
 

 

 
61 

© 2018 AESS Publications. All Rights Reserved. 

 

 

 

SOME PROPERTIES OF SEVERAL PROOF SYSTEMS FOR 
INTUITIONISTIC, JOHANSSON’S AND MONOTONE 
PROPOSITIONAL LOGICS 

 

 

 

 Chubaryan 
Anahit1+ 

 Karabakhtsyan 
Arman2 

 Petrosyan Garik3 

 

1Doctor of  Physical and Mathematical Sciences, Full Professor of Yerevan 
State University and Russian-Armenian University, Armenia 
2Master Student of Department of  Applied Mathematics and Informatics of 
Russian-Armenian University, Armenia  
3Master Student of Department of Informatics and Applied Mathematics of  
Yerevan State University, Armenia 
 

 
(+ Corresponding author) 

 ABSTRACT 
 
Article History 
Received: 19 December 2017 
Revised: 19 January 2018 
Accepted: 23 January 2018 
Published: 30 January 2018 
 

Keywords 
Strongly equal tautology 
Minimal tautology 
Sequent proof systems 
Frege systems 
Proof complexity measures 
Monotonous system. 

 

 
In this paper we investigate two properties of some propositional systems of 
Intuitionistic, Johansson’s and Monotone logics: 1) the relations between the proofs 
complexities of strongly equal tautologies (valid sequents) and 2) the relations between 
the proofs complexities of minimal tautologies (valid sequents) and of results of 
substitutions in them. We show that 1) strongly equal tautologies (valid sequents) can 
have essential different proof complexities in the same system and 2) the result of 
substitution can be proved easier, than corresponding minimal tautology (valid 
sequents), therefore the systems, which are considered in this paper, are no monotonous 
neither by lines nor by size. 
 

1. INTRODUCTION 

The traditional assumption that all tautologies as Boolean functions are equal to each other is not fine-grained 

enough to support a sharp distinction among tautologies. The authors of An and Arm [1] have provided a different 

picture of equality for classical tautologies. The notion of “determinative conjunct” is introduced in Chubaryan [2] 

on the basis of which the notion of strong equality of classical tautologies was suggested in An and Arm [1]. The 

idea to revise the notion of equivalence between tautologies in such way that is takes into account an appropriate 

measure of their “complexity”.    

The relations between the proof complexities of strongly equal classical tautologies in some proof systems are 

investigated in [3-5]. It was proved that the strongly equal tautologies have the same proof complexities in some 

“weak” proof systems, but the measures of proof complexities for strongly equal tautologies can be essentially 

different in the most traditional proof systems of Classical Logic (Frege systems, substitution Frege systems, 

sequent systems with and without cut rule). As the set of classical tautologies is co-NP-complete, the theory of 

proof complexity for classical proof systems is motivated by the conjecture NP ≠ co-NP. The set of tautologies, 

being intuinistically valid is PSPACE-complete, thus the PSPACE ≠ NP conjecture motivates an analogous 

research program as in classical case. In this work we introduce the notions of strongly equal non-classical valid 

sequents (non-classical tautologies) and show that the proof complexities of strongly equal non-classical valid 
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sequents ( non-classical tautologies)  can be also essentially different in some sequent propositional systems of 

Intuitionistic, Johansson’s and Monotone logics, therefore in corresponding Frege systems as well..  

The second theme of our investigation is connected with relation between the proof complexities of minimal 

tautologies, i.e. tautologies, which are not a substitution of a shorter tautology, and results of a substitution in them. 

The minimal tautologies play main role in proof complexity area. Really all “hard” propositional formulaes, proof 

complexities of which are investigated in many well known papers, are minimal tautologies. There is traditional 

assumption that minimal tautology must be no harder than any substitution in it. We introduce for the 

propositional proof systems the notions of monotonous by lines and monotonous by sizes of proofs. In [4, 6] it is 

proved that many traditional classical proof systems of 2-valued and many-valued logics are no monotonous neither 

by lines nor by size. Here we prove the analogous result for some systems of non-classical propositional logic as 

well. 

This work consists from 4 main sections. After Introduction we give the main notion and notations as well as 

some auxiliary statements in Preliminaries. The main results are given in 3-th section and in  the last  section we 

give some problem for discussion. 

 

2. PRELIMINARIES 

We will use the current concepts of a propositional formula, a classical tautology and non-classical tautologies,  

sequent, sequent systems for non-classical propositional logics [7-9] Frege systems for Intuitionistic and 

Johansson’s logics [10, 11] and proof complexity [12]. Let us recall some of them. 

