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In this paper, a new probability distribution is introduced following the work of 
Marshall and Olkin [1]. Sub models of the proposed distribution are also important 
models used in the literature. Expressions for some of its properties such as limiting 
behavior, quantile function, moments, moment generating function, order statistics, 
entropy, and reliability functions are derived. The method of maximum likelihood is 
used in the estimation of the model parameters. The graphs of the hazard rate function 
plotted for some values of the parameters show that the distribution can be used to 
model data which exhibits decreasing, increasing or bathtub hazard rate behavior. 
Series expression of the probability density function was also obtained which enables 
the expression of some properties of the new distribution in terms of the properties of 
the base distribution. The distribution is fitted to two real life datasets to show its 
flexibility and usefulness. Its goodness-of-fit indices indicate better fit to the datasets 
than the three other distributions compared with it. 
 

Contribution/ Originality: This study originates a new probability distribution named Marshall-Olkin 

Extended Weibull-Exponential distribution (MOEWED) which is a four-parameter continuous univariate 

probability distribution capable of modelling data sets of diverse shapes of distribution including approximately 

symmetric, left-skewed, right-skewed, J-shape, reversed J-shape and unimodal shapes. 

 

1. INTRODUCTION 

In a bid to describe and explain random variables, many statistical models have been conceived and formulated 

in probability theory. However, many of these well-known and classical distributions have been outperformed by 

more recently proposed distributions in some real life data sets. Again, the actual distributions of various data sets 

differ in their shapes, nature of hazard rate and many other characteristics defining the distributions. It is therefore 

very crucial in data analysis to work with an assumed distribution that is as close as possible to the actual unknown 

distribution of the data set of interest. Consequently, there has been an active interest among researchers to develop 

new models that yield more satisfactory fit to data sets of interest. 

Lately, new methods of generating univariate continuous distributions are mostly based on the idea of 

introducing additional parameters to an existing distribution or combining two existing distributions to generate a 

new and often more flexible distribution. 
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Popular among these new methods include the exponentiation method by Mudholkar and Srivastava [2] 

applied by Nadarajah and Kotz [3]; Gupta and Kundu [4]; Nadarajah [5] and Flaih, et al. [6] etc. Other methods 

include the method of adding a parameter to a distribution introduced by Marshall and Olkin [1] the Beta-

generated method [7] and the Quadratic rank transmutation map method [8]. Whereas the methods developed by 

Marshall and Olkin [1] and Shaw and Buckley [8] introduce additional parameter to a baseline distribution, the 

method introduced by Eugene, et al. [7] combines two existing distributions to generate a new distribution. 

Extensions of the Beta-generated method have been proposed by Jones [9] and Alzaghal, et al. [10]. Afify, et al. 

[11]; Khan, et al. [12] and Odom, et al. [13] among many others, have applied the quadratic rank transmutation 

map method. Using the method introduced by Marshall and Olkin [1] new distributions have also been proposed 

and studied by Ghitany, et al. [14]; Gui [15]; Krishna, et al. [16]; Al-Saiari, et al. [17]; Benkhelifa [18] and 

Mansoor, et al. [19]. Also, Santos-Neto, et al. [20] proposed the Marshall-Olkin Extended Weibull family of 

distributions and studied various properties of the new family of distributions.  

Given the fact that the behavior of observed data usually exhibits some sort of departure from that of the 

theoretical distributions used to model them, this research aims at increasing the flexibility of the Weibull-

Exponential distribution (proposed by Oguntunde, et al. [21])) using the method introduced by Marshall and Olkin 

[1]. This is in response to the well-recognized need to approximate the empirical distribution of available data sets 

as closely as possible. Oguntunde, et al. [21] in a bid to increase the flexibility of the exponential distribution, used 

the Weibull generalized family of distributions introduced by Bourguignon, et al. [22] to generate the Weibull-

Exponential distribution. 

The rest of the paper is structured as follows: the proposed distribution is introduced in section 2.0, section 3.0 

presents some mathematical properties of the distribution, section 4.0 provides the estimation and application to 

real life data while the summary and conclusion is presented in section 5.0. 

 

2. THE MARSHALL-OLKIN EXTENDED WEIBULL-EXPONENTIAL DISTRIBUTION 

According to Marshall and Olkin [1] given  xG ,     dxxdGxg /  and    xGxG 1  as the baseline 

cumulative distribution function (c.d.f.), probability density function (p.d.f.) and survival function, respectively, of a 

continuous random variable X , the survival function of the Marshall-Olkin extended distribution is given by 1 

   
   xG

xG
xF








11
,   0,x   (1) 

This paper uses the above method of Marshall and Olkin [1] to extend the Weibull-Exponential distribution 

proposed by Oguntunde, et al. [21].  

