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In the four-dimensional spacetime theory of special relativity, the space coordinate is 
time contracted along the motion, while perpendicular coordinates are invariant and 
time varies with position. This leads to a velocity transformation valid at speed of light 
and used in showing invariance electric and magnetic fields which are invariant along 
x-axis but change occur along y, and z-axes, contrary to the classical electrodynamics. 
In this work we introduce a new six-dimensional spacetime theory which allows time 
(position) change of position (time) in three coordinate axes and still satisfy the Lorentz 
invariance conditions of metric and Maxwell’s wave equations between two frames. We 
derive a new velocity transformation rule which is valid at any relative speed of massive 
frames moving with respect to each other. We derived expressions for relativistic mass, 
energy, Doppler shift, time dilation, length contraction, photon rest mass, and used the 
conservation of relativistic power to prove that the electric and magnetic fields and 
consequently, Maxwell wave equations are Lorentz invariant between two massive 
frames with and without nonzero photon mass in vacuum and materials medium. 
Calculated photon mass is in excellent agreement with the measured and observed 
upper bounds of 1.24x10-54 kg and1.75x 10-53 kg, respectively. 
 

Contribution/ Originality: In this work we extended the four-dimensional spacetime theory to six dimensions 

by adding two extra time coordinates, which allows spatial time (position) change in position (time) in three 

coordinate axes and still satisfy the covariance and invariance conditions of the metric and Maxwell’s wave 

equations between two frames under Voigt and Lorentz transformations, respectively. We introduce a new velocity 

transformation rule which is valid at any relative speed of reference frames moving with respect to each other. We 

derived expressions for relativistic mass, energy, Doppler shift, time dilation, length contraction, and photon rest 

mass. For the first time, we found an excellent agreement between the calculated and measured and observed upper 

bounds of photon mass. 

 

1. INTRODUCTION 

Einstein’s special theory of relativity [1] removes the difficulties associated with the Galilean transformation of 

spacetime coordinates in Newtonian mechanics and electromagnetism by using two postulates; (i) The first 

postulate states that all of the physics laws are the same in all of the inertial frames in which a particle will be at rest 

or in a state of uniform motion with constant velocity unless there is a net force acting on it. (ii) The second 

postulate states that the speed of light in a vacuum is the same in all inertial frames, independent of the direction of 

propagation of electromagnetic waves and of the relative velocity between the light source and observer. In 

applying Einstein’s two postulates, the transformations of the four-dimensional spacetime  coordinates and in turn 
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the Cartesian components of velocity between two reference frames are essential for a reliable understanding and 

precise calculations of the relativistic effects on the physical parameters such as time dilation, length contraction, 

relativistic and rest masses, momentum, energy dispersion relation of particles, Doppler shift, and invariance of 

electric and magnetic fields and Maxwell’s electromagnetic wave equations. 

In the discussion of the abovementioned formulations in the frame of Einstein’s special theory of relativity [1] 

one begins with the idea of thought experiment in which a light source at rest in the ( , , , )S x y z t  inertial frame 

with four dimensional spacetime coordinates ( , , , )x y z t , moving with constant speed c in negative direction, as 

seen from another four dimensional ( , , , )S x y z t      inertial frame with four dimensional spacetime coordinates

( , , , )x y z t    , is flashed on and off rapidly at 0t t= = . The observers in both inertial frames will see a spherical 

shell of light radiation expanding outward from the respective origin with constant speed c in all directions. The 

wave fronts will reach points ( , , , )P x y z t      and ( , , , )P x y z t in the S  and S inertial frame, respectively, which 

are described by the following equations [2].  

2 2 2 2 2 2 2 2 2 2 2 20; 0s x y z c t s x y z c t    = + + − = = + + − =                          (1) 

Where the spacetime coordinates ( , , , )x y z t    and ( , , , )x y z t are often described by so called Lorentz 

transformation [3] and rarely by Voigt transformations [4] in literature. Lorentz transformation, relates 

( , , , )x y z t     to ( , , , )x y z t , or vice versa, according to the following equations for forward and inverse 

transformations, respectively. 

( )2( ) , , , /x x vt y y z z t t vx c    = − = = = −                                                                           (2a) 

( )2( ) , , , /x x vt y y z z t t vx c      = + = = = +            (2b) 

Where 
2 2 1/21/ (1 / )v c = −  is known as Lorentz factor. Equation 2a suggests a time contraction in the line 

of motion along the horizontal x-axis, while y- and z- coordinates are invariant ( y y =  and z z = ). The time 

decreases by a term that is linear in x.  Equation 2b is obtained by replacing the prime and unprimed subscripts and 

v with -v in Equation 2a for inverse transformation, which suggests a time extension in the line of motion along the 

horizontal x-axis, while y- and z- coordinates are invariant ( y y =  and z z = ). The time increases by a term that 

is linear in x.  Equation 2a and 2b keep the following metric and Maxwell’s wave equations invariant between two 

frames [2]. 

2 2 2 2 2 2 2 2 2 2x y z c t x y z c t   + + − = + + −                               (3) 

2 2
2 2

2 2 2 2

1 1

c t c t
 

    
  − =  −   

    
                                            (4) 

Where ( , , , )x y z t =  and ( , , , )x y z t      =  are the associated scalar continuous wave functions 

respectively, and satisfy following conditions at a point in the S and S  inertial frames [5]:  

2 2 2 2

2 2

' '
; ;

i ix x t t

   
 

   
= = =

   
                      (5) 
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Where , ,ix x y z= . In the frame of Voigt transformation, the spacetime coordinates ( , , , )x y z t     are written 

in terms of ( , , , )x y z t according to the following set of linear equations [1, 6-8]. 

( )2, / , / , /x x vt y y z z t t vx c    = − = = = −                (6a) 

( ) ( )2 2 2, , , /x x vt y y z z t t vx c        = + = = = +             (6b) 

Where spacetime coordinates in Equation 6b are obtained by back substitution [6, 7] not by replacing the 

prime and unprimed subscripts and v with -v in Equation 6a, which is the case in obtaining Equation 2b for inverse 

Lorentz transformation. Furthermore, Equations 6a and 6b keeps the homogeneous Maxwell’s electromagnetic 

wave equation conformally invariant between the S and S   frames [1]. 

2 2
2 2

2 2 2 2

1 1
g

c t c t
 

    
  − =  −   

    
                                          (7) 

Additionally, Voigt transformation also predicts the Doppler effect which is identical to that predicted by 

special relativity [9]. This suggests that Voigt and Lorentz transformations are closely related, as discussed by 

Heras from a conceptual point of view [8]. 