 

2.1. The Considered Sequent Systems 

Follow Kleene [7] we give the definition of main systems, which are considered in this point. The particular 

choice of a language for presented propositional formulas is immaterial in this consideration. However, because of 

some technical reasons we assume that the language contains the propositional variables p, q and pi ,qi , 

logical connectives   and parentheses (,). Note that some parentheses can be omitted in generally 

accepted cases.  

2.1.1. Sequent system uses the denotation of sequent  where  (antecedent) and  (succedent) are finite (may 

be empty) sequences of propositional formulas. 

For every formula  and for any sequence of formulas  the axiom scheme  of  propositional intuitionistic (PI) 

system is  

For every formulas  for any sequence of formulas , which is empty or consists of 

one formula,  the logic rules are. 
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For propositional Johansson’s (minimal) system (PM) axiom sxeme and inference rules are the same, but  

must be empty [8]. Note that the order of formula ocurences in antecedents (succedents) are immaterial in above 

systems.  

The propositional monotone system (PMon), where only monotonous logical functions are used for construction of 

formulas, we define follow Atserias, et al. [9]. 

The axioms of  PMon system are  

 

where  A is any formula,  is sequence of formulas, by  are denoted “false” and “truth” accordingly 

For every formulas  and for any sequence of formulas and  the inference rules are. 

                     

                    

                     

                          

To all above systems can be added cut-rule of inference 

. 

We use the well known notion of proof in all above systems.  

Any sequent  is called I-valid sequent (M-valid sequent, Mon-valid sequent) if it is deduced in the  

system PI (PM, PMon). Any formula A is called I-tautology or M-tautology if sequent is deduced in the 

corresponding system PI or PM. Any formula A⊃B is called Mon-tautology if sequent  B is deduced in the 

system PMon. 
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Remark 2.1.1 

1) Every Mon-tautology (Mon-valid sequent) is M-tautology (M-valid sequent), every M-tautology (M-valid 

sequent) is I-tautology (I-valid sequent) and every I-tautology (I-valid sequent) is classical tautology (classical valid 

sequent). 

2) If any formula is not   classical tautology, then it is   not non-classical tautology as well. 

Let  be some sequent, where  is a sequence of formulas  and is a sequence of 

formulas . The formula form of sequent (f.f.s.)  is the formula , which is 

defined usually as follows: 

 1) , 

 2) for  ,  

 3)  for , . 

It is well-known that   is classical (intuitionistic, Johansson’s, monotone) valid sequent iff (if and only 

if ) its f.f.s. is classical (intuitionistic, Johansson’s, monotone) tautology. 

For every inference rule  (  ) we call inference formula form (i.f.f.) the formula f.f.s.D⊃f.f.s.E  

(f.f.s.D⊃(f.f.s. ⊃f.f.s.E)). 

Sometimes we’ll use term tautology (valid sequent) for all types of above mentioned tautology (valid sequent)  further.   

 

2.2. Some Properties of Tautologies (Valid Sequents) 

Here we give some properties of propositional formulas, which will be used for main results. 

 

2.2.1. Determinative Disjunctive Normal Forms 

Following the usual terminology we call the variables and negated variables   literals for classical logic. The 

conjunct K (clause) can be represented simply as a set of literals (no conjunct contains a variable and its negation 

simultaneously). 

In [1, 2] the following notions were introduced for classical logic. Each of the under-mentioned trivial 

identities for a propositional formula    is called replacement-rule: 
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Application of a replacement-rule to some word consists in the replacing of some its subwords, having the form 

of the left-hand side of one of the above identities, by the corresponding right-hand side. 

Let  be a propositional formula,  be the set of all variables of , and 

 ( ) be some subset of . 

 

Definition 2.2.1.1   

Given  , the conjunct    is called  -

determinative (  -determinative) if assigning   to each  and successively using 

replacement-rules we obtain the value of   (1 or 0) independently of the values of the remaining variables. 

 

Definition 2.2.1.2  

DNF  is called determinative DNF (DDNF) for  if  and every conjunct  

 is 1-determinative for . 

 

Definition 2.2.1.3  

DNF  is called determinative DNF (dDNF) for  if  and every conjunct  

 is 1-determinative for . 

It is obvious, that for every classical tautology each corresponding dDNF must be also classical tautology. 

Some arguments for the following definition were given in An and Arm [1]. 

The classical tautologies  and  are strongly equal if every determinative conjunct  for  is determinative conjunct   for  

and vice versa. 

