quantifiers relativized

to Y -model M-In-}; [107;[11] and
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Th % +Th MTUE is a theory Th relativized to model M@, Le., any Th ¥ -sentence has the
form W ¥ for some Th _sentence .

Th
(i) Assume that a theory Th has an non-standard model MNst and ¥ isan
Th -sentence, then:
. Ih ¢|Th
*Mm +* Nst (we will write *Nst instead *Mm )is a Th _sentence with all quantifiers relativized to
MTh
non-standard model Nst: and
Th Th
ThNSt +Th MNst is a theory Th relativized to model MNstr i.e. any Ttht -sentence has a form *Nst for

some Th -sentence *-

(iil) Assume that a theory Th has a model MTh and ¥ isa Th -sentence, then:

*

MT isa Th -sentence with all quantifiers relativized to model MTh , and
Th
ThM is a theory Th relativized to model MM ' lLe. any ThM _sentence has a form ¥\ for some Th -
sentence *-
Designation 2.2. (i) Assume that a theory Th has an U -model MTVE and there exist
N Th
Th _sentence denoted by Con‘Th’ M % ¢ asserting that Th has a model MTWE;
(i) Assume that a theory Th has a non-standard model Nst and there exist
A Th

Con(Th; My

Th .
Th _sentence denoted by asserting that Th has a non-standard model MNsta

(iii) Assume that a theory Th has a model M™ and there exist
-pMTH
Th _sentence denoted by Coné¥h;M™ ¢ asserting that Th has amodel M™ ;

-£\MZFC
Remark 2.4. It is well known that there exists a ZFC -sentence Con@@FC;M ¢ C127; [13].

H Hs. pgZFChs
Obviously there exists a ZFCZ s -sentence C0n<ZFC2 M 2 > and there exists a

Con(Z8s;M%").

Hs
Zz -sentence

Designation2.3.Let Con€rht¢ be the formula:
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Con{ThO+
A @ § M @RFRF E M O, @, B M Of5@ 5 M O
*€rov, @, M-SO%Prov, @, neg -S>G>
< . . @.90
t7 <5t Hneg(w-50
or
Con{ThO+
L Aty @ B M) O, @, B M) Ok€rov, @, @S0k Provy, @, neg -S4

and where 11,13712,13 i a closed term.

Lemma 2.1. (I) Assume that: (i) CONTMM™ Q5 M™ & ConfThe 4

(i) Th = Pry, G#-3Q (here # isa closed formula. Then Th @ Pry, Géki-5Q

(I1) Assume that: (i) CONANMBC 5y M & ConeThe ana iy Thyu = Prm 8590 ere
® i a closed formula. Then TN? Pro (k50

Proof. (I) Let CcmTh Ml be the formula :

/
Conq, (kO+

Aty @, B M O, @, § M7 Oc€rov, @, #-SO% Provy, @,, neg -S4
Aty @ 8 M O, @, 8 MY Ok€rov, @, M-5O% Prov, @,, neg -S>
OMCE @ H M O, @, B MT GProv, @, #-5O% Prov, @, neg Ge-S>U3,
.

2.100

Where 11,12 isa closed term. From (i)-(ii) follows that theory 1N EEONETN€ i consistent. We note that
Th [on@@hO=Con, € 5 any closed . Suppose that T = P, Gk#DQ ten (iii) gives
Th = Pry, Q-S5O Pro;, (k-5 2.110
From (2.3) and (2.11) we obtain

[ty Ctp €rov, @, -S5Ok Prov, @,, neg -S> 0.120

But the formula (2.10) contradicts the formula (2.12). Therefore Tho I:>rTh Gm-S50
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(II) This case is trivial because formula I:)r'l'h yo‘{** Uo% by the Strong Derivability Condition D4 ,see
formulae (2.8), really asserts provability of the Th ¥ -sentence i ¥, But this is a contradiction.

Lemma 2.2. (I) Assume that: (i) Con€Th; M ¢ (i1) M™ & Con€The and

(i) Th = Proy, Gek#-3Q here # isaclosed formula. Then Th © Pro, Gi-3>Q

(I1) Assume that: (i) CONTNMB €5y MTL & Con€The anq (iiiy T = Pro, (k8,50

where ¥ is a closed formula. Then Th %" I:)r'l'h yom % >U

Proof. Similarly as Lemma 2.1 above.

Example 2.1. (i) Let Th BPA be Peano arithmetic and ¥ * O H1 Then obviously

by Lobs theorem PA =Prp (@ #1Q 4,4 therefore PA 2 Prpa@ H1C0

(i) Let PAYHPA EHCon®AQ .4 # A OHEL . Then obviously by Lobs theorem

PAY SPrp,= %10

and therefore

PAY o Prpp-@ H10

However

PA& ':>@rpAm *1(%Prpp\m H1O>

Remark 2.5.Notice that there is no standard model of PA?.

Assumption 2.1. Let Th be a second order theory with the Henkin semantics. We assume now that:

(1) the language of Th consists of: numerals (_) , 1 ,... countable set of the numerical variables: /NO Vi, \
countable set X of the set variables: X H’TX,y, Z,X,Y,Z, A, ... \ countable set of the N -ary function

fn fn . n n . * G .
symbols: T0r'1s--+ countable set of the N -ary relation symbols: Ng1M1s--+ connectives: '  quantifier:

ar
(i) Th contains ZFCZ!
(iii) Th has an y—model MTVE or

Th
(iv) Th has a nonstandard model MNst .
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Definition 2.1. A Th _wit # (well-formed formula * ) is closed - i.e. # s a sentence - if it has no free

variables; a wif is open if it has free variables. We'll use the slang * k -place open wit ' to mean a wif with k

distinct free variables.

Definition 2.2.We will say that, Th% is a nice theory or a nice extension of the Th i

(i) Th contains Th;

(i) Let % be any closed formula of TN | then Th = Pr, G5 iy lies Th = %

(iii) Let. % be any closed formula of T , then M} &' #g implies The = #o, ie.

Con@@h e, M € ies The © o,

Remark 2.6.Notice that formulae Confih [=o; M-IK-E( and COﬂ(Th#é =, M@) are expressible in
Th.

Definition 2.3.Let us fix a classical propositional logic L. Recall that a set A of wif's is said to be L -

A

consistent, or consistent for short, if ol and there are other equivalent formulations of consistency:(1) is
consistent, (2) Ded@OEHN A AN is not the set of all wit's,(3) there is a formula such that Ao A (4)

there are no formula A such that
A DA and A D X¥A,

We will say that, Th’é is a maximally nice theory or a maximally nice extension of the Th i

Th% is consistent and for any consistent nice extension Thg ofthe Th:

Ded(Th%) & Ded(Ths® Ded(Th%) EDed(Th).

implies
Th
Remark 2.7. We note that a theory Thé depend on model MTVE or MNst ,le.

Th EThEM - . The ETh’é[Mﬂs‘t]

correspondingly. We will consider now the case
# # Th .
The +The % without loss of generality.

*Con@FCH; M Q

Remark 2.8. Notice that in order to prove the statement:

Proposition 2.1 is not necessary, see Proposition 2.18.
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Proposition 2.1.(Generalized Lobs Theorem) (I) Assume that (i) CONETN€ (see 2.9) and

(i) Th has an U -model M-IV-E- Then theory Th can be extended to a maximally consistent nice theory
The, +Thiy &l =

(IT) Assume that (i) Con€rht¢ and (ii ) Th has an U -model MTnE- Then theory

Th ¥ can be extended to a maximally consistent nice theory Th#Uo +Th#UoM-IK-E =

Proof.(I) Let *1. . *i- .+ be an enumeration of all closed wit's of the theory Th (this can be achieved if the

#i & #
set of propositional variables can be enumerated). Define a chain Wy {Thi |I O} ! Thl HTh of consistent

#
theories inductively as follows: assume that theory Th| is defined.

(1) Suppose that the statement (2.13) is satisfied

[ Thi o Pry, .54 %[ Thi o #]and M} & #, 2.130

# # #
Then we define a theory Thi@] as follows Thi@ +Thi & We will rewrite the condition

(2.13) using predicate Pr#Th fg‘g symbolically as follows:

(
Thiy SPre, G50

Prt . CHSON Pro O S0 T & >
MTy}; 2 *i ¢ COI’]‘TI’]?E Bi;M@Q

ie.

2.140
< Pr#m?gﬂii %¢ Prm?mi WConﬁhiBi; MTyE Q
Pr#Th ?BJ mi %* Prm L’J (Iii %
PrTh ' (I*i S0 *;
Prt , G507 ;.
§ [1E)
(i1) Suppose that the statement (2.15) is satisfied
[ Thi o Pro, .G 34U [ Thi o 4 | and M) & %, @.150
Then we define a theory Th?@] as follows Th?@ +Th? ¢ ’Ni N We will rewrite the condition
(2.15) using predicate Pr#Th t ‘m symbolically as follows:
322
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Thi, wpﬁm?&mm%
Prﬁh%(&*i SO Pro , ok SOE MY 3 x>
MT, & % A Con(Thi[k#;MT),
1.e.
Pr#Th?Et'{*ii SO Pro, . ol SO Con(Th; [k ME O
Pri: Cok®SON Pro. (k50

.160

A

Pro e, ok SOA *,
Pr;?qm.%ﬂ **i-

\§
(iii) Suppose that the statement (2.17) is satisfied

Th! =Pr .G ->0and [Th = # | =M 7 #> Q.170

# # #
Then we define a theory Thig] as follows ThiE] +Thi & Using Lemma 2.1 and predicate

Pring, @

we will rewrite the condition (2.17) symbolically as follows:

(
Th?gﬂ = Pﬁm ' ({ii %

Pr‘_&m# ({*,-90¢ Prm#ﬁ'{#iWMTyﬂ A D
ix '
MT, & % A Con(Thi[#;MT),
e.
< Pr#Th# ‘{*,M Prm#miWConﬁhiBi;M@Q
i i
Prﬁh?&({ii %* Prma({ii%

.180

PrTh # (Ili S0 *i ,

;-5

. . Prt . L # £ : .
Remark 2.9.Notice that predicate Thi, is expressible in Thi because Thi 1s a finite extension of

the recursive theory Th and COn‘Th?I# Bi;MTn Th?