At this junction, it is important to note that multiplying both side of Equations 6a by Lorentz factor , one 

obtains
1

iV iLx x − = for forward transformation. However, dividing both sides of Equations 6b by one obtains

iV iLx x= for inverse transformation. Here iVx ( iLx ) and iVx ( iLx ) are the spacetime coordinates given by 

Equations 6a, 2a and 6b, 2b in the frame of Voigt (Lorentz) forward (inverse) transformations, with

, , ,ix x y z t    = and , , ,ix x y z t= . That is, the spacetime coordinates in Voigt and Lorentz transformations differ 

from each other by Lorentz factor  .  

In the frame of the four-dimensional Minkowski-Einstein spacetime, the following metric relation is satisfied 

for the differential line elements in the S and S   inertial frames [1]. 

( )2 2 2 2 2 2 2 2 2 2

2 2

1
( )

1 /
dx dy dz c dt g v dx dx dx dy dz c dt

v c

 


     + + − = = + + −

−
              (8) 

Where ( ', ', ', ')x x y z ct =  are contravariant 4-vectors and
1/2( ) ( )g v v = is metric tensor [1].  

2 2

0 0 0 1 0 0 0

0 0 0 0 1 0 01
( )

0 0 0 0 0 1 01 /

0 0 0 0 0 0 1

xx

yy

zz

tt

g

g
g v

g v c

g



   
   
   = =
   −
   

−  

                      (9) 

Which suggests a difference between Voigt and Lorentz transformations by Lorentz factor  .  

It is important to note that by using the spacetime coordinates in Equations 2a, 2b and 6a, 6b one finds the 

following transformation equations for the Cartesian components of the relativistic velocity vector in the S  and S
frames, respectively [1-9].  

( ) ( ) ( )

' ' '

2 2 2
, ,

1 / 1 / 1 /

yx z
x y z

x x x

uu v udx dy dz
u u u

dt dt dtu v c u v c u v c 

−
  = = = = = =

  − − −
        (10a) 
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( ) ( ) ( )2 2 2
, ,

1 / 1 / 1 /

yx z
x y z

x x x

uu v udx dy dz
u u u

dt dt dtu v c u v c u v c 

 +
= = = = = =

  + + +
            (10b) 

Since in each expression in Equation 10a and 10b there are two unknowns, one sets xu c= , 0yu =  and 

0zu = in Equation 10a to find 
xu c =  for the one-dimensional motion along + x axis in the S  frame.  

Likewise, one sets 
xu c = , 0yu =  and 0zu =  in Equation 10b to find

xu c= for the one-dimensional 

motion along -x axis in the S frame. This prompts further investigation of the derivation of the transformation 

equations for the Cartesian components of the relativistic velocity in both frames. 

The similarities between Voigt and Lorentz transformations have been subject to critical discussions from 

conceptual point of view over the years [1, 6-8]. In this work we only focus on the mathematical solutions of 

Equation 10a and 10b for the Cartesian components of the relativistic velocity in the S  and S frames, respectively, 

and its consequences in finding analytical expressions for physical quantities such as time dilation, length 

contraction, relativistic mass, momentum, energy dispersion relation, Doppler shift, and invariance of electric and 

magnetic fields and in turn the homogeneous Maxwell’s electromagnetic wave equations in the special theory of 

relativity.  

In section 2, we first derive a new six-dimensional spacetime coordinates in Voigt-Lorentz transformation by 

adding two extra time coordinates to the classical four-dimensional spacetime coordinates [10, 11]. In sections 3 

we give the details of the derivation of a new six-dimensional relativistic velocity transformation rule. In section 4 

we derive expressions for the relativistic time dilation and length contraction. In section 5 we derive analytical 

expression for the relativistic mass, momentum, energy dispersion relation, respectively. In section 6, we give the 

details of the six-dimensional formulation of Doppler shift and show that there is strong correlation between 

Doppler shift and energy dispersion relation, respectively. In section 7, we give a discussion of the Lorentz 

invariance of electric and magnetic fields and Maxwell wave equations in vacuum and materials medium as 

consequences of the six-dimensional spacetime coordinates in special theory of relativity. 

 

2. A SIX-DIMENSIONAL VOIGT-LORENTZ TRANSFORMATION  

Some time ago, Recami and Mignani [12]; Demers [13]; Mignani and Recami [14]; Cole [15]; Dattoli and 

Mingani [16]; Pappas [17]; Teli [18]; Guy [19]; Franco and Jorge [20] added two extra time coordinates to the 

4-dimensional spacetime coordinates to interpret the imaginary quantities in the superluminal Lorentz 

transformations. Time is taken as a vector in the Euclidian 3-dimensional space 
3T , so that an event can be 

represented in Euclidian 6-dimensional space 
6 3 3( )M R icT=   as ( , , , , , )x y zP x y z cit cit cit . Cartesian 

components of position vector do not have any meaning for tachyons [13] but the magnitude of time vector  

2 2 2 1/2( )x x xt t t t= + + is observable for bradyons Mignani and Recami [14]. Pappas [17]; Teli [18]; Guy [19] and 

Franco and Jorge [20] used the time vector as ( , , )x y zt t t t=  in Euclidian 3-dimensional time space 
3T so that an 

event can be represented in a six dimensional Euclidian spacetime 
6 3 3( )M R cT=   as
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( , , , , , )x y zP x y z ct ct ct , with a set of linear coordinate equations in six-dimensional

66 ( , , , , , )x y zS S x y z t t t       =  and 6 6 ( , , , , , )x y zS S x y z t t t=  frames [17, 18]. 

2 2
( ); ( ); ( ); ( )i i

i i i i i i i i i i i i i i i i i i

v v
x x v t t t x x x v t t t x

c c
        = − = − = + = +              (11) 

where 
2 2 1/21/ (1 / )i iv c = −  is anisotropic Lorentz factor, , ,ix x y z   = , , ,

ix x y xt t t t   = , and , ,ix x y z=   

, ,
ix x y zt t t t= . 6S   and 6S frames are considered as “massive inertial frames” such as a laboratory or 

observatory in which a free body is observed to retain its motion [17]. 

In this section we add two time coordinates to four dimensional spacetime [9] to develop a set of six-

dimensional linear spacetime coordinates based on the assumption that an event is taking place in a 6S  massive 

frame and recorded in 
6S   massive frame, or vice versa, which are coincident with a common inertial reference 

frame at  0t t= = . In doing so, we will search for functional relationships defined as: 

( , )
ii i i xx x x t = , ( , )

i i ix x x it t t x =  in the forward and ( , )
ii i i xx x x t = , ( , )

i i ix x x it t t x =  in the inverse 

transformations, respectively. We will assume that the
'

6S massive frame moves relative to the 6S massive frame 

with a three-dimensional constant velocity ( , , )x y zv v v v=  accompanied by a three-dimensional time vector 

( , , )x y zt t t t=  in six dimensional spherical coordinates. We will assume the magnitude of time vector

2 2 2 1/2( )x x xt t t t= + + and 
2 2 2 1/2( )x y zt t t t   = + + is measurable in both frames, but ( , , )x y zt t t  and ( , , )x y zt t t    are 

not, which was proposed by Recami and Mignani [12]. 