It is not difficult to see, that dDNF for classical tautology can be constructed directly. As the non-classical 

validity is determined by derivability in some accordingly propositional proof system, the above definition of dDNF 

for non-classical tautologies is not applicable. In Chubaryan [2] some algorithm for construction of dDNF for 

classical tautologies on the base of their resolution refutations was given. The analogies of dDNF for intuitionistic 

and Johansson’s tautologies (  I-determinative DNF and  M-determinative DNF accordingly) were 

constructed on the base of proofs in intuitionistic and minimal resolution systems [13] where, in particularly, were 

showed, that only variables with one or double negations are the literals in I-determinative conjuncts and 

 or  type formulas are literals in M-determinative conjuncts. The Mon-determinative 

DNF for every Mon-tautology A⊃B  can by constructed by analogy on the base of some PMon-proof of sequent 
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A  As literals for  monotone logic  can be  p+ and  p-, depending  of positive or negative occurrence of variable p 

in the axioms of PMon-proof of sequent A  .  

 

Definition 2.2.1.4  

DNF is called dDNF for a valid sequent if it is dDNF for its f.f.s.. 

Main definition 1. The classical (intuitionistic, Johansson’s) tautologies  and  are strongly equal if every dDNF (I-dDNF, 

M-dDNF) for  is dDNF (I-dDNF, M-dDNF) for  and vice versa. The classical (intuitionistic, Johansson’s, monotone) 

valid sequents  and  are strongly equal if every dDNF (I-dDNF, M-dDNF, Mon-dDNF) for  is 

dDNF (I-dDNF, M-dDNF, Mon-dDNF) for  and vice versa. 

 

2.3. Essential Subformulas of Tautologies (Valid Sequents) 

For proving the main results we generalize for non-classical tautologies the notion of essential subformulas, 

introduced in Chubaryan [2]. 

Let F be some formula and )(FSf  be the set of all non-elementary subformulas of formula F . For every formula 

F , for every )(FSf  and for every variable p  by 
pF  is denoted the result of the replacement of the 

subformulas  everywhere in F  by the variable p . If )(FSf , then 
pF  is F . 

We denote by )(FVar  the set of all variables in F . 

 

Definition 2.3.1  

Let p  be some variable that )(FVarp  and )(FSf  for some classical tautology (I-tautology, M-

tautology, Mon-tautology) F . We say that   is an essential subformula in F iff
pF  is not classical tautology. 

Note that for example the subformula is not essential for I-tautology , because the formula 

 is not I-tautology, but is classical tautology. 

The set of essential subformulas in tautology F  we denote by Essf(F), the number of essential subformulas – by 

Nessf(F) and the sum of sizes of all essential subformulas  by Sessf(F). 

 

Definition 2.3.2 

A tautolgy is called minimal if it is not a substitution of a shorter tautology. 
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Definition 2.3.3  

Sequent  is called minimal valid if its formula form  is minimal tautology. 

We denote by S( ) the set of all formulas, every of which is result of some substitution in a minimal tautology . 

If F  is minimal tautology, then )(=)( FSfFEssf . 

 

Definition 2.3.3  

The subformula   is essential for valid sequent  if it is essential for its formula form. 

It easy to prove the following statements. 

 

Proposition 2.3 

Let 𝓕 be some of above proof system (with and without cut rule), F  be  a valid sequent and )(FEssf , 

then 

 in every 𝓕-proof of F subformula   must  be essential either at least in some axiom, used in proof or in 

i.f.f. for some used in proof inference rule, 

 there is some constant c such that the number of essential subformulas for every  axiom of  𝓕 and of i.f.f. for 

every inference rule of 𝓕 is no more, than c. 

Both statements of this Proposition can be proved by immediate examination every of axioms and inference rules in 

each of above systems. The analogous statements for traditional proof systems of classical systems are proved in 

Chubaryan [2]. 

 

2.4. Proof Complexity Measures 

By | | we denote the size of a formula , defined as the number of all logical signs in it. It is obvious that the 

full size of a formula, which is understood to be the number of all symbols is bounded by some linear function in |  

|. 

In the theory of proof complexity two main characteristics of the proof are: t- complexity (length), defined as 

the number of proof steps, -complexity (size), defined as sum of sizes for all formulas in proof  [12]. 

Let  be a proof system and  be a valid sequent. We denote by  (  the minimal possible value of 

t-complexity ( -complexity) for all -proofs of  . 
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Main Definition 2. Sequent proof system  is called t-monotonous ( -monotonous) if for every valid 

sequent  and for every sequent   such that ∈  S( )   ≤   

( ≤ . 