(iv) Suppose that a statement (2.19) is satisfied

Thi =Pro Qe S0and [ Thi o i | @) 3 %> G.190

# # #
Then we define theory ThiEﬂ as follows: Thi@ +Thi P D \3 Using Lemma 2.2 and predicate
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Remark 2.10. Notice that predicate

of the recursive theory Th

v)

A
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we will rewrite the condition (2.15) symbolically as follows

Thi <Pr?, Gk 50
Prih?“**i%$ Prm?t'l*#ﬁ)o%&{v@ A **i%
MR & *# A Con(Thi e MT),
le.

Pr#_rh?w*| %¢ Prm?({*ﬁ WCOH(T"]? [kl ; MTy}; ),
Pri*rh%({li %¢ Prm?jmi%

PrTh# o, 302 »*,

i

P, Gk ¢

nd CONETh? Sk M OF Thi.

Suppose that the statement (2.21)

Thi = Pro, . G -SUand Thi =Pr #5072 *;.

We will rewrite now the conditions (2.21) symbolically as follows

Thi =Pr? , G50
Pry. (SO Pro, G -50% [ Pro, (8 507 #, ]

# # #
Then we define a theory ThiEﬂ as follows: Thi@] +Thi .

(iv)

Suppose that the statement (2.23)

Th = Pro, G -20and Th! = Pro . (6 507 .

‘We will rewrite now the condition (2.23) symbolically as follows

Thf = Prfin# ({**, S0

Pry,: GOk SO Pro, Gokt SO [ Pro, , (o S0 x|

.200

# #
is expressible in Th| because Th| is a finite extension

satisfied

2.210

2.220

satisfied

0.230

2.240

# # #
Then we define a theory ThiE as follows: Thi@] +Thi * We define now a theory Thé as follows:

© 2017 AESS Publications. All Rights Reserved.
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Th + g Th?. @.250
iHO

# .
First, notice that each Thi is consistent. This is done by induction on | and by Lemmas 2.1-2.2. By assumption,

. # #
the case is true when | H1. Now, suppose Thi is consistent. Then its deductive closure Ded<Thi > is also

Th I:i>Pr#Th %({ii ) md Thiy =,

consistent. If the statement (2.14) is satisfied,i.e. then clearly

Th;i#Eﬂ *Thf ¢ /r*i \ is consistent since it is a subset of closure Ded<Th?B]>' If a statement (2.16) is
# )
satisfied,i.e. ThiE E>Pr#l'hg]m*'% and Th?iigﬂ = M, hen clearly Th?g] +Th? Q,I**I\] is

consistent since it 1s a subset of closure

Ded(Th?,).

If the statement (2.18) is satisfied ,le.

Th? Qprm?mi% and [Thft N *i] ¢I¢M—IU13 2 *i- then clearly Th;i#Eﬂ *Th? $¢*I\] 1s

consistent by Lemma 2.1 and by one of the standard properties of consistency: ¥ ¢ M is consistent iff

# )
¥ o A If the statement (2.20) is satisfied ,le. Thi I::>F)r'l'hft‘{)‘b*'-91 and

[Th? . **i :| & MTKE 2 **i " then clearly Th?gﬂ +Thfé ¢ /N(*i \ is consistent by Lemma 2.2 and by

#
one of the standard properties of consistency: ¥ ¢ /I*A\J is consistent iff’ § o A Next, notice DGd(Th@)

Ded@hDed(Th

is maximally consistent nice extension of the > is consistent because, by the standard

#
Lemma 2.8 below, it is the union of a chain of consistent sets. To see that DGd(Th@) is maximal, pick any wift

#®  Then % s some *i in the enumerated list of all wff's. Therefore for any #  quch that
#
Thi I::>|:)r'l'hi‘1*%( or Thi E:)Pr'lh?m*% , either * Th’é or i Th’é Since

Ded(Thi,) GIDed(Th%), #* [ Ded(Th%) ., *# & Ded(Thd),

we have which implies that

#
DGd(Th@) is maximally consistent nice extension of the Ded(Th¥

Proof.(II) Let * /SRR » Wi+« be an enumeration of all closed wif's of the theory Th Y (this can be achieved

O J{Thi,li 8 O}, Thiy, EThy

if the set of propositional variables can be enumerated). Define a chain

#
consistent theories inductively as follows: assume that theory Th Y is defined.

(1) Suppose that a statement (2.26) is satisfied
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Th#ﬂj o Prm#w({iyd- SUand ME}, A . 2.260

#
Then we define a theory Th Wil as follows

We will rewrite now the conditions (2.26) and (2.27) symbolically as follows

Thg E:)PrTh#Mm% SON Thiyy = %y,

.280
Pr#m - 3, %’1’ PrTh fix o SO% Vi
(i1) Suppose that a statement (2.29) is satisfied
Thiy; = Pr-rh#w«**ﬂi Stand MY & X, 2.290
: Th s e
Then we define theory Vil as follows:
Thiy +They & Dl @.300
We will rewrite the conditions (2.25) and (2.26) symbolically as follows
Th VAl =Prm mq({**w‘ %(’* Th Wi = **yd',
2.270
Pry, ., o8 SO Pro, Gk S0
(iii) Suppose that the following statement (2.28) is satisfied
Thy = Pro, ,, 08 ;50 @.280
and therefore by Derivability Conditions (2.8)
Thy = %y, .290
We will rewrite now the conditions (2.28) and (2.29) symbolically as follows
Prih%%yd%rr Thy @Prmw({#w% 2.300
Then we define a theory Th Yl as follows: Th LI +Thy.
(iv) Suppose that the following statement (2.31) is satisfied
Thy = Pro, , Gk ;50 @.310
326
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and therefore by Derivability Conditions (2.8)

Thuy = Mk y;. 2.320

We will rewrite now the conditions (2.81) and (2.32) symbolically as follows

Pr%wm*w%rf Thyd E>Prmw“**yd% .330

#
Then we define a theory Th Wil as follows: Th il +Th Y- We define now a theory Th@; ¥ as follows:

The, » + 5 Thy. @.340
iHO
First, notice that each Th Wi is consistent. This is done by induction on I. Since Th Yi 1s consistent, its

deductive closure DEATN 5 € i also consistent. I statement (2.22) is satisfied, e, TN% @ Prm , (8 y; -5t
and MW & % en clearly Ty +Thy & MiN i ongistent. If statement (2.25) is satisfied, ic.
Thym Pro , Gkl 5\ MT) & %, then clearly Thuicz +Thy & DB N i ongistent. 1f
the statement (2.28) is satisfied, ie. TH% = Prm, O g0 qeaty Thym +Thy i also
consistent. If the statement (2.31) is satisfied, i.e. Thy =Prm, w«**ﬂd >4 then clearly Thyia +Thy

#
is also consistent. Next, notice DEd(Th@ %) is a maximally consistent nice extension of the DEd‘ThQ, UoU

The set D6d<Th§7

,Kb> is consistent because, by the standard Lemma 2.3 below, it is the union of a chain of

consistent sets.

. . THlE . .
Lemma 2.3. The union of a chain O B’I&“ ol of consistent sets & , ordered by [rgll is
consistent.

Pr-mg@m% PrTh% (Foki-¢

Definition 2.4. (I) We define now predicate and predicate

asserting provability in Thé) by the following formulae

327
© 2017 AESS Publications. All Rights Reserved.



Journal of Asian Scientific Research, 2017, 7(8): 309-360

Prry, GDON {Ci(# 8 Th!)| Pri . -5 ¢ [Pr G5} ¢
H (% 8 Th) =ConThs (M 4,
Pro,, Gk#-S0N {Ci(# B Thi )| Pri w0 [ Pri  GkwdY |+
[ (# @ Tht) % Condh: (&M T d.

.350

PrTh L Uoﬂi Uo%! Prm% %‘{** yo%(

(IT) We define now predicate and predicate

#
asserting provability in Th@; ¥ by following formulae

(
Prm ’é; %(Il yO%¢

{Et(no Th#w>[Pr#m#%({¥yﬁ(,ﬂ %[Prih#wm%%o}} %
B[ (#B Thb, ) #Con(The, [ %z MT) ],
) [ (%8 The ) #Con(The, %L MY ) | @360
Prpyz, ekl SO
{ri(mnm Ty [ Pre, . w50 ¢ Pry, w3} @
H (%58 Thi, ) %Con€Thiy, [k ;MY ¢

Pr-mg@m% Prm%({**% are

Remark 2.11.(I) Notice that both predicate and predicate

: #
expressible in Thg because for any |, Thi is an finite extension of the recursive theory Th
ma CON(TH(M™ ) & Th;, Con(Th{[(H#M™) B Th.