Oguntunde, et al. [21] proposed the Weibull-Exponential distribution (WED) with cumulative distribution 

function, probability density function and survival functions given respectively as 2-4: 

   




 

 1exp1 xexG ,  0,,,0  x                (2) 

        1exp1
1


 xxx eeexg        (3) 

  xs  




 

 1exp xe        (4) 

Applying 4 in 1, the survival function of the Marshall-Olkin Extended Weibull-Exponential Distribution 

(MOEWED) is obtained as 5 
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 
 

   




 





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








1exp11

1exp

x

x

e

e

xF       (5) 

Using the well-known relation,    xFxF 1 , where  xF  is the c.d.f. of the random variable X , the 

c.d.f. of the MOEWED is given by 6: 

 
 

   




 





 










1exp11

1exp1

;
x

x

e

e

xF ξ ,    ,,,,0  ξx  and 0,,,          (6) 

Consequently, the p.d.f. of the MOEWED is obtained as:  

       

   
2

1

1exp11

1exp1

;











 





 













x

xxx

e

eee

dx

xdF
xf ξ , 0,,,,0  x           (7) 

where   is a scale parameter and ,  and   are shape parameters.  

Figure 1 shows the graph of the p.d.f. of Marshall-Olkin Extended Weibull-Exponential distribution. It can be 

seen from Figure 1 that the Marshall-Olkin Extended Weibull-Exponential density is both right and left skewed, 

can be unimodal or assume either J shape or reversed-J shape. 

 

 
Figure-1. The p.d.f. of the marshall-olkin extended weibull-exponential distribution. 

 

The following sub models are contained in the Marshal-Olkin Extended Weibull-Exponential distribution: 

(1) If 1 , then the MOEWED becomes the Weibull-Exponential distribution. 

(2) If 1 ,  1  and    , then the MOEWED reduces to the Gompertz distribution. 

2.1. Limiting Behavior of the MOEWED 

The limits of the MOEWED, as 0x  and as x  respectively, are investigated. 
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Therefore, with 0x ,   1;0  ξxf  and     0;lim;lim
0




ξξ xfxf
xx

, the Marshal-Olkin Extended 

Weibull-Exponential distribution has at least one mode. 

 

2.2. Series Expression of the Probability Density Function of the MOEWED 

Theorem 2.1 

Let   ,,,~ MOEWEDX  with p.d.f. as in 7. Therefore the p.d.f. of X  can be expressed as an infinite 

linear combination of the Weibull-Exponential densities as follows 8-10: 

      





0

,,1;;
j

j jxgvxf ξ       (8) 

where    ,,1; jxg  denotes the Weibull-Exponential density function with parameters   ,1j  

and   and  

 

 

 










0


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j

j qv       

for

for

for

    

1

1
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











     (9) 

where   j
j   ,  1  and 

 
 
 

   
 



 








jk

k
j

j
jk

k

j
q

!

11!1

!1

1 


 . 

Proof 

Recall the generalized binomial expansion 

 
  k

k

ka
z

k

a
z 








0 !
1 ,   for 1z    (10) 
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where  

   
 

    121 



 kaaaa

a

ka
a k   is the ascending factorial. 

For 10   and  1  and applying 10 to the inverse of the denominator of (7), we obtain 11-12: 

    
2

1exp11










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Therefore  
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where    ,,1; jxg  denotes the Weibull-Exponential density function with parameters   ,1j  

and   and   j
j   . 

For 1 , consider  




 
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It can be verified that for 1  and 0,,  ,     11exp111 

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 xe . Therefore, 
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where    ,,1; jxg  denotes the Weibull-Exponential density function with parameters   ,1j  

and   and 
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For brevity, since   j  and  jq  depend only on the parameter  , we can write 14: 
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Therefore,  
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j jxgvxf ξ . End of proof. 

Some mathematical properties of the Marshall-Olkin Extended Weibull-Exponential density can therefore be 

obtained from the properties of the Weibull-Exponential function. 

 

3. SOME MATHEMATICAL PROPERTIES OF THE MOEWED 

3.1. Random Sample Generation 

Let X be a continuous random variable with density function as in 7. With 7 being positive everywhere in its 

domain, the distribution function, 6, is monotonically non-decreasing. Consequently, 6 has an inverse. For 

  pxF ξ; , we can find x  in terms of p  where p  is uniformly distributed on  1,0 . Therefore, 
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where X  is a random sample from MOEWED,  1,0~Up  and    pQpF 1
 denotes the inverse 

distribution function or quantile function of MOEWED 15. Hence, if we can generate p , uniformly distributed on 

 1,0 , then we can simulate the random variable, X , with distribution as in 6. 