In parallel to the Einstein’s thought experiment described in the introduction section, we consider a light 

source at rest at the origin of the 6S  (
'

6S ) massive frame (moving with constant speed c in negative (positive) 

direction, as seen from the
'

6S  ( 6S ) massive frame, is flashed on and off rapidly at time 0t t= = . Einstein’s 

second postulate dictates that observers in both frames will see a spherical shell of radiation expanding outward 

from the respective origin with constant speed c.  The wave fronts will reach points ( , , , , , )x y zP x y z t t t and 

( , , , , , )x x xP x y z t t t       in the 6S and 
'

6S massive frames, respectively which are described by the following metric 

equations [10, 11]. 

( ) ( )2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 20; 0x x y zy zs x y z c t t t s x y z c t t t      = + + − + + = = + + − + + =           (12) 

where the spacetime coordinates ( , , , , , )x x xx y z t t t      and ( , , , , , )x y zx y z t t t in the
'

6S and 6S massive frames 

are, respectively, described by the following set of linear equations [10, 11]. 
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2 2 2

, , ;

( / ) , ( / ) , ( / )

x x y y z z

x x x y y y z z z

x x v t y y v t z z v t

t t v c x t t v c y t t v c z

  = − = − = −

  = − = − = −
                                           (13a) 

2 2 2

, , ;

( / ) , ( / ) , ( / )

x x y y z z

x x x y y y z z z

x x v t y y v t z z v t

t t v c x t t v c y t t v c z

     = + = + = +

     = + = + = +
          (13b) 

with cos sinxv v  = , sin sinyv v  = , coszv v = and sin cosxt t  = , sin sinyt t  = ,  

coszt t =  in spherical coordinates. Equation 13a and 13b, respectively, allow the time contraction 

(extension) of space coordinates and spatial positional decrease (increase) in time coordinates in the 
'

6S  ( 6S ) 

massive frame in forward and inverse transformations.  

 

2.1. Six-Dimensional Metric Equations   

In this subsection we will use the similarity between Voigt and Lorentz transformations described by 

Equations 2a, 2b and 6a, 6b to give proof of using coefficients i in the spacetime coordinate equations in Equation 

11. In doing so, we start with using Equation 13a and 13b to write the following metric equations between 6S and

'

6S massive frames [10, 11]. 

( )

2 2 2 2 2 2 2 '2 '2 '2 2 '2 '2 '2

2 2 2 2 2 2 2 2

( ) ( ) ( )

( )

x z x

x
xx yy zz zz t t t t t t t tz z x x y y z z

y y z

t t z t t t t y t t z

x y z c t t t g x y z g c t t t

G x G y G g g z c G t G t G t

 



+ + − + + = + + − + +

= + + − − + +
              (14) 

where /x xv c = , /y yv c = , /z zv c = . xv , yv , and zv are x, y, and z- components of velocity v  in 

spherical polar coordinates. Coefficients G for each term on right hand side of Equation 14 are  

( ) ( ) ( )

( ) ( ) ( )

2 2 2

2 2 2

, ,

, ,

x y z
x x y y z z

x z
x x x x y y y y z z z z

xx xx t t yy yy t t zz zz t t

t t t t xx t t t t yy y t t t t zz

G g g G g g G g g

G g g G g g G g g

  

  

= − = − = −

= − − = −
           (15) 

Matching both sides of Equation 14 component by component, gives 1xxG = , 1yyG = , 1zzG =  1
x xt tG = ,

1
y yt tG = , and 1

z zt tG = . These results then transform Equation 14 from being covariant to form invariant under 

Voigt transformation between 6S and
'

6S frames and gives the following six-dimensional Voigt scaling coefficients  

2 2 21/ (1 ), 1/ (1 ), 1/ (1 )
t t t t t tx x y y z z

xx x yy y zz zg g g g g g  = = − = = − = = −                (16) 

Using
2g =  in Equation 14 we write the following metric equation between 6S and

'

6S massive frames  
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( )

2 2 2 2 2 2 2 2 '2 '2 '2 2 2 '2 '2 '2

2 2 2 2 2 2 2

( ) ( ) ( )x z x

x
x x y y z z

y y z

xx yy zz t t t t y t t z

x y z c t t t x y z c t t t

a x a y a z c a t a t a t

  + + − + + = + + − + +

= + + − + +
                (17) 

where coefficients a are  

22 2
2 2 2 2 2 2

2 2 2

22 2
2 2 2 2 2 2

2 2 2

, ,

, ,

x x y y zz t tz z

x x t t y y t t z z t tx x y y z z

yx z
xx xx t t yy yy t t zz

yx z
t t xx t t yy t t zz

vv v
a a a

c c c

vv v
a a a

c c c

     

     

    
= − = − = −     

    

    
= − = − = −     

    

             (18) 

Matching both sides of Equation 17 component by component, gives 1xxa = , 1yya = , 1zza =  1
x xt ta = ,

1
y yt ta = , and 1

z zt ta = , which transforms Equation 17 from being covariant to invariant under Lorentz 

transformation between 6S and
'

6S frames and gives following coefficients. 

2 2 21/ 1 , 1/ 1 , 1/ 1
x x y y z zxx t t x yy t t y zz t t z        = = − = = − = = −                 (19) 

As Cartesian components of six-dimensional Lorentz scaling factor. One can then write the following linear 

expressions for the spacetime coordinates in the 6S   and 6S  frames in Lorentz transformation Ünlü [10], Unlü 

[11].  

( ) , ( ) , ( );

( / ) , ( / ), ( / )
x x y y z z

xx x x yy y y zz z z

x t t x x y t t y y z t t z z

x x v t y y v t z z v t

t t x c t t y c t t z c

  

     

  = − = − = −

  = − = − = −
                                 (20a) 

' ' '

' ' '

( ) , ( ) , ( );

( / ) , ( / ), ( / )
x x y y z z

xx x x yy y y zz z z

x t t x x y t t y y z t t z z

x x v t y y v t z z v t

t t x c t t y c t t z c

  

     

  = + = + = +

  = + = + = +
                               (20b) 

Equation 20a allow time contraction (position change) of three space (time) coordinates under forward Lorentz 

transformation. Equation 20b allow time extension (position increase) of space (time) coordinates under inverse 

Lorentz transformation. It is gratifying to note that Equation 20a and 20b provide direct and independent proofs of 

using coefficients in Equation 11. 