(IT) Notice that both predicate PrThz:), ynm y"% PrTh & %m* y"%

and predicate are expressible

# . #
in Th@, Y because for any |, Th Wi is an finite extension of the recursive theory Thy and
# MThY B # # NThY B #
Con(Th, [, M™ ) B Thy, Con(Thi, [k, M™ ) B Thy,.
Definition 2.5.Let ¢ HIP Q€ p, one-place open Th _wif such that the following condition:

Th + Th? =X € Qp O @.370

is satisfied.

# .
Remark 2.12.We rewrite now the condition (2.37) using only the language of the theory Thl .
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{Thf 21Xy € Q) 0} N PrTh‘f‘ED(@ ¢ QO PO

.380
#{Pro, Flx: € Qe ODOA (Ix; € @ B},

#
Definition 2.6. We will say that, aset Y isa Thl -set if there exist one-place open wit P @

# #
such that Y EX@- We write y[Thl] iff Y isa Thl -set.

Remark2.13. Note that

y[Thi] A 8 {@ Hx; OEPro @, € R 0D

Q.
{PrTh;;(ED(@ @'Q@ P07 ED(@ @'Q@ 0}} 0

Definition 2.7.Let Ol be a collection such that

e[ x 8 O © xis a Thi-set]. 2.400

#
Proposition 2.2. Collection O isa Thl -set.
Proof. Let us consider an one-place open wif P @€ 5uch that conditions (2.87) are satisfied, i.e.

# \
Th1 =X € Qp O3 We note that there exists countable collection X ¢ of the one-place open wif's

*o HAF Ok guch that () P RO *p ang i

Th +Th] =k, € @; O ANM@ 1 O G OO F G O3>
or in the equivalent form
Th +Thf =
J Pro,: Elx; € @ ODO
{Prp,: Elx; € Q: OPVA (I, € Q; B) &
[ Pro,: GEN® & OGE @y OT ¢, G OBY
L Pro,: 60@ £ OUE @ OO F 1@ ODOA @ [ OV Gy OO F @y O

2.410

or in the following equivalent form
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Th! =Ix; € | @, OXAH@M 1 OUe | @, OT ¢, @, O
or
Thi =
Prmﬂ‘E!)(l@ N, OOk 3. 420
{Prp,: GEX, P @ ODOA C1x,fp A, G
[ Pro: GEN® & OUE @, O f @y ODY
| Prm: 0@ § O @, 00 ¢ @, 0507 i § O @, 00 7, @, 0>

where we have set P QOHP 1 Ql ()@ n Ql Odp n,1 Ql ¢ and Xp Exl . We note that any collection
*@“ k H/T@ n,kat’lﬁgo’ k al’ 27 **+ such as mentioned above, defines an unique set X6y ie.

*p K T ko RS iff X kg *xp k2* We note that collections X ¢ K K H1,2,.. arenota part of the
ZFCy, ie. any collection X6, there is no set in the sense of ZFC2. However that is noa problem, because

by using Goédel numbering one can to replace any collection x5, k H1,2,.. by collection By ag‘*@ « &

of the corresponding Gédel numbers such that

&, Hgox,, OO , R Wk HL2,... . @.430

#
It is easy to prove that any collection %k Eg‘*@ COKHEL2,.. s a Thl -set. This is done by Godel

encoding [97,[14] (2.48), by statement (2.41) and by the axiom schema of separation [15]. Let

On .k Bgﬂi n,kﬂk(!a’( 61,2,.. be a Godel number of the wif P n,k‘ikU Therefore
g‘*k(ﬁ/@n,k \lﬁo’ where we have set * H*; k H1,2,.. and
@Qlﬁﬂiz(ﬁgn,kl%aoﬁ’@n'kz\lﬁgo B0 Xk, *szé 2.440

Let /qun,k \lﬁﬁo\ll/(o be a family of the all sets 4gn,k \lﬁo' By the axiom of choice [157] one obtains unique set

*,

X3 = = s
QL Ty ‘lﬁo such that @R@ /Tgn,k \lﬁo “ Tinally one obtains a set QL from the set Ol by the

axiom schema of replacement [13-157.

#
Proposition2.3. Any collection %k Eg‘*@ K Uk Hla 2, -+ Isa Thl -set.
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Proof. We define 9nk agm n,ka(!’H@' n,k‘))k(’gavk E&k% Therefore

On.k Egﬂi n,ka Fr‘gn,kl Vi ¢ (see Mendelson [147]). Let us define now predicate

=€‘GH,k)Vk(,

%n,k,vk()@ PrThif(ED(k@ 1,le OB

Q.450
#Hx, O, H € DOMP § OPPr X, R ODOD Pro . Fr@, v, ) |.
We define now a set %k such that
N, BETS Ny N
< T M .46 0

T B O, B & @ 5@, v, 0
Obviously definitions (2.41) and (2.46) are equivalent.

# .
Definition 2.7.We define now the following Thl set A1 B O

B[ x B Ay N RE O OPry  F £ xS0 Pro G 2 xd0A x 5 x]|]|. @470

Proposition 2.4. (i) Thf =4y, (ii) A1 isa countable Th? -set.

Proof.(i) Statement Thf 2 follows immediately from the statement CDr  and the axiom schema of
separation [4] (ii) follows immediately from the countability of a set OL. Notice that

A1 nonempty countable set such that 053*1, because for any N O: Thﬁ =n 2 n.

Proposition 2.5. A set A1 s inconsistent.

Proof. From formla (2.47) we obtain

Thi &4, B Ap AN Pro @, & A D08[Pro @, § 4,907 4, 3 4] Q480

From (2.48) we obtain

Th! A, B A A A § 4, @.490

and therefore
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THY SO B A, OB & 4,0 @.500

But this is a contradiction.

Definition 2.8. Let 7 HIF Q€ e one-place open Th _wf such that the following condition:

Th =0Ix, € @ 0> @.510

is satisfied.

# .
Remark 2.14.We rewrite now the condition (2.51) using only the language of the theory Thi .

{Th? =[xy € Oy 0} N PI’Th?‘EB(@ ¢ O OO

.520
%{Pl’-m?(ED(@ @'Q@ P07 ED(@ @'Q@ 0}

#
Definition 2.9. We will say that, aset Y isa Thi -set if there exist one-place open wit P Qe

# #
such that Y EX@- We write y[Thi :| ift Y isa Thi -set.

Remark 2.15. Note that

y[ Th¥ ] A {(9 Xy OEPry @, € @ OHY

.530
{PrWO’ED(@ €Oy OPUA (Ix; ¢ O 0}}

Definition 2.10. Let O be a collection such that -
K[ x 8 O © xisaThi-set]. 2.540

#
Proposition 2.6. Collection Q isa Thi -set.

Proof. Let us consider an one-place open wif P @€ such that conditions (2.51) are satisfied, i.e.

# N
Thi QED(@ € Q@ O We note that there exists countable collection X p of the one-place open wit's

*; EHMP nal’lﬁo such that: (i) PAOI x5 ang (i)
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Th? = Ix; € @ OXNHA [ OV G OO pP G O
or in the equivalent form

Thi =Pr . GEX: € A OO

< @.550
{Prm?ﬁ:“!)(@ ¢ 0 OBOA (X, ¢ O 0} ok

[ Pro,,: 60 [ OUE @ O ¢,y ONY 5

Pro,, G60@M 5 OV G OO ¢ Ay OBOA M@ 5 O A, O ¢ A O

N
or in the following equivalent form

( Thi' =1k, €6 1 @ OXAT@ § OUE ; R, 0D F ;@ O

or
Th? =
b Py @I, ¢ @, OO0 @.560
{Prm X, F @ OS0A CIx, P @, G %
[ Pro,: 6N [ OUE @, OO @ ONY
Pro,: GEN@M £ OUE @, O § @, OHVA M@ B OUE @, O § @, B>

N

where we have set P AOHEP ;O OF Q1 ORFP n1 0, ¢ and X¢ HEIX1 . We note that any collection
*@ k H/T@ n,katﬂﬁgo’ k Hl’ 2! **+ such us mentioned above, defines an unique set X¢ ¢y ie.

*p K T ko RS iff X kg *xp k2* We note that collections X & K K H12,.. arenota part of the

ZFC;, ie. collection X ¢ there is no set in the sense of ZFC2. However that is no a problem, because by

using Godel numbering one can to replace any collection *@ Ko K Hl! 2, -+ by collection %k Hg‘* Pk ¢ of
g g p y y

the corresponding Godel numbers such that

&, Hgox,, OO , R Wk HL2,... . @.570

#
It is easy to prove that any collection %k Eg‘*@ COKEL2,.. sa Thi -set. This is done by Godel

encoding [97;[147] (2.57), by the statement (2.51) and by the axiom schema of separation [15]. Let

On k Egﬂi n,kﬂk(!”( 31,2,.. be a Go6del number of the wif P n,k‘ikU Therefore
g‘*k(,aqgn,k \1110’ where we  have  set *k X, K k =1,2,.. and
388
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@1 ERZ (‘Ign,kl \l’

oo T Wi, Voo RO Xy, %Xy, > @.580

Let /P(rgn,k \lﬁﬁo\lf(o be a family of the all sets 4gn,k \lﬁo' By axiom of choice [157] one obtains unique set

q"a /ng \lﬁo such that @Bﬁk 4gn,k \lﬁo_’ Finally one obtains a set Q from the set q by the axiom

schema of replacement [157].
#
Proposition 2.8. Any collection %k Hgﬁ\' P QK HL2,.. isa Thi -set.