 

3. MAIN RESULTS 

3.1. Auxiliary Statements 

Before we prove the main theorems, at first we must give some easy proved auxiliary statements. Let us 

consider the following sequences of sequents: 

    Dn =  p⟶ ,         

    En  =     p⟶  

     Fn =   p⟶ q       

     Gn =    p⟶    

Lemma 3.1.a) There are constants c1, c2, c3 and c4  such, that for every n 

 ≤ c1,      ≤ c2  and   ≤ c3 n,      ≤  c4 n.  

b) There are constants k1, k2, k3 and k4  such, that for every n 

 ≥ k1n,       ≥ k2n    and       ≥ k3 ,      ≥  k4 .  

Proof of point a) is obviously. Really for every n sequent Dn can be proved  in PMon as follow 

. 

For every n sequent Gn can be proved  in PMon as follow 
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For proving of point b) note that for each i (1≤i≤n) the formula  is essential 

both for En  and Fn, therefore Nessf(En)≥n, Nessf(Fn)≥n and Sessf(En )≥  Sessf(En ) ≥ . Now we must use 

the statements of both points from Propositional 2.3.                                                                               ⧠ 

Corollary. Above statements for sequents Dn and En are true in the systems PI and PM as well, Therefore 

above statements for sequents Gn and Fn are true in the systems PM and PMon as well. 

Theorem 1. a)  The intuitionistic, Johansson’s and monotone valid seguents  and  are strongly 

equal. 

b) For every of above mentioned system 𝓕 (with and without cut rule) 

 = O(1)  and   = O(n),   but   =  and   = (   

Proof. It is not difficult to see that I-dDNF  of   and is  {   }, M-dDNF of  and  is {  

 }, and Mon-dDNF of  and  is { p+,   p-}, therefore seguents  and  are strongly equal. 

Proof of point b) follows from Corollary of Lemma 3.1..                                            ⧠ 

Theorem 2.  Every of above mentioned systems 𝓕 (with and without cut rule) is neither t-monotonous nor -

monotonous. 

Proof. It is not difficult to see that for every n sequent Fn is minimal valid sequent and corresponding sequent Gn  is 

result of substitution in Fn .  From Corollary of Lemma 3.1. it is follow that   = 0(1)  and       =0(n),   but      

 =   and     = ( .                         ⧠ 

3.2. Results for Frege Systems of Intuitionistic and Johansson’s Logics 

Here we recall the definitions of Frege systems for Intuitionistic and Johansson’s logics, which are given in 

Mints and Kozhevnikov [10] and Sayadyan and Chubaryan [11] correspondingly. 

 

Definition 3.2.1 

Some inference rule  is called admissible for some Hilbert style proof system  if formula   can 

be deduced in this system from the premises . 

Let I1 and M1 are the following systems (see, for example Kleene [7]). 

For each propositional formulas  every from the following formula is axioms scheme of I1   

1)  
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2)  

3)  

4) ;  

5) ;  

6) (A )  

7)  

8)  

Inference rule is modus ponens     (m.p.). 

The system M1 has only axioms scheme 1)-7) and instead if negation  is used   

For definition of Frege systems for Intuitionistic and Johansson’s logics we use the generally accepted notion of 

polynomial simulation. Let Ф1 and Ф2 be two different proof systems. 

 

Definition 3.2.2  

The system Ф1 p-simulates the system Ф2 if there exist the polynomial p() such, that for each formula   

provable both in the systems Ф1 and Ф2, we have  . 

Definition 3.2.3  

The systems Ф1 and Ф2 are p-equivalent, if systems Ф1 and Ф2 p-l-simulate each other. 

 

Definition 3.2.4 

Every Frege system for Intuitionistic (Johansson’s) logic FI (FM) consists from finite set of axioms schemes, 

each of which is provable in I1 (M1), finite set of inference rules, each of which is admissible in I1 (M1), and FI (FM) is 

p-equivalent with I1 (M1). 

It is not difficult to prove, that the statements of the Theorems 1. and 2.are valid for Frege systems of 

Intuitionistic and Johansson’s logics, using the formulas: 

(D)’n =  p⊃ ,         

 (E)'n  =     p⊃  
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  (F)'n =   p⊃ q       

 (G)"n =    p⊃    

   

4. DISCUSSION  

We want to note, that for every n the sequent Gn is result of substitution in the other minimal valid sequent    

p⟶ , t-complexity and  -complexity of which is bounded by some constant in all above mentioned 

systems. We can introduce the following definition: the sequent proof system Ф is called t-strongly 

monotonous (  -strongly monotonous) if for every valid sequent  there is minimal valid sequent  

 such that ∈  S( ) and      ( . It is interesting to 

investigate the following problem: are the above non-classical systems as well as the classical systems strongly 

monotonous? It seems that answer must be positive. Analogous question for tree like proofs was stated in Anikeev 

[14]. Investigation of this questions are in process.  
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