 

2.2. Six-Dimensional Maxwell Wave Equations 

Applying the chain rules for differential operators of x and xt  in Equation 13a and 13b we can write: 

''' ' ' ' ' ' ' '

' ' ' '
;

x

x

x

x x x x

ttx x

x x x t x t t t x t

            
= + = +

         
                                (21a) 

' '2 ' ' ' ' 2 '

2 ' ' 2 ' '
;

x x

x xx x x x x

t tx x

x x x x t x x t x t t t t t

                         
= + = +      

                    
        (21b) 
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With similar expressions for 
2 2'/ y  , 

2 2'/ z  , 
2 2'/ yt   and 

2 2'/ zt  , one then obtains  

2 2 2 2 ' 2 ' 2 '
2 '2 '

2 2 2 2 2 '2 '2 '2

2 ' 2 ' 2 ' 2 ' 2 ' 2 '

'2 '2 '2 2 '2 '2 '2

1 1

1
x x y y z z

x y z x y z

xx yy zz t t t t t t

x y z

g g
c t t t c t t t

G G G G G G
x y z c t t t

 

     
 

     

        
 − + + =  − + +              

      
= + + − + +        

            (22) 

Which are covariant Maxwell wave equations under Voigt transformation between two massive frames, with 

G are given by Equation 15. Substituting 
2g

 =  into Equation 22 one obtains.   

2 2 2 2 ' 2 ' 2 '
2 2 '2 ' 2

2 2 2 2 2 '2 '2 '2

2 ' 2 ' 2 ' 2 ' 2 ' 2 '

'2 '2 '2 2 '2 '2 '2

1 1

1
x x y y z z

x y z x y z

xx yy zz t t t t t t

x y z

c t t t c t t t

a a a a a a
x y z c t t t

 

     
   

     

        
 − + + =  − + +              

      
= + + − + +        

                     (23) 

Where a are given by Equation 18. Setting 1xxa = , 1yya = , 1zza =  1
x xt ta = , 1

y yt ta = , and 1
z zt ta =  

makes Equation 23 invariant under Lorentz transformation between two massive frames. 

 

3. A SIX-DIMENSIONAL VELOCITY TRANSFORMATION 

The transformation of the relativistic velocity components between two frames is essential for a reliable 

understanding and precise calculations of the relativistic effects on parameters such as time dilation, length 

contraction, relativistic mass, momentum, energy dispersion relations in massive frames [10, 11]. Equation 13a and 

13b or Equation 20a and 20b with 
x xxx t t = , 

y yyy t t = and 
z zzz t t = , are used to write the following 

expressions for Cartesian components of velocities u  and u of an event taking place in the 6S  frame and observed 

in the
'

6S frame 

( )
( )

( )
( )'

' 2 2
;

1 / 1 /

x x x xx x
x x x x x x

x x x x x x x x

u v u vdt dtdx dx
u u v u u v

dt dt u v c dt dt u v c

− +
 = = − = = = + =

 − +
   (24a) 

( ) ( )
( )'

' ' 2 2
;

1 / 1 /

y yy y y y

y y y y y y

y y y y y y y y

u vdt u v dtdy dy
u u v u u v

dt dt u v c dt dt u v c

 +−
 = = − = = = + =

− +
  (24b) 

( ) ( )
( )'

' 2 2
;

1 / 1 /

z zz z z z
z z z z z z

z z z z z z z z

u vdt u v dtdz dz
u u v u u v

dt dt u v c dt dt u v c

 +−
 = = − = = = + =

 − +
  (24c) 

When 
'

6S  moves parallel to x (or y, z) axis of 6S  at the speed of light, Equation 24a, 24b and 24c give xu c = −  

and xu c=  (
yu c = −  and 

yu c= , zu c = −  and zu c= ).  
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We can extend Equation 24a, 24b, and 24c to any relative speed between the two massive frames by combining 

Equation 13a and 13b or Equation 20a and 20b with
x xxx t t = , 

y yyy t t = and 
z zzz t t = ,  for the Cartesian 

components of velocity vectors u and u   in the
'

6S and 6S massive frames 

( )

( )

2 2

2 2

2 2

2 2

1 1 ;

1 1

x x
x x x x x

x x

x x
x x x x x

x x

v vdx dx
u v u v v

dt c dt c

v vdx dx
u v u v v

dt c dt c

    
 = = − − = − + −   

    

   
= = − + = − − +   

   

                  (25) 

From which we find x xu v = −  and x xu v= , respectively. Cartesian components of the velocity vector in the 

6S  and
'

6S massive frames are then written as 

cos sin , sin sin , cosx x y y z zu v v u v v u v v    = = = = = =          (26a) 

cos sin , sin sin , cos ;x x y y z zu v v u v v u v v      = − = − = − = − = − = −            (26b) 

Equation 26a and 26b suggest that the xu , yu , zu  components of u in the '

6S frame can be determined by 

using the relative speed of two frames, without requiring one of the unknowns to be known (e.g., xu c= , 
yu c=  

and zu c= ) in the 6S frame. The negative sign in velocity components in 
'

6S massive frame is consistent with the 

principle of Einstein’s velocity reciprocity relation [9]. We will use Figure 1 to study the influence of the 

components of velocity vectors onto each other by using the direction cosine [21] for unit vector transformation. 

 

 

Figure 1. The schematic diagram of unit vector transformation via rotation through angle   in 

counter clockwise of ( , )x y  plane into ( , )x y  plane for 0 2    and / 2 = . 
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Considering rotation through angle  counterclockwise of ( , )x y  plane into ( , )x y   plane with z  or z  

axis the same, we write 
' ' 'ˆˆ ˆ( , , )i j k  in

'

6S in terms of ˆˆ ˆ( , , )i j k  in 6S frame. 

ˆˆ ˆ ˆ ˆ ˆcos( ) cos( ) cos( )ˆ ˆ ˆcos sin 0

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆcos( ) cos( ) cos( ) sin cos 0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ0 0 1ˆ ˆcos( ) cos( ) cos( )

i i i j i ki i i

j j i j j j k j j

k k i k j k k k k

 

 

                        =    = −      
                      

                              (27) 

Replacing   with − , rotation through angle  clockwise of ( , )x y   plane into ( , )x y plane with z or z

axis the same then yields ˆˆ ˆ( , , )i j k  in 6S frame is written in terms of 
' ' 'ˆˆ ˆ( , , )i j k  in 

'

6S frame:  

ˆˆ ˆ ˆ ˆ ˆcos( . ) cos( . ) cos( . )ˆ ˆ ˆcos sin 0

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆcos( . ) cos( . ) cos( . ) sin cos 0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ0 0 1ˆ ˆcos( . ) cos( . ) cos( . )

i i j i k ii i i

j i j j j k j j j

k i k j k k k k k

 

 

         −             =  =      
                    

            (28) 

Equation 27 and 28 can then be used to write the following expressions for the velocity vectors u and u  in 

the 6S  and '

6S massive frames.  