Proof., We define 9nk agm n,ka(!’H@' n,k‘))k(’gavk E&k% Therefore

Onk Eg‘@ n,ka Fr‘gn,kl Vi ¢ (see Mendelson [147]). Let us define now predicate

=®I‘gn,ksv|((,
‘@.(gn,k,vk() Prmffﬁ}(k@‘ 1’kﬂlm
2.590
#0x, @, He SQaMM 8§ OPPr . e | A OHVC Pro Fra@, v, Q) |.
We define now a set %k such that
& HE ¢ ok
< 2.600
AR %n,k &;’ @.@n,k,vk(»
Obviously definitions (2.55) and (2.60) are equivalent.
#
Definition 2.11.We define now the following Thi -set AiEQ

(X B A N @ H QOEPr G 2 x-S0k Pro . 2 x50 x £ x|]. @610

Proposition 2.9. (i) Th? =LA, (i1) A is a countable Th? —set, 1 & Q
Proof.(i) Statement Th#f =LA follows immediately by using statement CD and axiom
schema of separation [47]. (ii) follows immediately from countability of a set Q.
Proposition 2.10. Any set A, 1 B € is inconsistent.
Proof. From the formula (2.61) we obtain
Thfé 24 B A AN Prm?ﬁ*i P *iW[Prm?‘{*i T A0 A T 4 :| 2.620
From (2.62) we obtain
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ThY & B A N 4; € 4 @.630
and therefore
Th o0 B A0 T 4,0 2.640
But this is a contradiction.

Definition 2.12.An Th% —wff %o thatis: (i) Th -wit # or (ii) well-formed formula %@ which

contains predicate PrTh*é‘{*-9< given by formula (2.35).An Thé -wit *@ (well-formed

formula ¥ ) is closed - i.e. ¥ s a sentence - if it has no free variables; a wiF is open if'it

has free variables.

Definition 2.13.Let P HIF Q€ pe one-place open Th’é -wif such that the following

condition:

The =20k € @ O> .650

is satisfied.

Remark 2.16.We rewrite now the condition (2.65) using only the language of the theory Th%:

{Thg 21X € Q) 0} N PI’Th;éfED(ga € O OOk

#{Pro,: G € @ OBDOA (Ix; ¢ Q; O}, 12660
Definition 2.14.We will say that, aset Y isa Th’é -set if there exists one-place open wif
P @€ uch that y EHiXp . We write y[Th%] iff Y isa Th’é -set.
Definition 2.15. Let. Qb be a collection such that - ER[X Qo xisa Th%-set]'
Proposition 2.11. Collection Q@ s a Thé) -set.
Proof. Let us consider an one-place open wif P @€ such that condition (2.65) is satisfied, i.e.
Th#é = [IXp € M O3 we note that there exists countable collection X p of the one-place open wit's
*o HAF Ok guch that () P RO *p ang i
335
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Thi =Cix; ¢ G O B OV A OO F Gy O
or in the equivalent form
Thé |:>Prwé€ED<@ ¢ QO OOk

.670

< {Prm%‘Eﬁ(@@'Q@ (8 87 ED(@@'Q@U}%

[ Pro,: M@ & OV @ O ¢ @ OBDY

Prmgfﬁﬁm OUE By OO P Oy OPOA MM H OUE A O P A B
N
or in the following equivalent form
The =k ¢ @ OX%ANH@ B OV ; R, 00 ¢ ;@ O3>
or
Th% =>PrTh?(ED(1@ le

J @.680

{Prm%‘ED(]_@ 610903 ED(]_@ Qlt} ok
[ Pro,: 60 [ OUE @, OO @ ONY
Prm?fﬁ'ﬁm O(ﬁ‘ﬁluﬁnf))l()»()ﬂ AR & Mﬂluﬁnﬁlw

N

where we set © QOEP 1@ QF O OFIP 1 Q€ g x; X1 . We note that any collection

*p, HAF Q0 k HL2,. .. *p, [E *p, HZ

5o’ such us above defines an unique set Xy ie.

iff Xk *x; kp* We note that collections X ¢ kK H1,2,.. areno part of the ZFC;, ie. collection X7
there is no set in sense of ZFCZ However that is no a problem, because by using Gédel numbering one can to

replace any collection x5, k H1,2,.. by collection By ag‘*@ « € of the corresponding Godel numbers

such that

&, Hghks , OHND ,, @ W Kk E12,... . @.690

HO

It is easy to prove that any collection By Eg‘*@ k Ok H1,2,.. isa Th* _set. This is done by Godel

encoding [97;[147] by the statement (2.66) and by axiom schema of separation [157]. Let

On.k Egﬂi n,kﬂk(!a’( 31,2,.. be a Godel number of the wit P n,kaU Therefore
g“k(’aqgn,k\lﬁo’ where we have set X HiXxp o K EL2.. and

@31 EEBZ «gn,kl \1’

n

0 E Mo Voo HIRO Xy, #x,,> Q.700
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Let /P(rgn,k \lﬁﬁo\lf(o be a family of the all sets 4gn,k \lﬁo' By axiom of choice [157] one obtains an unique

set O"Hﬁk \lﬁo such that @M@'k 4gn,k \lﬁo_‘ Finally one obtains a set C)© from the set OES by the

axiom schema of replacement [157.

Thus one can define Th% -set A@ " Q9 .

(X B Ao © @B OOk Pry . & & xS0 {Pr . & £ x30A x $ x} |]. @710

Proposition 2.12. Any collection %k ag‘*@ K Uk Hl, 21 .+ Isa Th% -set.
Proof. We define Onk ag‘@ n,ka(l’H@' n,ka(’gka Hé('kJ) Therefore

Onk Eg‘@ n,ka Fr‘gn,klvk( (see  Mendelson [147]). Let us define now predicate

=®@‘gn,k! Vk o

@©‘gn,k,vk%
P GEIX, € 1, @y OPOE | Pro . GEIX, € 1 @ ODOA (1, P Gy Y @.720

#0x, Oy B SOMM 8 OPPro . | R ODOA Pro . Hr@, v, & |.

We define now a set &k such that

& BEE Ak

. Q.730
AR O, F RSN =@, v >

Obviously definitions (2.66) and (2.73) are equivalent by Proposition 2.1.

Proposition 2.13. (i) Th?; ':NE‘@, (i) A@ isacountable Th% -set.

Proof.(i) Statement Th’é ':>D*© follows immediately from the statement @9 and axiom
schema of separation [157] (ii) follows immediately from countability of the set Oe.
Proposition 2.14. Set A@ is inconsistent.

Proof.From the formula (2.71) we obtain

Th’é 2 Ao H Ag AN Prm%w@ g *@W{Prmg({*@ Z AeD0A A X *@}. .740
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From (2.74) one obtains

The 2 Ag B Ag N Ag T Ag Q.750

and therefore
Thé Dk B AgUkkg T A0 .76 0
But this is a contradiction.
#
Definition 2.16.An 1N& y it ®ey thatis: (i) Thy -wit ¥y or (i) well-formed formula ¥e;y

PrTh# ->¢

#
which contains predicate e given by formula (2.36).An Th@; Y -wit *@; Y]

(well-formed formula *@; %) is closed - i.e. *@; ¥ 1s a sentence - if it has no free variables; a

wit'is open if it has free variables.

Definition 2.17.Let ¢ HIP Q€ 1 one-place open Th -wif such that the following condition:

Thy + Th#b’bl > IX € Oy O Q.770

is satisfied.

Remark 2.17.We rewrite now the condition (2.77) using only the language of the theory

Th#m :

{Th#ypl 1K € My 0} AN PI’Th#m‘ED(@ ¢ QO OPO @.780

#
Definition 2.18. We will say that, a set Y isa Th Y -set if there exist one-place open wif

P Qe such that Y HXe . wWe write y[Th#Ual] iff Y isa Th#b’kzl -set.

Remark 2.18. Note that

y[Thi ] A 08 {@ Ex; O%Pry, GElx; € A 0HO

2.790
{PI’Th#M‘ED(@ ¢ Oy OBV TIx; ¢ DO, U} }
Definition 2.19.Let Ob’bl be a collection such that-
e[ x B Oy @ xis a Thy, -set]. 2.800
Proposition 2.15. Collection o%l is a Th#ypl -set.
338
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Proof. Let us consider an one-place open wif P @€ such that conditions (2.87) are satisfied, i.e.

# N
Th Y =[x P € Q@ o We note that there exists countable collection X # of the one-place open wit's
*o FA QOU o (uoh that (i) P ROE Ko and (i

(
Thy# Th'y =Tk, €€ Q@ OX%AHM B OV @, O ¢,y 0>

or in the equivalent form

S Thy# Thiy, SPr. GEI: € @, OPOE 810

[ Pro GER® § OUF @, OO ¢ @ OBY,

N
or in the following equivalent form
(
Th#y;,l = [Ix; € ; A OFH MM 5 OU¢ | @, P 1@y QN>

or
S Thyy =Pry,: GEIX, P @ O30% 2820

[Prm#miﬁﬁﬁm OUF @, OB § ano»(%’

N

where we have set P AQOHEP O OF Q1 ORFP n1 0, ¢ and X¢ HEIX1 . We note that any collection
*@ k H/T@ n,katﬂﬁgo’ k Hl’ 2! *++ such as mentioned above, defines an unique set X8y ie.

