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This paper presents a comparative analysis of basic forms of Flexible Alternating 
Current Transmission Systems (FACTS) Devices. The effect of thyristor firing angle 
on the transmitted voltage and current by the Thyristor Controlled Reactor (TCR) is 
presented. The real and the reactive power produced by the Thyristor Controlled 
Reactor at L = 100mH is also presented. The rate of reactive power absorption and 
injection on the transmission line by two selected FACTS-Devices such as the Static 
Var Compensator (SVC) and the Unified Power Flow Controller (UPFC) is 
mathematically modeled and evaluated with respect to a regulated voltage and current 
magnitude. Simulation results carried out on the circuit models indicate that Thyristor 
Controlled Reactor absorbed more reactive power of 1.875KVAR with a reduced 
overload. The Static Var Compensator injected more reactive power of 28.75KVAR to 
the transmission line while the Unified Power Flow Controller reduced excess overload 
through phase angle adjustment with the injection of less reactive power of 675VAR to 
the transmission line grid. All simulations were actualized in MATLAB 7.14 version. 
 

Contribution/ Originality: This study applied a new methodology in evaluating the rate of reactive power 

injection and absorption into the transmission line grid network using three conventional FACTS-Controllers. 

Power equations were formulated and simulated. The simulation results indicated that TCR absorbed more reactive 

power while SVC injected more reactive power to the transmission line with a reduced overload. 

 

1. INTRODUCTION 

A flexible alternating current transmission systems (FACTS) device is a recent technological development in 

electrical power systems. Its operation is based on high-power semi-conductor device technology. The early 

development of the FACTS technology is observed in power electronic version of the phase-shifting and tap-

changing transformers [1]. These controllers together with the electronic series compensator can be considered to 

belong to the first generation of FACTS equipment [1]. The unified power flow controller (UPFC), the static var 

compensator (SVC) and some inter-phased power controllers are the most recent developments. Their control 

capabilities and intended functions are more sophisticated than those of the first wave of FACTS controllers [2]. 

The recent emerging power electronics applications in power systems as referenced in Hingorani and Gyugyi [3] 

are classified as: (i) Bulk active and reactive power control (ii) Voltage quality improvement. The first application is 

a FACTS based application where the latest power electronic devices and methods are used to control the high 
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voltage transmission electronically [3]. The second application focuses on the low voltage distribution and is 

created in response to the poor power quality and reliability of supply affecting most industries and homes [3]. 

 

2. THYRISTOR CONTROLLED REACTOR (TCR) 

Power electronic circuits using conventional thyristors have been widely applied in power transmission 

application in the early 1970 [4]. The first application was on the high voltage direct current (HVDC) transmission 

network [4]. More recently, fast acting series compensator using thyristors have been applied to vary the electrical 

length of key transmission lines with a negligible delay angle [5]. In distribution system applications, solid state 

transfer switching using thyristors are being utilized to enhance the reliability of supply to critical customer load 

[6]. The main component of the basic thyristor controlled reactor (TCR) is shown in Figure 1. The controllable 

element is the anti-parallel thyristor pair Th1 and Th2 which conducts on alternate half cycle of the supply 

frequency. The thyristor conduction is dependent on the firing angle as represented in Equation 1. 

 

Where:  = conduction angle and   = thyristor firing angle. 

Partial conduction of the thyristor is achieved when the firing angle fall in the range of  . This 

implies that increasing the value of the firing angle above    causes the TCR current waveform to become non-

sinusoidal with the fundamental frequency component reduced in magnitude. 

 

L

Th1Th2

iTCR(t)

Vs = √2 Vm Sinωt

 
Figure-1. Basic thyristor controlled reactor [2]. 

                                                            Source: Fuerte-Esquivel, et al. [2]. 

The instantaneous thyristor current  is given by Equation 2. 

 

An expression for the fundamental frequency current   is given by Equation 3. 

 

Where :  = conduction angle,  = firing angle and   = peak voltage. 
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The overall action of the thyristor controller on the linear reactor is to act as a controllable susceptance in the 

inductive sense as presented in Equation 4. 

 

 

In power system, TCR installations are usually three-phase based. Filters and other harmonic cancellation 

arrangements are used to prevent the harmonic currents from reaching the high-voltage terminal of the network. 