( ) ( )' ' 'ˆ ˆˆ ˆ ˆ ˆcos sin sin cosx y z x y x y zu u i u j u k u u i u u j u k       = + + = − + + +           (29a) 

( ) ( )' ' 'ˆ ˆˆ ˆ ˆ ˆcos sin sin cosx y z x y x y zu u i u j u k u u i u u j u k      = + + = + + − + +           (29b) 

Figure 2 shows the azimuthal angle variation of Cartesian components of an event taking place in the 6S  

massive frame and observed in the 
'

6S  massive frame as a function of azimuthal angle   for / 6, / 4, / 3   =  

and / 2 = , respectively, in system of spherical polar coordinates.  

As the light source at the origin of the 6S  massive frame is flashed on and off rapidly, the observers in both 

frames will see a spherical shell of radiation expanding outward from the origin in all directions.  

When 
'

6S  moves relative to 6S at the speed of light, using Equation 26a and 26b in Equations 29a and 29b gives  

( ) ( )
1/2 1/2

2 2 2 2 2 2| | ; | |x y z x y zu u u u c u u u u c   = + + = = + + =                           (30) 

Which proves that the speed of light in a vacuum is the same in both massive frames, independent of the 

direction of the wave propagation and of the relative velocity of the two frames, which is in accordance with 

Einstein’s second postulate of special relativity [9]. 
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Figure 2. Polar plot of xu  and yu  components of u  of an event taking place in 6S  frame and observed in the 
'

6S  frame as 

a function of azimuthal angle   for / 6, / 4, / 3   =  and / 2 = , respectively, in system of spherical 

coordinates. 

 

4. TIME DILATION AND LENGTH CONTRACTION  

4.1. Time Dilation 

In order to explore the physical implications of the six-dimensional spacetime coordinates in special relativity, 

we write the (6x6) the conformally invariant metric equation for line intervals between the
'

6S and 6S  frames under 

the Voigt transformation:  

2 2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

x x

y y

z z

xx

yy

zz

t t

t t

t t

g

g

g
ds g ds g dx dx dx dx

g

g

g

   

 

 
 
 
 
     = = =
 
 
 
 
 

         (31) 

where ( ', ', ', , , )x y zx x y z t t t   =  are the 6-vectors and g is the 6-dimensional analogue of 4-dimensional 

spacetime metric tenor in Equation 9. Here 
x xxx t tg g= , 

y yyy t tg g= , 
z zzz t tg g=  given in Equation 16. The 

differential line intervals in the
'

6S and 6S  massive frames are written as: 
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( )
22 2

2 2 2 2 2 2 2 2 2 2 2 2

2 2 2
1 1 1

yx z
x y z x y z

uu u
ds dx dy dz c dt dt dt c dt dt dt

c c c

     
= + + − + + = − − − − − −      

     

       (32a) 

( )2 2 2 2 2 2 2 2

22 2
2 2 2 2

2 2 2
1 1 1

xx yy zzxx yy xx t x t y t z

yx z
xx x yy y zz z

g ds g dx g dy g dz c g dt g dt g dt

uu u
c g dt g dt g d t

c c c


       = + + − + +

      
   = − − − − − −             

         (32b) 

where
x xxx t tg g= , 

y yyy t tg g= , 
z zzz t tg g=  given in Equation 16. Matching both sides of Equation 31 gives:  

1/21/2 1/222 2

2 2 2
1 ; 1 ; 1

yx z
x x y y z z

uu u
t t t t t t

c c c

−− −
     

   = −   = −   = −            

                      (33) 

as the Cartesian components of time dilation in the frame of six-dimensional spacetime coordinates.  

Figure 3 shows the azimuthal angle variation of normalized xt and yt  for 0.90 = (Figure 3a) and 1 =  

(Figure 3b), respectively, with polar angles / 6, / 4, / 3, / 2    = .  

As the azimuthal angle   increases in counterclockwise from +x axis of the 6S massive frame, /x xt t   (

/y yt t  ) decreases (increases) for a given polar angle   and / / 1/ 2x x y yt t t t   =   =  at / 4 = . When 

the
'

6S  massive moves along the +y- axis of 6S frame ( / 2 = ,3 / 2 ), /x xt t   and /y yt t   vary with   

for / 6, / 4, / 3   = and becomes elliptical for / 2 = .  

 
Figure 3. Polar plot of normalized Cartesian components of the time dilation plotted as a function of azimuthal angle   for

/ 0.90v c = = and / 6, / 4, / 3, / 2    =  (a) and / 1v c = = (b) and / 6, / 4, / 3, / 2    = . 

 

When the 
'

6S  massive frame moves with speed of light ( 1 = ) relative to the 6S  massive frame, Figure 3b 

implies full relativistic regime for / 6, / 4, / 3, / 2    = . When the 
'

6S  massive frame moves relative to the
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6S  massive frame at constant speed smaller than speed of light (v<c), Equation 33 suggests time contraction along 

the direction of motion by a factor 
1 −

with respect to the corresponding t of a clock at rest and measured by the 

observer in the 6S massive frame.  

As pointed out by Recami and Mignani [12]; Demers [13]; Mignani and Recami [14]; Cole [15]; Dattoli and 

Mingani [16]; Pappas [17]; Teli [18]; Guy [19]; Franco and Jorge [20] the magnitude of the time vector 

( )
1/2

2 2 2

x x xt t t t= + + and ( )
1/2

2 2 2

x x xt t t t   = + +  can be measured in both frames, but ( , , )x y zt t t  and ( , , )x y zt t t    

of time can’t be. One can use Equation 33 to writes the measurable time dilation as: 

( )
1/2

2 2 2 1/2

2 2 2 2 2 2

1 1 1

1 / 1 / 1 /
x y z

x y z

t t t t t
u c u c u c

 
 =  +  +  = + +        − − − 

       (34) 

which states that the change t is absolute and does not depend on the location of observer. 

Figure 4 shows the azimuthal angle variation of the measurable time dilation for varying  with / 2 =  

Figure 4a and for varying   with 1 =  (Figure 4b), respectively. When 
'

6S  massive frame moves with speed of 

light relative to 6S  massive frame, Equation 33 gives 14 / 3t t =   for / 4 =  and / 2 = . As shown in 

Figure 4a, when   increases from 0.60 towards unity, time dilation curve becomes more and more parabolic. When 

polar angle increases from / 6 = towards / 2 =  for 1.00 = , the slope of time dilation curve becomes 

steeper.   