*p K T ko RS iff X kg *xp k2* We note that collections X & K K H12,.. arenota part of the
ZFC3, ie. collection X ¢ there s no set in the sense of ZFC2. However that is no problem, because by

using Godel numbering one can to replace any collection x5, k =1,2,.. by collection By Hg‘* # € of

the corresponding Godel numbers such that

&, Hgox,, OO , AWk HL2,... . 2.830

#
It is easy to prove that any collection %k Hg“@ K Uk Hl, 2, <+ is a Th Y -set. This is done by Godel

encoding [97,[14] (2.83), by the statement (2.81) and by axiom schema of separation [157]. Let

On.k Bgﬂi n,kﬂk(!a’( 31,2,.. be a Godel number of the wit’ P n,kaU Therefore

g“k(,aqgn,k\lﬁo’ where we have set *k = R g K k &1,2,.. and
@ﬁlﬂﬁg(ﬁgnykl \lﬂ}ao:i}/rgn,kz\lﬂao 5 Jrondes] Xk1 *szé 2.840
389
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Let /qun,k \lﬁv?o\lf(o be the family of the all sets 4gn,k \lﬂo' By axiom of choice [157] one obtains unique set

():'L.’ E/rgk \lﬁo such that @M@'k 4gn,k \lﬁo_‘ Finally one obtains a set O%l from the set Oggl by

axiom schema of replacement [157.

#
Proposition 2.16. Any collection &k Hg‘*@ K Uk Hl, 2,.. isa Th Vi -set.

Proof., We define 9nk agm n,ka(!’H@ n,ka(’%Vk E&k% Therefore

Onk Eg‘@ n,ka Fr‘gn,kl Vi ¢ (see Mendelson [147]). Let us define now predicate

=€‘GH,k)Vk(,

“ﬂ@n,k,vk Prm#meD(k@ 1,kﬂl OO

.850
iﬁf!)(k(\)k Hﬁ%&ﬁ@ﬁﬁm O(EPrm#mf{@ 1.ka PrTh#mﬂFr(gn,k,vku,ﬂ.
We define now a set %k such that
& B¢
<K .4gk @.860
AR T O, B EF D =@, v, 0>

Obviously definitions (2.81) and (2.86) are equivalent.
Definition 2.20.We define now the following Th#b’bl set Aya H Oy

X E Ap A AE Op OkPry, 2 x4 @.870

Proposition 2.17. (i) TN T2, (i) A1 isacountable T —set.

Proof.(i) Statement Th#m = A Y follows immediately from the statement @%1 and axiom schema of
separation [4] (ii) follows immediately from countability of the set O%l

Proposition 2.18. The set A %1 s inconsistent.

Proof.From formla (2.87) we obtain

Th#%1 DAy B Ay AN PrTh#m(I*ypl g *%1% .880
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From (2.88) we

Thiy Ay B Ay N Ay T Ay

and therefore

Th#%1 E:)“Kbl AM%“U& g *4,10

But this is a contradiction.

Definition 2.21. Let ¥ HIF Q€ pe one-place open Th —wif such that the following condition:

Th#m >IX € Qp O

satisfied.

Remark 2.19.We rewrite now the condition (2.91) using only language of the theory

Thy,

{Th#w =X € Oy 0} AN Prm#wt'ﬁ}(@ ¢ 0, OO

#
Definition 2.22. We will say that, a set Y isa Th Y -set if there exists one-place open wit

P Qe such that Y HXs . wWe write y[Th#Ud] iff Y isa Th#b’lpi -set.

Remark 2.20. Note that

y[Thi ] A CB [ @ Hixy O%Pro . GEIX; € @ 0N

Definition 2.23.Let OZH be a collection such that -

e[ x 8 Oy © x is a Thiy;-set |.

#
Proposition 2.19. Collection Oyi isa Th W -set.

Proof. Let us consider a one-place open wit P @€ gych that conditions (2.91) is satisfied, i.e.

Th#m =[x € Qe O3

*; EHMP nal’lﬁo such that: (i) PAOI *p ang (i)

© 2017 AESS Publications. All Rights Reserved.

obtain

.890

.900

2.910

S

0.920

.930

2.940

We note that there exists countable collection X ¢ of the one-place open wit's
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Th#ya =[x ¢ @y OFHNMM B OUE Q) OO P O O3>

or in the equivalent form

2.950
Thiy SPrys GEIX; € @ ODOE
[Pro, GEM@ B OUE @ OD ¢, @ ODY,
or in the following equivalent form
Th'y =00, € | @, OXNHM § OUE A, OO § ;@ O
or
Thiy, = 2.960

Prm#wfﬁﬂ(l@ le
[ Pro, GEM@ & OGE @, 0T P @ ODY].

where we have set P AOHEP O OF Q1 ORFP n1 O, ¢ and X¢ HEIX1 . We note that any collection
*@ k H/T@ n,katﬂﬁgo’ k Hl’ 2! *++ such as mentioned above, defines an unique set X8y ie.

*p K T ko RS iff X kg *xp k2* We note that collections X & K K H1,2,.. arenota part of the
ZFC3, ie. collection X ¢ thereis no set in sense of ZFC2. However that is no problem, because by using

Godel numbering one can replace any collection x5, k H1,2,.. by collection By ag‘*@ « € of the

corresponding Godel numbers such that

&, Hgox,, OO , R Wk HL2,... . @.970

#
It is easy to prove that any collection By EgOk; Ok H1,2,.. i, Th Wi -set. This is done by Gdodel

encoding [97; [147] (2.97), by the statement (2.91) and by the axiom schema of separation [157. Let

On .k Bgﬂi n,kﬂk(!a’( 31,2,.. be a Godel number of the wif P n,k‘ikU Therefore
g‘*k(ﬁ/@n,k \lﬁo’ where we  have  set *k H*@ k1 k Hl, 2,.. and
@Qlﬁﬂiz(ﬁgn,kl%aoﬁ’@n'kz\lﬁgo 7 ety Xk, *szé 2.980

Let /qun,k \lﬁ@o\l’ko be the family of the all sets 4gn,k \lﬂo' By axiom of choice [157] one obtains unique set
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q"aqgk \lﬁo such that @M@'k 4gn,k \lﬁo_‘ Finally one obtains a set ow from the set q by axiom

schema of replacement [157.

#
Proposition 2.20. Any collection &k Hg‘*@ K Uk Hl, 2, «+ Isa Th Yi -set.

Proof. We define 9n.k agm n,ka(!’H@ n,ka(’%Vk H < > Therefore
Onk Eg‘@ n,ka Fr‘gn,klvk( (see Mendelson [147]). Let us define now predicate

@w‘gn,kyvku

@Ud@n,k,vk PrTh#w‘ED(k@ 1,kﬂl OPOx%

2.990
Hx, @) B DPMM B OPPr . HE 1, R OO Pro, Fr@, v W |.
We define now a set %k such that
5, AT
k. .1000
AN @ qﬁ’n,k %l? C@y;j‘gn'k,vk(»
Obviously definitions (2.91 and (2.100) are equivalent.
# .

Definition 2.24.We define now the following Th Y -set A Yd S Ow .

A[X B Ay N QE Oy OGP, @3 x|, 2.1010

# # .
Proposition 2.21. (i) Th Vi =4 i, (i1) A % is a countable Thb’lpi set, | H Q
#

Proof.(i) Statement Th /] =LAy follows immediately by using statement CDyi and axiom
schema of separation [157]. (ii) follows immediately from countability of a set O%i-
Proposition 2.22. Any set A Y, i C Is Inconsistent.
Proof.From formla (2.101) we obtain

Th#y;i DAy B Ay AN Prm#w({*y,jg A 450 2.1020

From (2.102) we obtain
348
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Th#%i DAy B Ay N Ay I Ay, .1030
and therefore

Thiy SO g 8 L O8R5 £ 4,0 2.1040

But this is a contradiction.

#
Definition 2.25.Let ¢ HF Q€ p one-place open Th@, ¥ -wif such that the following

condition:

Th’é;yo@ﬂ}(@ &0 W .1050

is satisfied.

Remark 2.20.We rewrite now the condition (2.65) using only the language of the theory Thé:

{Thgyg'ﬁiﬂ(@ € Oy U} N Prmam‘@@ ¢ 0 OBO .1060

Definition 2.26.We will say that, aset Y isa Thg Y -set if there exist one-place open wif
P @€ sych that y HXs . we write Y[Thé L’b] iff Y isa Th%;y -set.
Definition 2.27. Let O2:3 be a collection such that - @[X Qe % X is a Th% %Set]'
Proposition 2.23. Collection Ozy isa Thg; Y -set.
Proof. Let us consider a one-place open wit P @€ such that condition (2.65) is satisfied, i.e.