Figure 2 shows a three-phase, delta connected TCR. This topology uses six groups of thyristor and is commonly 

known as a six-pulse thyristor controlled reactor (TCR). 

 

L

Th1aTh2a

iTCR3

Vc 

L
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iTCR2

L
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iTCR1

Vb 
Va 

iTCRc iTCRb iTCRa
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Figure-2. Three-phase thyristor controlled reactor (TCR) [2]. 

                                                             Source: Fuerte-Esquivel, et al. [2]. 

 

The three phase thyristor current in terms of the nodal admittance is represented in Equation 6 

 
 

Where:   
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Substituting (7) into (6) and also the resultant intermediate equation into (11) gives rise to (12). 

 

If all the three branches in the TCR have equal equivalent susceptances   

under this condition, (12) transforms into (13). 

 
The apparent power for the thyristor controlled reactor is presented in (14). 

 

Where: P = Real or useful power (VA) and   Q = Reactive power (VAR).  

 

3. STATIC VAR COMPENSATOR (SVC) 

The static var compensator is a power electronics based power factor, voltage and current regulating device [7, 

8]. The SVC is usually connected in shunt or in series to the a.c transmission or distribution grid network [9-11]. 

In its simplest form and from operational view point, the SVC acts like a shunt-connected variable reactance which 

can either generate or absorb reactive power so as to regulate the voltage magnitude at the point of common 

coupling (PCC) [12-14]. It is extensively used to provide fast reactive power and voltage regulation support [15, 

16]. The one-line diagram of the grid connected static VAR compensator is represented in two forms as shown in 

Figures 3 and 4. 
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Figure-3. One line diagram of grid connected static VAR compensator 

with a capacitor source [16]. 
      Source: Agu [16]. 

 

DC

VSC

Load

GGZ GGV
LLZ 

CV

SSZ 

CIGrid
PCC

LIgI 0gV

Ci

DC

VS  
Figure-4. One Line diagram of Grid connected Static VAR Compensator with a 

Capacitor and active voltage Source [16]. 
                 Source: Agu [16]. 
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When a dc voltage source is connected across the input capacitor, the static var compensator in addition to 

being able to exchange reactive power with the a.c grid can also supply some active power to the grid. The apparent 

power injected to the grid by the static var compensator and the apparent power supplied to the grid can be 

determined from Equation 15-20. 

 

Apparent power delivered by the static var compensator to the grid is given by Equation 15: 

 

 

 

Where:  and  represent the active power and reactive power delivered by the static var compensator to 

the a.c grid. The apparent power  from the grid to the point of common coupling (PCC) is given by Equation 18. 

 

Further simplification of Equation 18 gives rise to Equation 19. 

 

Where: 

 

 

 are the respective active and reactive powers delivered to the static var compensator and load by the 

grid. The static var compensator (SVC) can only exchange reactive power with the grid. It is usually operated in 

such a way that the grid supplies the real power component needed by the load while itself (SVC) injects or absorbs 

the load reactive power. This implies that  is maintained at zero by varying phase angle  under varying load 

conditions. If the series link inductor LS of quality factor  is sufficiently high, the phase angle  will be small 

such that it can be assumed to be ,  and   radians under this condition, the active power 
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 in Equation 16 becomes negligible while the reactive power  delivered by the compensator to the grid is 

approximated to Equation 22. 

 

It can be deduced from Equation 22 that when the compensator voltage  , Qcg will always be positive 

indicating that the compensator delivers reactive power to the grid. Conversely, when the compensator voltage 

 , Qcg will always be negative indicating that the compensator absorbs reactive power from the grid. Reactive 

power flows from the compensator to the grid if the load is inductive  while reactive power flows from 

the grid to the compensator if the load is capacitive . The complete circuit diagram of a three phase three-

level voltage source converter based static var compensator for three phase grid system is presented in Figure 5. 
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Figure-5. Three level voltage source converter based SVC for three phase grid system [16]. 

              Source: Agu [16]. 