 

 
Figure 4. Polar plot of normalized Cartesian components of the time dilation as a function of azimuthal angle   for /v c = = 0.60, 

0.70, 0.80, 0.90 and / 2 =  (a) and 1 = , / 6, / 4, / 3, / 2    =  (b), respectively. 

 



Journal of Asian Scientific Research, 2022, 12(4): 188-217 

 

 
201 

© 2022 AESS Publications. All Rights Reserved. 

4.2. Length Contraction 

Since 
2 2

i ii x x idx g dx= (or 
2 2 2

i ii x x idx dx = ) with , ,ix x y z= , the Cartesian components of the length 

contraction can be written as 

1/21/2 1/222 2

2 2 2
1 ; 1 ; 1

yx z
x x y y z z

uu u
l l l l l l

c c c

−− −
     

   = −   = −   = −            

              (35) 

Just like the time vector, the length of a rod moving with a three-dimensional velocity in both frames 

( )
1/2

2 2 2

x y zl l l l= + + and ( )
1/2

2 2 2

x y zl l l l   = + + is also measurable and can be written as: 

( )
1/2

2 2 2 1/2

2 2 2 2 2 2

1 1 1

1 / 1 / 1 /
x y z

x y z

l l l l l
u c u c u c

 
 =  +  +  = + +        − − − 

          (36) 

In one dimensional motion of 
'

6S  frame parallel to+ x axis of 6S  frame at constant speed smaller than speed 

of light (v<c), l  length contraction of a rod, at rest in the 
'

6S  frame and measured by the observer in 6S   frame 

is 
1 −

with respect to l contraction of the rod, at rest and measured in 6S frame.  

 

5. RELATIVISTIC MASS, MOMENTUM AND ENERGY  

Since Einstein’s paper on special relativity [9] the concept of relativistic mass has been a topic of considerable 

experimental [22-24] and theoretical [25-28] interest over the years. In this section we will use the first postulate 

of special relativity [9] to derive the expression for relativistic mass of a free particle moving in massive frames. 

The differential increase in the energy of a free relativistic particle moving under the influence of a net force in the

'

6S and 6S  frames are written as: 

21
( . ) ( )dE F u dt u d m u u dp p dp c dm

m
            = =  =  =  =


                                                 (37a) 

21
( . ) ( )dE F u dt u d mu u dp p dp c dm

m
= =  =  =  =                                    (37b) 

where c and c  are speeds of light in the 
'

6S  and 6S  massive frames and will be shown to be Lorentz scalars 

(having the same numerical value) in section 7. Equation 37a and 37b can be written in integral forms as  

( ) ( ) ( ) ( )

2 2

(0) (0) (0) (0)

m u p u m u u c

m p m u

c dm u dp u dm m u du

      

   

        = = +                    (38a) 

( ) ( ) ( ) ( )

2 2

(0) (0) (0) (0)

m u p u m u u c

m p m u

c dm udp u dm m udu= = +                         (38b) 

In the case of one-dimensional motion along +x axis, Equation 38a and 38b can be written as: 

( ) ( ) ( ) ( )

2 2 2 2

(0) (0) (0) (0)

;
x x x xm u u u m u u u

m u m u

dm du dm du

m c u m c u

   

 

 
= =

  − −             (39) 
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Setting
2 2 2

xc u   − =  
2 2 2( )xc u − =  with (0)xu c = ( (0) )xu c= and 

2 2

xc u   − =  

2 2( )xc u − =  in the first (second) integral expressions in Equation 39 and integrating both sides, we find the 

following expressions for the relativistic mass of a free particle moving in the
'

6S  and 6S  frames 

2 2 2 2

(0) (0)
( ) ; ( )

1 / 1 /
x x

x x

m m
m u m u

u c u c


  = =

 − −
            (40) 

where 
0(0)m m =  

0( (0) )m m=  is rest mass and (0) 0xu =  ( (0) 0)xu =  initial velocity, respectively. 

The relativistic mass which is anisotropic along the three axes in both massive frames can be written as 

0 0 0
0 0 0

2 2 2 2 2 2
; ;

1 / 1 / 1 /
xx xx yy yy zz zz

x y z

m m m
m m m m m m

u c u c u c
       = = = = = =

  − − −
       (41a) 

0 0 0
0 0 0

2 2 2 2 2 2
; ;

1 / 1 / 1 /
xx xx yy yy zz zz

x y z

m m m
m m m m m m

u c u c u c
  = = = = = =

− − −
      (41b) 

Figure 5 shows the variation of anisotropy of xxm  and yym  with azimuthal angle   (with 0 / 2   ) for 

several /v c = ratios and polar angles / 6, / 4, / 3, / 2    = . xxm  ( yym ) decreases (increase) as the 

azimuthal angle  increases / 2 =  for every /v c =  ratio. 

 

 
Figure 5. The angle variation of horizontal (red lines) and vertical (blue lines) components of normalized relativistic mass of electron for 

/ 6, / 4, / 3, / 2    =  (a) and its magnitude for  = 0.60, 0.70, 0.80 and 0.90 and / 2 =  when 
'

6S frame moves 

relative to 6S frame. 
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Since 
2 2

x xu u=  and 
2 2c c = (See section 7.3), the relativistic mass is Lorentz scalar between two massive 

frames (e.g., ( ) ( )x xm u m u  = ).  Equation 41a and 41b can be used to describe the linear momentum and energy of 

a relativistic particle moving in
'

6S and 6S frames:  

00 0

2 2 2 2 2 2

ˆ ˆˆ ˆ ˆ ˆ

1 / 1 / 1 /

yx z
x x y y z z

x y z

m um u m u
p m u i m u j m u k i j k

u c u c u c

 
            = + + = + +

     − − −
         (42a) 

00 0

2 2 2 2 2 2

ˆ ˆˆ ˆ ˆ ˆ

1 / 1 / 1 /x y z

yx z
x x y y z z

m um u m u
p m u i m u j m u k i j k

u c u c u c
= + + = + +

− − −
                (42b) 

Integrals of Equation 37a and 37b can also be written in the following ways: 

( ) ( ) ( ) ( )

2 2

(0) (0) (0) (0)

1
p u m u p u m u

p m p m

p dp c m dm or p dp c dm
m

       

   

        = =
               (43a) 

( ) ( ) ( ) ( )

2 2

(0) (0) (0) (0)

1
p u m u p u m u

p m p m

pdp c mdm or pdp c dm
m

= =                     (43b) 

Evaluating first integrals in Equation 43a and 43b, multiplying both sides of results by 
2c and 