# \]
Th®, %= CIxe € @ &3 We note that there exists countable collection X ¢ of the one-place open wit's

*; EHMP nal’lﬁo such that: (i) PAOI x5 ang (ii)

Thé, », = (ks € @ OX MM [ OV Gy OO P G O3>
or in the equivalent form
Thg;%cwrmg%fﬁbw ¢ QO POk
[Pro, FEN@ & OGE G O f &y ONY,

2.1070

or in the following equivalent form
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Th, 5, > CIx; 66 1 A OX AT 5 OUE ; R, OT ¢, @ O
or
Th%;yo':>Prm¢é;%‘ED(1@ G]_W
[Pro, FEN® & OGE G, OO § @, 0D,

€2.1080

where we set P QOH?P 1‘»1()@ nQ]_ O n,lﬂle and Xg¢ ﬂxl . We note that any collection

*x;, WP, Q00 k H12,... *p E ke HZ

5o’ such as above defines an unique set Xy ie.

it Xek, L kp* We note that collections X ¢ kK H12,.. arenoa part of the ZFC;, ie. collection
X6, there is no set in the sense of ZFC2. However that is no a problem, because by using Gédel numbering

one can to replace any collection x5, k =1,2,.. by collection By ﬂg‘* # € of the corresponding Godel

numbers such that

&, Hghks , OHND ,, @ W Kk E12,... . @.1090

HO

#
[t is easy to prove that any collection By HgOk, Ok H1,2,.. i, Th@; Y -set. This is done by Godel

encoding [97; (147 by the statement (2.109) and by axiom schema of separation [157. Let

On .k Bgﬂi n,kﬂk(!a’( 31,2,.. be a Godel number of the wif P n,k‘ikU Therefore
g“k(,aqgn,k\lﬁo’ where we have set *k a*@ k1 k alazu-- and

@31 EEBZ «gn,kl \1’

n

E{O 4gnyk2 \lfngo B0 Xk, *szé .1100

Let /qun,k \lﬁﬁo\ll/(o be the family of the all sets 4gn,k \lﬁo' By axiom of choice [157] one obtains unique set

e El = 33
O H Dk \lﬁo such that BR@ /Tgn,k \lﬁo “ Finally one obtains a set Oz from the set %; ¥ by

axiom schema of replacement [157.

# .
Thus one can define Th@; Y -set A@; /) &S Q@; .

X B AepMN QB O pO6Pr, @3 xHY. 2.1110

#
Proposition 2.24. Any collection %k Eg‘*@ COKHEL2, . isa Th@; Y -set.

Proof. We define 9n k agm n,ka(!’H@ n,ka(’%Vk E&k% Therefore
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Onk Eg‘@ n,ka W Fr@n,k, vy ¢ (see Mendelson [147]). Let us define now predicate

g, 1§k, Vi O

e ngn,k,vk% Prm%;%fE!)(k@ 1,kﬂl ODO%

@.1120
(X, 0 B SO & OPPr, . e | A ODON Pro. Fr@, v W |

We define now a set %k such that

By BE] ¢ Ak
AR B O, B 2,0 O =g ufd, i, v 0>

.1130

Obviously definitions (2.106) and (2.113) are equivalent by Proposition 2.1.

Proposition 2.25. (i) Th% % =Xy (i) A@ ¥ isacountable Thé Y -set.

Proof.(i) Statement Th% = C2 ey follows immediately from the statement T and axiom
schema of separation [157] (ii) follows immediately from countability of the set Qe.

Proposition 2.26. Set A@; Y 1s inconsistent.

Proof.From the formula (2.71) we obtain

The @ Lol Lep® Pro, @Reyd Leyd0 @.1140

From the formula (2.114) and Proposition 2.1 we obtain

The 2 Aenfl Aen® Agyt Agy @.1150
and therefore

Thg%Q“@;yg Ao Pk Ohg 8 Ao ) .1160

But this is a contradiction.

Th
Proposition 2.26.Assume that (i) Conf¥ht g (i1) Th  have a nonstandard model MNst and

Z Th # # Th
M % gMNst' Then theory Th can be extended to a maximally consistent nice theory Th@ +Th®|: MNSt :|

Proof. Let #;... ... be an enumeration of all wif's of the theory Th (this can be achieved if the set of
[ HE #

propositional variables can be enumerated). Define a chain i {ThNSt,i|I o} ' ThNSt,l ETh of consistent

346
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theories inductively as follows: assume that theory Thi s defined. (1) Suppose that a statement (2.117) is satisfied

Thig; @ Pro Co->Uand [Thi,; = # | (M & # . 0.1170

Then we define a theory Ttht,iEﬂ as follows Ttht,iEﬂ +Ttht,i ¢ /r*i \l’ Using Lemma 2.1 we will rewrite

the condition (2.117) symbolically as follows

Thie,; @Pri . -0
ntt 0.1180
Pr#mlm|%¢ PrTth“(I#iW[MLQt A *,]

(ii) Suppose that the statement (2.119) is satisfied

Thig; = Pro Gk SUand [ Thi; = i | [ M & % |, @.1190

Then we define theory Thig] as follows: ThiEﬂ +Thi ¢ /I**i \1’ Using Lemma 2.2 we will rewrite the

condition (2.119) symbolically as follows

Th’#\tlst,i E:) Pr#_lh# . ‘{**| %
@.1200
Pri&m# ‘{**l %¢ Prm ﬁlst,i ‘l**, SOk Qv’l@ 2 **, >

Nst,i

(iii) Suppose that a statement (2.121) is satisfied
Thﬁlst,i = PrThﬁlst,i ({ii Sand Thmst,i E>PrThﬁst,i ‘{*i S0 *i- ©.1210

‘We will rewrite the condition (2.121) symbolically as follows

Thiy SPr,, @30
2.1220
Prfh# (Il,%'f PrmimiWPrmi({li%ﬂ »* >

Nst,i

# # #
Then we define a theory Ttht,iEa‘] as follows: Ttht,iEﬂ +Ttht,i'

(iv) Suppose that the statement (2.123) is satisfied
Thiyin @ Proyg, G0t Sand Thig SPro . w02 *#;. 2.1230

‘We will rewrite the condition (2.123) symbolically as follows

347
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Thig, 2Prh,. G#50

@.1240
Pri . Gl SON Pro. ok 05| Pro . Gk DOA * |

Nst,i

# # # #
Then we define a theory Ttht,iEﬂ as follows: Ttht,iE +Ttht,i' We define now a theory Th@;Nst as

follows:
# #
Thie + B Thi,. @.1250
iHO
S The . i consi - e i
First, notice that each Nsti is consistent. This is done by induction on | and by Lemmas 2.1-2.2. By
. . ; Th* . . . . .

assumption, the case is true when | H1l Now, suppose Nsti is consistent. Then its deductive closure

Ded(Thy;) +{AlThfy,; =A}

is also consistent. If a statement (2.121) 1is satisfied,ie.

Thﬁlsti ::)PrTh Rt ., Ee and Thﬁst,i = ¥, Thﬁlst,iEﬂ +Thﬁst,i @ T \

then clearly is consistent since

DEd<Thﬁlst,i > . Thﬁlst,i = PrTh mst‘i “**| ¢ a

it is a subset of closure If a statement (2.123) is satisfied,i.e. nd

Thﬁ,st‘i = X, Thﬁst,iEﬂ <0>Thﬁ,styi & i \

then clearly is consistent since it is a subset of closure

Ded(Thii)- 1t T Pro: G-t

a statement (2.117) is satisfied,i.e. and

# . Th . # #
[Ttht,i o *' :| & |: I\/let a *‘ :| then clearly Ttht,iEﬂ +Ttht,i ? /r*i \ is consistent by Lemma 2.1 and

by one of the standard properties of consistency: ¥ ¢ M is consistent iff ¢ © *A. Ifa statement (2.119) is

Thmsm E:)Pr-rhﬁstj ‘***i o and [Thﬁlst,i N **i :| & [ M?\Et 42 **i]

satisfied,l.e. then clearly

Thﬁlst,igj *Th’fﬂst,i ¢ /I"‘*i\J

is consistent by Lemma 2.2 and by one of the standard properties of consistency:

#
g ¢ /I*A\J is consistent iff ¥ o A Next, notice Ded<Th@,NSt> is maximally consistent nice extension of

e Ded@ThODed(Th?,

,NSt> is consistent because, by the standard Lemma 2.3 above, it is the union of a chain

#
of consistent sets. To see that Ded<Th®,NSt> is maximal, pick any wif ® Then % issome % in the

Thﬁst,i = Prm ﬁst'i m%

enumerated list of all wif's. Therefore for any * such that or

Thisi =Prme , o5 #* 8 Thi\ *# [ Thi,\.