 

3.1. Unity Power Factor Control Scheme of the Static VAR Compensator (SVC) 

A closed loop control arrangement that maintains the grid power factor at unity value  under a load 

varying condition is presented in Figure 6. The grid reference or default reactive power  is summed with 

the grid feedback reactive power  to produce a grid reactive power error . The error generated is 

adjusted with the proportional integral controller to produce the phase angle difference  of the compensator output 

voltage  relative to the grid voltage . The phase angle difference  is added to the time varying phase  of the 

instantaneous grid voltage resulting to a new phasor  which is applied in the modulating signal of the 
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SVC pulse-width modulator to generate the SVC switching signals for Figure 5. The feedback grid reactive power 

 is obtained by low pass filtering of the product of the grid current and voltage as shown in Figure 6.  is 

represented by Equation 23. 

 

The low pass filter suppresses the high frequency component of Equation 23 to form Equation 24. 
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Figure-6. Closed loop control block diagram of three-level voltage source converter based SVC [15, 16]. 

                       Source: Agu [16]. 

 

4. UNIFIED POWER FLOW CONTROLLER (UPFC) 

The unified power flow controller (UPFC) also termed as the unified power quality conditioner (UPQC) 

amongst other FACTS devices is the most widely applied device in power factor correction [17-22]. The UPFC is 

capable of selectively controlling all the transmission line parameters which include voltage magnitude, line 

impedance and voltage/current phase angle [23, 24]. The conventional UPFC consists of two back to back voltage 

source converters (Rectifier and Inverter). They share a common dc link (Vdc) as shown in Figure 7. The 

transmission line shunt and series connected transformers (TR shunt and TR series) provide galvanic isolation to the 

respective input/output of the back to back converter. The voltage Vso is the transmission line sending end voltage 

while VR is the receiving end voltage. The current Ishunt drawn from the transmission line by the shunt transformer 

is a controllable current source while the voltage Vc induced in the transmission line by the series transformer is a 

controllable voltage source. Both Ish and Vc are controlled by the modulated back to back connected voltage source 

inverter. 
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Figure-7. Conventional single phase unified power flow controller [24]. 

     Source: Khadikikar and Chandra [24]. 
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The controllable input current  into the back to back connected converters is usually much smaller than 

the relatively large transmission line current . The transmission line current with the input shunt current 

neglected is given by Equation 25. 

 

The real and reactive power  delivered to the receiving end voltage is the product of   and the 

transmission line current conjugate. 

 

Simplifying Equation 26 in Cartesian form gives rise to Equation 27. 

 

When the compensator is not incorporated on the transmission line system (uncompensated condition),  

and . The uncompensated transmission line system power delivered to the receiving end voltage is then 

represented by Equation 28. 

 

The expression in Equation 27 is represented in a more compact form as shown in Equation 29. 

 

 

Where  and  are the compensating power delivered to the receiving end voltage. 

 

 

It is obvious that by selectively varying  and   for a specified value of   and , the compensating power 

delivered to the receiving end voltage can readily be varied. 

For a UPFC based electric power transmission line system where  and , the power delivered to 

the receiving end voltage can be varied  if  varies from . 
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If  and , only reactive power is obtained from Equation 27. Similarly, if  , real and 

reactive power are obtained  but when  only a real power is obtained. 

5. SIMULATION RESULTS AND DISCUSSION 

The simulation results of a single phase thyristor controlled reactor (TCR) presented in Figures 8-13 depict 

the characteristics waveforms of voltage and current at a varied firing angle  and linear reactor (L). Figure 8 

showed that the current conduction span is achievable when the controlled firing angle is exceeded. At this 

condition, the average output voltage takes the form of the supply voltage within the span of thyristor conduction. 

The average output voltage drop below the negative half cycle is a consequence of the residual energy stored in the 

linear reactor as the thyristor is set into conduction. During conduction, the thyristor voltage  is usually set to a 

zero value as a result of internal short circuit. This phenomenon is represented in Figure 9. The average output 

current and voltage increases in magnitude and in electrical span length at a reduced value of the thyristor firing 

angle  and reduced linear reactor . This is shown in Figure 10 as opposed to Figure 8. The 

complementary switching signals are shown in Figure 11 while the inverse function relationship between the 

conduction angle  and firing angle  is shown in Figure 12. The real and reactive power obtained for the thyristor 

controlled reactor (TCR) is presented in Figure 13. It is evidently shown that the TCR absorbs a reactive power of 