2c , 

respectively, and then taking square root of final results yields the following expressions   

1/2
2 2 2 2 2 22 2 2
0 02 2 40

02 2 2 2 2 21 / 1 / 1 /

y yx

x y y

m u c m u cm u c
E m c m c

u c u c u c


     
    = = = + + +       − − − 

          (44a) 

1/2
2 2 22 2 2 2 2 2
02 2 40 0

02 2 2 2 2 21 / 1 / 1 /

yx z

x y z

m u cm u c m u c
E mc m c

u c u c u c


 
= = = + + +  − − − 

                              (44b) 

Which are the six-dimensional analogous of Einstein’s energy dispersion relation [9]. Using Equation 44a and 

44b, respectively, we can show that the product of group and phase velocities /gv d dk c  = = and 

/pu k c   = =  of electromagnetic waves moving in vacuum at speed c satisfy 
2

g pv u c  =  in the '

6S massive 

frame and 
2

g pv u c=  in the 6S  massive frame at speed c . Evaluating the second integrals in Equation 43a and 

43b, respectively, one finds the following equations for the energy dispersion relations  

22 2
02 20 0

0
2 2 2 2 2 22 1 / 2 1 / 2 1 /

yx z

x y z

m um u m u
E m c m c

u c u c u c


 
    = = = + + +

     − − −
        (45a) 

22 2
02 20 0

0
2 2 2 2 2 22 1 / 2 1 / 2 1 /

yx z

x y z

m um u m u
E mc m c

u c u c u c
= = = + + +

− − −
         (45b) 

Similarly, using the energy dispersion relations given by Equation 45a and 45b we can show that 
2

g pv u c  =  in  

the '

6S massive frame and 
2

g pv u c=  in the
6S massive frame at the constant speed. 
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6. RELATIVISTIC DOPPLER SHIFT AND DISPERSION RELATION  

In the framework of classical four-dimensional theory of special relativity, the shift in classical Doppler effect 

formulae in relativistic regime is often given by the following equation [29]. 

( )1 cos     = −                                        (46) 

where   is the angle between the relative velocity of the reference frames and the direction of light 

propagation. Ives and Stilwell [30] observed the wavelength of hydrogen atom emitted by canal rays with and 

against their motion by using a mirror and discovered that the frequencies of displaced lines of incoming and 

outgoing rays and their average are given [29]. 

( ) ( )1 ; 1 ;
2

av

 
         + −

+ −

 +
  = − = + = =                 (47) 

In this section, we will consider plane waves of frequencies   and '  and wave vectors k and k  in the 6S

and '

6S massive frames, respectively, with the following wave functions   

. ' '. ' ' '; 't k r t k rAe A e  −  − = =                     (48) 

where / '/ 'k k c = =  in both massive frames.  We write the angular frequencies as vectors  and    

ˆ ˆˆ ˆ ˆ ˆ,x y z x y zi j k i j k             = + + = + +                    (49) 

where x, y, and z- components of   and  in the spherical coordinates are written as  

sin cos , sin sin , cosx y z          = = =                (50a) 

sin cos , sin sin , cosx y z               = = =           (50b) 

Since phases of plane wave in 6S  and 
'

6S  frames are Lorentz invariant ( 0 = ), we write 

. '. ' '; . '. ' 't k r t k r t k r t k r    +  = +  −  = −                    (51) 

Taking the dot products of   and t  in 6S  and of and t  in
'

6S , one finds   

( ) ( ) ( )

( ) ( ) ( )

, , ,

' 2 ' 2 ' 2

, , ,

1 1 1

1 1 1 ,
x x x y y z z z

x x x y y y z z z

x t t x y t t y y z t t z

t t t

t t t

     

        

+ + +

+ + +

− + − + −

= − + − + −
              (52a) 

( ) ( ) ( )

( ) ( ) ( )

, , ,

' 2 ' 2 ' 2

, , ,

1 1 1

1 1 1
x x x y y z z z

x x x y y y z z z

x t t x y t t y y z t t z

t t t

t t t

     

        

− − −

− − −

+ + + + +

= + + + + +
       (52b) 

Where ' ' 0k r = , which can be proven by using / '/ 'k k c = =  and Equations 20a and 20b. Component 

by component matching the both sides of Equations 52a and 52b gives   

( )

( )
( )
( )

( )

( )
' '

, , ,2 2 2

11 1
, , ,

1 1 1

yx z

x x y y z z

xx x yy y yy z

  

 
     

     
+ + +

−− −
 = = =

− − −
       (53a) 
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( )

( )
( )
( )

( )

( )
' '

, , ,2 2 2

11 1
, ,

1 1 1

yx z

x x y y z z

xx x yy y yy z

  

 
     

     
− − −

++ +
 = = =

− − −
    (53b) 

Where x , y , and z are the components angular frequency in inertial frame. When '

6S  moves parallel to  

x axes ( 0 = ) of 6S , 
'

,x +
and 

'

,x −
 reduce to their one dimensional analogous +

  and −
  in Equation 47. Using 

the Cartesian components of  , we write their averages in the
'

6S  frame as  

, , ,; ;
2 2 2

y yx x z z
av x xx x av y yy y av z zz z  

    
        

+ −+ − + −
 +   + +

  = = = = = =        (54) 

Where ,av x  reduces to its one-dimensional analogue av in Equation 47. Figure 6 shows the variation of the 

relativistic Doppler shifts of the average frequencies as a function of  . 

Figure 6a suggests that ,av x and ,av y are nearly circular for speeds less than speed of light (e.g., 0.60 =  

for / 2 = ) in vacuum. Meanwhile, Figure 6b indicates that ,av x and ,av y are nearly elliptical at speeds close to 

speed of light (e.g., 0.90 = ) for / 2 = ).  

 

 
           (a) 

 
(b) 

Figure 6. Horizontal and vertical components of the average angular frequency of forward and reverse plane waves as a function of 

azimuthal angle ( 0 2   ) with several polar angles / 6, / 4, / 3, / 2    =  for / 0.60v c = = (a) and

/ 0.90v c = = (b), respectively. 
 

 

At this junction, we can show that there is a strong relation between Doppler shift and energy dispersion 

relation in massive frames. We write the angular frequency of plane wave in the 
'

6S  frame as sum of the 

background frequency 0  and Doppler shift  , respectively. 
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0 0 0, , 0, , 0, ,

1 1 1 1

2 2 2 2
av x av x y av y z av z          

     
          = +  = + = + + + + +     

     
              (55) 

Where 0 0, 0, 0,( )x y z      = + +  is the absolute frequency at rest when 
'

6S  massive frame coincides with a 

common inertial reference frame at 0t t = = . Similar expression can be written in the 6S massive frame. Using the 

classical relation 2 /T =  between the period of the motion and angular frequency, one can use Equation 34 for 

the measurable time dilation to write the following expression for the angular frequency of plane wave in the
'

6S

massive frame.   