, either or Since

Ded(Thigiz) EDed(Thine): we have #* B Ded(Thig) o, *% B Ded(Thi ). which
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#
implies that Ded<Th®;NSt> is maximally consistent nice extension of the Ded{WhQ

# .
Definition 2.28. We define now predicate Pr‘rh#mi% asserting provability in Th@;Nst'

Proe, SO [Pr, 50 ¢ Pr, w5y 0 160
Pros,, Bk SON [Pre cocw 50 ¢ Pr),  Gom 50 |

#
Th ©;Nst

Definition 2.29. Let ¥ HIF Q€ pe one-place open wif such that the conditions:

@ Thi, 200X €@ 6

@ 3¢ Thigng Pro @l € G OB M 211X, € Q) U

are satisfied.
Then we said that, aset Y isa Th* _set iff there exists one-place open wif P @€ guch that
y HXP . We write y[Thg;NSt] iff Y isa Thg;Nst -set.
Remark 2.21. Note that SBOT @ 0P Thg;Nst =Xy € Qp O3
Remark 2.22. Note that y[TthSt :| O I:‘y X %Prmém‘e}(@ €y (’»(%

. El H #
Definition 2.30.Let %;Nst be a collection such that - @&[X oé,NSt xisaTh -Set]'

Proposition 2.27.Collection Obinst isa THenst -set.
Proof. Let us consider an one-place open wif # @€ such that conditions ( $ ) or ( % ) are satisfied, i.c.
Th* 20X € @p O3 We note that there exists countable collection  * ¢ of the one-place open wif's
*p HAY QO g such that: (i) P AOH Ky and (ii)
Thiyye =0k [ € @ 0% {(n M%.?S)@m 00 ¢ @, 0 |
or
Th, e DK [Prmgmm- a W{ﬂﬁﬂ(n M%.?S)Prw@;mm @ OO 7, @ o&tﬂ Q.1270

and

ML 7 e [ € @ 0% {eh(n @ ME )€ @, 00 7@, 0 ]

or of the equivalent form
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Thyye = [ €10, 0% {(n M%.?S)@lalo@ 010,04 |
or
The 0K [ Proy, G @ 0305 {@ra(n M%.?S)Prmgmm @00 F 0, 09(” @.1280
and

MTL 2 i, [ € @y 0% {eh(n & M5 )€ 0,00 ¢ ,0,03 |

where

we  set P QO 101()@ n‘il(ﬁ@ n,l‘))lq and Xe HIX{ . We note that any collection

x5, @F Q0 Kk BL2,... *p, B *,, Hx

hEo such as above defines an unique set Xy ie.

Hs
iff XP i *X; k* We note that collections X7, kK H1,2,.. arenota part of the ZFCz 1 lLe. collection
* - - - ZFCHs - e Go -
# k there 1s no set in sense of 2 - However that is no problem, because by using Godel numbering one

can to replace any collection *p k,k =12, by collection By ag‘*@ « & of the corresponding Godel

numbers such that

8, Hgtx;, OENO ,, AW,k H12,.... 2.1290

ngO’

It is easy to prove that any collection %k Hg“@ K Uk al! 21 v IS a Thé;Nst -set. This is done by Godel
encoding [97; [147] (2.129) and by axiom schema of separation [157]. Let Onk Egﬂi n,kﬁku,( H1,2,.. pe
a Godel number of the wif P n,k‘»kU Therefore g“ktﬁqgn kMao» where we set *k H*@ K
k =1,2,.. and

K1 Ko Y 1, Vo0 B Mn i, Voo AR D Xy, WXy, > 2.1300

Let /qun k ﬁo k#@ be a family of the all sets 4gn k “hgor By axiom of choice [157 one obtain unique set

Nst = g \lﬁlo such that ﬂ@@k B /Ign k Yhro = Finally one obtain a set %;Nst from a set O?Q;Nst by

axiom schema of replacement [157.

# # .
Thus we can define a Th@;Nst -set A@,Nst S %Nst :

WX B Ay © QB Obyg OPry . @ 3 xS0%

Q.
(Prmémm-ii XDA X E x(}] Lo
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#
Proposition 2.28. Any collection &k Hg‘*@ K Uk Hl, 2, . Isa Th@;Nst -set.
Proof. We define Onk Eg‘@ n,kaW@ n,ka(’gka Hé('k% Therefore

Onk Eg‘@ n,kaM Fr@n,kyvk( (see  Mendelson [147). Let us define now predicate

=®@‘gn,k! Vk o

”@@@n,k,vkbw PrTh*@;Nst‘ED(k@ 1,k610%0>1¢
TR ) @.1320
[@m(n MZ )[Prwémwl,kako»o'p PrThé;Nstmrfgn,k,vkuﬂ.

We define now a set &k such that

B B¢
AN B O, B 85O =@, ,, v 0>

.1330

But obviously definitions (2.29) and (2.183) are equivalent by Proposition 2.26.

# # #
Proposition 2.28. (i) Th@Nst |::>Q\®,Nst’ (i) A@;Nst is a countable Th@;Nst -set.

Proof.(i) Statement Th# E:)Dc follows immediately from the statement IE)(g;Nst and axiom schema of

separation [157]. (ii) follows immediately from countability of the set C)(%Q;Nst'
.. A# . .
Proposition 2.29. The set ~ ©@Nst is inconsistent.
Proof. From formula (2.131) we obtain
# # B # # #c
Th@;Nst = A@Nst A@;Nst ¢ A@;Nst z A@;Nst' 2.1340
From formula (2.41) and Proposition 2.6 one obtains
# [l #
Th@Nst A@;Nst @ Nst m A@Nst A@;Nst Q.1350
and therefore
# = # # #
Th@ Nst “@;Nst *QNst%“@Nst z *®,Nsto 2.1360

But this 1s a contradiction.

Hs ZFChs
Proof of the inconsistency of the set theory ZFC2 (=W using Generalized Tarski's undefinability

theorem.

351
© 2017 AESS Publications. All Rights Reserved.



Journal of Asian Scientific Research, 2017, 7(8): 309-360

Now we will prove that a set theory ZFCZHS EEMZFC?S is inconsistent, without any refference
to the set O and inconsistent set A @.

Proposition 2.30.(Generalized Tarski's undefinability theorem).Let Thgs be second order
theory with Henkin semantics and with formal language O, which includes negation and

has a Gédel encoding g‘& such that for every O _formula A there is a formula B such

that B ¢ A‘@‘Bw*@(‘@@(’” B- holds. Assume that Thgs has an standard Model M.

Then there is no O —formula Trued¢ such that for every O _formula A such that M & A, the

following equivalence

AN True@AW:* <Frue@RPW A A> 0.1370

holds.

Proof. The diagonal lemma yields a counterexample to this equivalence, by giving a "Liar"

sentence O such that S * XTrue ‘G‘SU holds.
Remark 2.23. Above we have defined the set Q9 (see Definition 2.10) in fact using a generalized
"truth predicate" TI’UG%«*‘% ¥ ch that

Truet, -5 #ON Pro . G#-50% {Pr . G502 *}. @.1380

Hs ZFCHs ) ) .
In order to prove that set theory ZFC2 [ETW“™2" g inconsistent without any refference to
the set ,;notice that by the properties of the nice extension ® follows that definition

H Hs
given by (2.138) is correct, i.e.,for every ZFCZS formula ¥ such that MZFC2" 2 the

following equivalence

* A Pro . G505 {Pro . QS0 *). 2.1390
holds.
Proposition 2.31.Set theory Thﬁ E ZFCzHS EDMZFC?S is inconsistent.
Proof.Notice that by the properties of the nice extension Thgg of the Th? follows that

MZFC® 2 % 2 Thi o Q.1400
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#
Therefore (2.138) gives generalized "truth predicate" for the set theory Th1- By Proposition

2.30 one obtains a contradiction.

Remark 2.24.A cardinal 7 is inaccessible if and only if 7 has the following reflection property: for all subsets
U SJVK , there exists @ @K such that &V, 5 U®Velisan elementary substructure of ) PRCRVLY (In
fact, the set of such @ s closed unbounded in ¥ .) Equivalently, K s Hﬂ -indescribable for all N X0,
Remark 2.25.Under ZFC it can be shown that ¥ is inaccessible if and only if ., B 5 2 model of second
order ZFC, Rayo and Uzquiano [57].

Remark 2.26. By the reflection property, there exists & @x such that Vo, B is a standard model of (first
order) ZFC . Hence, the existence of an inaccessible cardinal is a stronger hypothesis than the existence of the

H
standard model of ZFCZ s .

3. DERIVATION INCONSISTENT COUNTABLE SET IN SET THEORY ZFC; WITH THE
FULL SEMANTICS

Let Th ETh' be an second order theory with the full second order semantics. We assume now that Th
. ZFCfSS ) . . fss
contains 2 + We will write for short Th, instead TH™.
, : ZEC™ . e :
Remark 3.1.Notice that M is a model of 2 if and only if it is isomorphic to a model of
the form Vi, TV, <V, Q for K 5, strongly inaccessible ordinal.

Remark 3.2.Notice that a standard model for the language of first-order set theory is an ordered pair 1D, N ts
domain, D, isa nonempty set and its interpretation function, l, assigns a set of ordered pairs to the two-place
. el . D) IN . ., . . : .
predicate & . A sentence is true in ) Just in case it is satisfied by all assignments of first-order variables

to members of D and second-order variables to subsets of D; a sentence is satisfiable just in case it is true in

some standard model; finally, a sentence is valid just in case it is true in all standard models.

Remark 3.3.Notice that:

(I)The assumption that D and | be sets is not without consequence. An immediate effect of this stipulation is

that no standard model provides the language of set theory with its intended interpretation. In other words, there is
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no standard model 4D1 IN in which D consists of all sets and | assigns the standard element-set relation to
'B" . For it is a theorem of ZFC that there is no set of all sets and that there is no set of ordered-pairs X, Y‘l

for X an element of Y-

(II)Thus, on the standard definition of model:

(1) it is not at all obvious that the validity of a sentence is a guarantee of its truth;

(2) similarly, it is far from evident that the truth of a sentence is a guarantee of its

satisflability in some standard model.