1.875KVAR at steady state and injects a real power of 2.575KW on the transmission line network. The three phase 

voltage and current characteristics of the static var compensator are shown in Figures 14-16. These waveforms 

showed that the grid voltage and current tends to be in phase when compensated. Similarly, a pulsating reactive 

power of 28.75KVAR is injected into the transmission line grid whereas a real power of 26.12KW is absorbed from 

the grid to reduce overload as shown in Figures 17-18. The plots for the unified power flow controller (UPFC) are 

presented in Figures 19-22.  A close observation of Figure 19 which represents the sending end section shows that 

the shunt current is very negligible and has no significant effect on the entire network. The series current and 

compensator voltage at the point of common coupling indicates a better current and voltage regulation as presented 

in Figure 20. The receiving end section shown in Figure 21 indicates that the voltage and current are almost in 

phase. The receiving end voltage  has the same value with the sending voltage  which indicates a 

maximum voltage transmission along the grid. The real and reactive power plot in Figure 22 shows that a real 

power of 425Watts is absorbed by the UPFC while a reactive power of 675VAR is injected into the grid to 

compensate for the voltage drop in .  The basic functions of the selected FACTS controllers are 

encapsulated in Table 1. 

 
Table-1. Basic FACTS controllers and function [24]. 

Facts Controllers Functions 

Thyristor Controlled Reactor (TCR) Absorbs reactive power and reduces overload 
Static Var Compensator (SVC) Injects reactive power 
Unified Power Flow Controller (UPFC) Reduces overload through phase angle adjustment 

                      Source: Khadikikar and Chandra [24]. 
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Figure-8. Plot of supply voltage, output voltage and current with . 

                             Source: Simulation result. 
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Figure-9. Plot of thyristor average voltage against time with . 

                     Source: Simulation result. 
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Figure-10. Plot of supply voltage, output voltage and current with . 

                       Source: Simulation result. 
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Figure-11. Plot of firing signals (IG1 and IG2) against time with  delay angle. 

                                  Source: Simulation result. 
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Figure-12. Plot of Thyristor Conduction Angle against the Firing angle. 

                                     Source: Simulation result. 
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Figure-13. Plot of real and reactive power of thyristor controlled Reactor with L = 100mH . 

                    Source: Simulation result. 
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Figure-14. Plot of SVC phase (A) voltages and currents against time. 

                                Source: Simulation result. 
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Figure-15. Plot of SVC phase (B) voltages and currents against time. 

                                    Source: Simulation result. 
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Figure-16. Plot of SVC phase (C) voltages and currents against time. 

                             Source: Simulation result. 
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Figure-17. Plot of SVC real power with an RL load of 30Ω and 45mH. 

                               Source: Simulation result. 
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Figure-18. Plot of SVC reactive power with an RL load of 30Ω and 45mH. 

                               Source: Simulation result. 
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Figure-19.  Plot of UPFC voltages and currents against time at the sending end. 

                                      Source: Simulation result. 
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Figure-20.  Plot of UPFC voltages and currents against time at the point of common coupling. 

                                         Source: Simulation result. 
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Figure-21.  Plot of UPFC voltages and currents against time at the receiving end. 

                                             Source: Simulation result. 
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Figure-22. Plot of real and reactive power against time for the UPFC controller. 

                          Source: Simulation result. 
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6. CONCLUSION 

Three conventional FACTS-DEVICES have been modeled and simulated with respect to real and reactive 

power absorption and injection into the grid. The effects of a regulated thyristor angle on the thyristor conduction 

have been analyzed. The result analysis showed that thyristor controlled reactor absorbs more reactive power 

(0.875VAR) and injects more real power (2.575W) to the grid to compensates for the grid voltage drop through a 

regulated firing angle of . The static var compensator which has a superior characteristic over the 

thyristor controlled reactor injects more reactive power of 28.75KVAR to the grid and absorbs a real power of 

26.12KW.  The unified power flow controller (UPFC) results indicates that lesser value of the real power (425W) is 

absorbed with a lesser value of a reactive power (675VAR) injected to the grid. This research paper has shown that 

a unified power flow controller is best applied for reduced load compensation.   
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