 

3.2. Moments and Moment Generating Function 

The 
thr  moment about origin of a random variable, X , following the Marshall-Olkin Extended Weibull-

Exponential distribution is given by 16: 
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where    ,,1~ jWEY j  implies that jY  is a random variable having the Weibull-Exponential 

density function    ,,1; jyg j . 

Similarly, the moment generating function,  tM X , of a random variable, X , following the Marshall-Olkin 

Extended Weibull-Exponential distribution is given by 17: 
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where  tM
jY  is the moment generating function of the random variable, jY , having the Weibull-

Exponential density function    ,,1; jyg j . 

 

3.3. Hazard Rate Function 

The hazard rate function of the MOEWED is given by 18: 
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Figure 2 shows the graphs of the hazard rate function of the MOEWED for selected values of the parameters. 

The graphs, having J-shape, reversed-J shape and bathtub shape, shows that the MOEWED can be used to model 

data that exhibits increasing, decreasing or bathtub hazard rate behaviors. It is J shaped for values of 1  and 

reversed-J shaped or bathtub shaped for values of 1 .  

 

 

 
Figure-2. Graphs of the hazard rate function of the MOEWED. 
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3.4. Entropy 

This section considers Rényi entropy which is widely applied in the literature.  

 

Theorem 3.1 

The Rényi entropy of a random variable, X , following the Marshal-Olkin Extended Weibull-Exponential 

distribution is given by  19-20: 
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where     1,;  xexR ,     ,;,; xRxr   and  
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where     1,;  xexR ,     ,;,; xRxr   and 
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where     1,;  xexR ,     ,;,; xRxr   and 
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Again, for brevity, since   ,j  and   ,j  depend only on the parameters   and  , we can write: 
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where   ,j ,  ,;xr  and  ,;xR  are as earlier defined. End of proof. 

 

3.5. Order Statistics 

Let nYYYY  321  be the order statistics corresponding to the random sample nXXXX ,,,, 321   

from the Marshal-Olkin Extended Weibull-Exponential distribution. Then the p.d.f. of the 
thr  order statistics, rY , 

is given by 26: 
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 Also, the c.d.f. of the 
thr  order statistics is given by 28: 
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Substituting 6 in (27) above, we have: 
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4. ESTIMATION AND APPLICATION TO REAL DATA 

4.1. Maximum Likelihood Estimation 

Let nXXXX ,,,, 321   be a random sample of size n  from the Marshall-Olkin Extended Weibull-

Exponential distribution having p.d.f. as in Equation 7. Then the likelihood function, L , of the MOEWED is given 

by 29: 
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and the log-likelihood function, Lln , is 30 
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The maximum likelihood estimates (MLE), ξ̂  of ξ  are therefore obtained as the roots of the following 

nonlinear equations which are partial derivatives of 30, 31-34 with respect to each of the four parameters 
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These systems of non-linear equations are however, not in closed-form. Therefore, the roots can be obtained 

numerically using an iterative numerical method such as the Newton-Raphson method Implemented in the maxLik 

function in R. 

 

4.2. Application to Real Data 

In this section, the usefulness of the MOEWED is demonstrated. The goodness-of-fit of the MOEWED is 

compared with that of the Weibull-Exponential distribution (WED) Oguntunde, et al. [21] Exponentiated 

Weibull-Exponential distribution (EWED) Alzaatreh, et al. [23] and Gumbel-Weibull distribution (GWD) Al-

Aqtash, et al. [24] using two real life data sets. The method of maximum likelihood is used to estimate the 

parameters of the models and the widely used Akaike Information Criterion (AIC), Bayesian Information Criterion 

(BIC) and Log-likelihood are used as goodness-of-fit indices. The maximum likelihood estimates, standard errors of 

the estimates and the goodness-of-fit statistics of the WED, EWED and the GWD are respectively obtained from 

Oguntunde, et al. [21]; Alzaatreh, et al. [23] and Al-Aqtash, et al. [24]. 