(3)If there is a connection between satisfiability, truth, and validity, it is not one that can be read off standard model
theory.

(III) Nevertheless this is not a problem in the first-order case since set theory provides us with two reassuring
results for the language of first-order set theory. One result is the first order completeness theorem according to
which first-order sentences are provable, if true in all models. Granted the truth of the axioms of the first-order
predicate calculus and the truth preserving character of its rules of inference, we know that a sentence of the first-
order language of set theory is true, if it is provable. Thus, since valid sentences are provable and provable

sentences are true, we know that valid sentences are true. The connection between truth and satisfiability

immediately follows: if ¢ is unsatisfiable, then *¢ , its negation, is true in all models and hence valid. Therefore,

*¢ is true and ¢ Is false.

Definition 3.1. The language of second order arithmetic Zz is a two-sorted

language: there are two kinds of terms, numeric terms and set terms.

0 is a numeric term,

1. There are infinitely many numeric variables, X0,X1,..+yXn,... each of which is a numeric term;
2. If S is a numeric term then SS is a numeric term;
3. If S, are numeric terms then and 3t are numeric terms (abbreviated S [=1 and S &t )
3. There are infinitely many set variables, X0: X1,y Xn... each of which is a set termy;
4. If U is a numeric term and S then tS is an atomic formula (abbreviated by thES );

5. If s and t are numeric terms then EBSt and G St are atomic formulas (abbreviated S Ht and s &t

correspondingly).
The formulas are built from the atomic formulas in the usual way.
As the examples in the definition suggest, we use upper case letters for set variables and lower case letters for

numeric terms. (Note that the only set terms are the variables.) It will be more convenient to work with functions

instead of sets, but within arithmetic, these are equivalent: one can use the pairing operation, and say that X
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represents a function if for each

N there is exactly one M such that the pair @, m¢ belongs to X.

We have to consider what we intend the semantics of this language to

be. One possibility is the semantics of full second order logic: a model consists of a set M, representing the

numeric objects, and interpretations of the various functions and relations (probably with the requirement that

equality be the genuine equality relation), and a statement XWX i satistied by the model if for every possible

subset of M, the corresponding statement holds.

Remark 3.1.Full second order logic has no corresponding proof system. An easy way to see this is to observe that it

has no compactness theorem. For example, the only model (up to isomorphism) of Peano arithmetic together with

the second order induction axiom: AX @ X XA XA SX XOA (XR Xy is the standard

model @ . This is easily seen: any model of Peano arithmetic has an initial segment isomorphic to o applying the

induction axiom to this set, we see that it must be the whole of the model.

Remark 3.2.There is no completeness theorem for second-order logic. Nor do the axioms of second-order ZFC
imply a reflection principle which ensures that if a sentence of second-order set theory is true, then it is true in some
standard model. Thus there may be sentences of the language of second-order set theory that are true but
unsatisfiable, or sentences that are valid, but false. To make this possibility vivid, let Z be the conjunction of all the
axioms of second-order ZFC. Z is surely true. But the existence of a model for Z requires the existence of strongly
inaccessible cardinals. The axioms of second-order ZFC don't entail the existence of strongly inaccessible cardinals,

and hence the satisfiability of Z is independent of second-order ZFC. Thus, Z is true but its unsatisfiability is

fss
consistent with second-order ZFC [57]. Thus with respect to ZFCZ , this is a semantically defined system and

thus it is not standard to speak about it being contradictory if anything, one might attempt to prove that it has no

. L . . ZECHs
models, which to be what is being done in section 2 for 2

Definition-3.2. Using formula (2.3) one can define predicate Prf:h ‘9( really asserting
provability in ThE VA 2
Pr: @O Pro, QO €, QOA #->

fss
Prom @O Ez(x MZ¢ )Provmﬁ,y() 3.10
y o>

ZFCy®
Theorem-3.1. [167]. (Lob's Theorem for 2 ) Let * be any closed formula with code

y o> szba then Th = Pry, (-3¢ implies Th=* (see Foukzon [167]) Theorem 5.1).

Proof. Assume that
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#) Th =Pry, G-3>Q

Note that

(1) Th o ¥ Otherwise one obtains Th I::>|:)r‘|'h orM-SO% I:)r'l'h m% but this is a

contradiction.

(2) Assume now that (2.i) Th =Pry, -3 g (2.11) Tho #

From (1) and (2.ii) follows that

(3) Tho *# 5,9 Tho #
Let Thxs be a theory

(4) Thys +Th S, From (3) follows that

(5) COI’]‘Th**U

From (4) and (5) follows that

(6) Thxe =Pry,,, Goci->U

From (4) and (#) follows that

(7) Thxs =Prq,,, G850

From (6) and (7) follows that

(8) Thxe =Pr, o -SO0%Pro, o ok M-DQ ¢ this is a contradiction.

Definition 8.3. Let ¢ HIP Q€ pe one-place open wif such that:

Th =0x; € G O> Q.20
Then we will says that, a set Y isa Th _set iff there is exist one-place open wif P AC guch

that Y HX@ - We write yth' iff Y isa Th set.

Remark 3.2. Note that

y<Fh—7p A.30
& Hx; OkPro, GEIX; € Qp OPOEPro, Elx; € A ODOA [Ix; ¢ A OB
Definition 3.4. Let C be a collection such that : @[X O xisa Th-set].
Proposition 3.1. Collection Cisa Th set.
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Definition 3.4. We define now a Th -set )‘c O

AR B A, © Q F OURPr G 2 xS0 €rp, (& 2 X0 x £ x>»> Q.40

Proposition 3.2. (i) Th =4, (i) A¢ isacountable Th -set.
Proof.(i) Statement Th =CA¢ follows immediately by using statement T and axiom
schema of separation [47] (ii) follows immediately from countability of a set O

Proposition 3.3. A set *c is inconsistent.

Proof.From formla (3.2) one obtains

Th ':>AC Ac ¢ Pr'rhwc g ACW@I’T},‘I"*C g Ac%z AC 2 Ace ‘350

From formula (8.4) and definition 3.5 one obtains

Tho A, B A N A, 8 A, Q.60

and therefore

TheoOk § A OOk, T A O Q.70

But this is a contradiction.

Thus finally we obtain:
*Con@FCY U
Theorem 3.2. [16]. on 2
It well known that under ZFC it can be shown that ¥ is inaccessible if and only if ‘vm Fe isa
model of ZFCZ [57]; [6].Thus finally we obtain.

Theorem 3.3. [16]. *Con@FC EEMSZtFC‘MgtFC HH, @

4. CONSISTENCY RESULTS IN TOPOLOGY
Definition 4.1. [17]. A Lindelof space is indestructible if it remains Lindelof after forcing

with any countably closed partial order.

Theorem 4.1. [187. If it is consistent with ZFC that there is an inaccessible cardinal, then it

is consistent with ZFC  that every Lindelof T3 indestructible space of weight <1 has size

<.
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Corollary 4.1. [187. The existence of an inaccessible cardinal and the statement:

OF3, <, <8 A every Lindelsf T3 indestructible space of weight <1 has size ¥

are equiconsistent.

Theorem 4.2. [16]. ¥CONAFC [ZO4F3, < &, < ¥

Proof. Theorem 4.2 immediately follows from Theorem 8.3 and Corollary 4.1.

Definition 4.2.The 1 -Borel Conjecture is the statement: BC&H 1 4 Lindelot space is
indestructible if and only if all of its continuous images in € 13 have cardinality <>y
Theorem 4.3. [167]. If it is consistent with ZFC that there is an inaccessible cardinal, then it
is consistent with ZFC  that the 1 -Borel Conjecture holds.

Corollary 4.2.The 1 -Borel Conjecture and the existence of an inaccessible cardinal are

equiconsistent.

Theorem 4.4. [16] *Con@@FC [=BC &+ ®

Proof. Theorem 4.4 immediately follows from Theorem 8.8 and Corollary 4.2.

Theorem 4.5. [187. If Yo is not weakly compact in L, then there is a Lindelsf T3

indestructible space of pseudocharacter <1 and size 2.

Corollary 4.3.The existence of a weakly compact cardinal and the statement:

O4F3, <~ 1, 2 4 there is no Lindelof T3 indestructible space of pseudocharacter <
and size ‘5'}2 are equiconsistent.

Theorem 4.6.[ 16]. There is a Lindelsf T3 indestructible space of pseudocharacter < and

size 552 in L.

Proof.Theorem 4.6 immediately follows from Theorem 3.3 and Theorem 4.5.

Theorem 4.7. [167]. *Con (ZFC 3, % 1, % %

Proof. Theorem 3.7 immediately follows from Theorem 8.3 and Corollary 4.3.

5. CONCLUSION

In this paper we have proved that the second order ZFC  with the full second-order semantic is

fss
inconsistent,i.e. *COHQFCZ O Main result is: let K be an inaccessible cardinal, then —CON(ZFC + 3x).

This result also was obtained in Foukzon [197; Foukzon [167; Foukzon and Men'kova [107] by using essentially
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another approach. For the first time this result has been declared to AMS in Foukzon [207; Foukzon [87]. An

important applications in topology and homotopy theory are obtained in Foukzon [217; Foukzon [227; Foukzon

[2s7.
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