Data set 1: The first data set, which has been used by Smith and Naylor [25], Bourguignon, et al. [22] and 

Oguntunde, et al. [21] was originally obtained by workers at the UK National Physical Laboratory. It consists of 

63 data points on the strengths of 1.5cm glass fibres. The data is presented in Table 1. 
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Table-1.  Strength of 1.5cm glass fibre data 

0.55 0.74 0.77 0.81 0.84 0.93 1.04 1.11 1.13 1.24 1.25 1.27 

1.28 1.29 1.3 1.36 1.39 1.42 1.48 1.48 1.49 1.49 1.50 1.50 
1.51 1.52 1.53 1.54 1.55 1.55 1.58 1.59 1.60 1.61 1.61 1.61 
1.61 1.62 1.62 1.63 1.64 1.66 1.66 1.66 1.67 1.68 1.68 1.69 
1.70 1.70 1.73 1.76 1.76 1.77 1.78 1.81 1.82 1.84 1.84 1.89 
2.00 2.01 2.24 

                            Source: Oguntunde, et al. [21]. 

 

Table-2. The MLEs, SEs (in parentheses) and the goodness-of-fit indices for the glass fibre data. 

Distributions MOEWED EWED WED 

Parameter 
estimates 

α = 9.10994 (1.04812) α = 23.614 (3.954) α = 0.0175 (0.05746) 

β = 2.43622 (0.31299) ϒ = 7.249 (0.994) β = 2.87962 (1.94066) 

λ = 0.31454 (0.01877) с = 0.0033 (0.003) λ = 1.01779 (1.13950) 

𝜃 = 18.91277 (3.23214)   

Log likelihood -11.98 −14.33 -14.40 

AIC 32.0 34.7 34.8 
BIC 40.5 41.1 41.2 

Source: Oguntunde, et al. [21]; Alzaatreh, et al. [23]; Al-Aqtash, et al. [24]. 

 

It is obvious from Table 2 that the MOEWED has the lowest values for all the three goodness-of-fit indices 

indicating that it yielded the best fit for the data set.  

Data set 2:  The second data set consists of 66 data points on the breaking stress of carbon fibres of 50mm 

length (GPa). It has been previously used by Nichols and Padgett [26], Cordeiro and Lemonte [27], Al-Aqtash, et 

al. [24] and Oguntunde, et al. [21]. The data is presented in Table 3. 

 
Table-3.  Stress of 50mm carbon fibre data. 

0.39 0.85 1.08 1.25 1.47 1.57 1.61 1.61 1.69 1.80 1.84 
1.87 1.89 2.03 2.03 2.05 2.12 2.35 2.41 2.43 2.48 2.50 

2.53 2.55 2.55 2.56 2.59 2.67 2.73 2.74 2.79 2.81 2.82 
2.85 2.87 2.88 2.93 2.95 2.96 2.97 3.09 3.11 3.11 3.15 
3.15 3.19 3.22 3.22 3.27 3.28 3.31 3.31 3.33 3.39 3.39 
3.56 3.60 3.65 3.68 3.70 3.75 4.20 4.38 4.42 4.70 4.90 

Source: Oguntunde, et al. [21]. 

 
Table-4.  The MLEs, SEs (in parentheses) and the goodness-of-fit indices for the carbon fibre data 

Distributions MOEWED GWD WED 

Parameter 
estimates 

α = 65.79427 (2.12723) α = 2.4231 (0.5078) α = 5.25929 (7.54600) 

β = 1.43855 (0.14634) β = 3.4359 (1.1494) β = 2.80643 (0.31699) 

λ = 0.04372 (0.00772) λ = 1.1324 (0.4524) λ = 0.14236 (0.05404) 

𝜃 = 32.20515 (0.11712) 𝜎 = 5.5673 (2.8064)  

Log likelihood -84.74 – 84.83 -85.88 
AIC 177.5 177.7 177.8 

BIC 186.2 186.4 184.3 

Source: Oguntunde, et al. [21]; Alzaatreh, et al. [23]; Al-Aqtash, et al. [24]. 

 

Table 4 indicates clearly that the MOEWED has lowest values in two out of the three goodness-of-fit indices 

(lnL and AIC), indicating that it is a strong competitor to the other two distributions, especially the WED. 

 

5. SUMMARY AND CONCLUSION 

This work extends the Weibull-Exponential distribution using the method of adding a parameter to a 

distribution proposed by Marshall and Olkin [1]. Various mathematical properties of the resulting new distribution 

were studied. Particularly, series expression of the probability density function was derived which makes it possible 

to obtain some properties of the new distribution in terms of the properties of the base distribution. Maximum 



Journal of Asian Scientific Research, 2019, 9(10): 158-172 

 

 
171 

© 2019 AESS Publications. All Rights Reserved. 

likelihood estimation method was used to obtain the parameter estimates. The usefulness of the new distribution 

was evaluated on the basis of two real life data sets. Its goodness-of-fit indices show its better fit to the data sets 

than the other distributions compared with it. 
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