( )
1/2

2 2 2

0, 0, , , ,

1/2

0, 0,2 2 2 2 2 2

1 1

2 2

1 1 1 1

2 1 / 1 / 1 /
 

i

av av av av x av y av z

av x

x y zu c u c u c

      

 

      = +  = +  +  + 

 
 = + + +        − − − 

         (56) 

Where 0, 0, 0, 0,  ( )
ix x y z       = + +  is the shift in the absolute angular frequency of the plane wave in the

'

6S

massive frame which is coincident with a common inertial reference frame at 0 0t t = = . Similar expression can be 

written for the relativistic shift in the 6S massive frame. This suggests a strong correlation between the measurable 

time dilation and Doppler shift, as expected. 

Multiplying both sides of Equation 55 with , or Equation 56 after applying the Binomial approximation to the 

square root term, with 
2

0 0 0 0( )k u p u m u       =  =  =  and 
2

0 0 0 0( )k u p u m u =  =  = , we can 

write the following expressions for the energy dispersion relation of a relativistic particle moving in the
'

6S and 6S

massive frames  

22 2
02 20 0

0
2 2 2 2 2 22 1 / 2 1 / 2 1 /

yx z

x y z

m um u m u
E m c m c

u c u c u c

 
   = = + + +

     − − −

         (57) 

Where
2

0 0 0, 0, 0, 0( )x y zE m c        = = + + =  is the rest energies of relativistic particles in the
'

6S  

massive frames when its origin is coincident with that of a common inertial frame at 0t t = = . Similar expression 

can be written for the dispersion relation in the 6S massive frame. Equation 57 equivalent to Equation 45a proving 

the validity of using (1/ 2) av  in Equation 55 for relativistic shifts in the average angular frequencies of plane 

waves in vacuum. This suggest a strong relation between the time dilation and Doppler shift in the angular 

frequencies of plane waves and consequently, between Doppler shift and energy dispersion relation for the 

relativistic particles moving in the
'

6S and 6S massive frames, respectively. 
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7. RELATIVISTIC POWER AND INVARIANCE OF FELECTRIC AND MAGNETIC FIELDS 

In the frame of the classical four dimensional spacetime theory, the velocity transformation Equations 10a and 

10b are combined with the following force and power expressions to find the Lorentz invariance relations between 

Cartesian components of electric and magnetic fields in the S and S  frames [1]. 

ˆ ˆˆ ˆ ˆ ˆ;x y z x y zF F i F j F k F F i F j F k   = + + = + +             (58) 

. ; .x x y y z z x x y y z z

dE dE
F u F u F u F u F u F u F u F u

dt dt


       = = + + = = + +


         (59) 

Where /dE dt  ( /dE dt  ) is the rate of relativistic energy 2E mc=  ( 2E m c = ) in the S ( S  ) frame. 

( )i i j k k jF q E u B u B= + −  and ( )i i j k k jF q E u B u B     = + −  are the Cartesian components of Lorentz forces with 

ju  ( ku ) and ju  ( ku ) being x, y and z-components of u  and u in S and S   frames, respectively. Here, 

, , , ,i j k x y z= and q is the electric charge. Using Equations A1 and A2 one then writes , ,x y z  components of 

electric and magnetic fields in the S  ( S ) frame [1, 31]. 

( ) ( )

( ) ( )2 2

, , ,

, ( / ) , ( / )

x x y y z z z y

x x y y z z z y

E E E E vB E E vB

B B B B v c E B B v c E

 

 

  = = − = +

  = = + = −
          (60)  

( ) ( )

( ) ( )2 2

, , ,

, ( / ) , ( / )

x x y y z z z y

x x y y z z z y

E E E E vB E E vB

B B B B v c E B B v c E

 

 

    = = + = −

    = = − = +
          (61) 

Which state that only x xE E = and x xB B = are Lorentz invariant along the x-axis, but change occurs along y, 

and z-axes. Therefore, a purely electric (magnetic) field in the S  ( S ) frame is a mixture of the electric and 

magnetic fields in the S ( S  ) frame, contrary to the common understanding in classical electrodynamics  

In the frame of six dimensional spacetime theory proposed in this article, the conservation of relativistic power 

will be used to show that the electric and magnetic fields are Lorentz invariant between two massive frames. In 

doing so, we use the energy dispersion relations in Equations 37a and 37b, with zero rest mass, the following 

expressions are written for the relativistic power in the 6S   and 6S massive frames, respectively 

.
i i

i

x x x x y y z z

x

dE
F u F u F u F u

dt


       = = + +


                    (62) 

.
i i

i

x x x x y y z z

x

dE
F u F u F u F u

dt
= = + +              (63) 

Where , ,ix x y z   = , , ,
ix x y xt t t t   = , , ,ix x y z=  , , ,

ix x y zt t t t= .  Equations 62 and 63 are the six-

dimensional analogues of the classical four-dimensional power relations in Equation A2. Suppose that the 6S   and 

6S massive frames form a closed and isolated system, we can then apply the law of the conservation of relativistic 

power and write down the following equation:  

/ /
i i i i i ix x x x x xdE dt dE dt F u F u   =   =                 (64)  
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Which shows that the relativistic power is invariant between the 6S  and 6S massive frames under Lorentz 

transformation.  Using Equations 29a and 29b for the velocity vectors in the 6S   and 6S massive frames, 

respectively, one can rewrite Equation A6 in the following forms in both massive frames: 

( ) ( )cos sin sin cos

x x y y z z x x y y z z

x y x x y y z z

F u F u F u F u F u F u

F F u F F u F u   

     + + = + +

    = − + + +
          (65) 

( ) ( )cos sin sin cos

x x y y z z x x y y z z

x y x x y y z z

F u F u F u F u F u F u

F F u F F u F u   

     + + = + +

   = + + − + +
         (66) 

Which yield the following (3x3) matrix transformation for Cartesian components of F  in 6S   ( F  in 6S ) 

massive frame expressed in terms of Cartesian components of F in 6S  ( F  in 6S  ) massive frame: 

6 6 6 6

cos sin 0 cos sin 0

sin cos 0 ; sin cos 0

0 0 1 0 0 1
S

x x x x

y y y y

z z z zS S S

F F F F

F F F F

F F F F

   

   



 −         
          = − =         
                   

        (67) 

Matrix Equations 67 allow one to write the following expressions for net forces F  and F acting on the events 

observed in the 6S  frame, which takes place in the 6S frame, respectively 

( ) ( )' ' ' ' 'ˆ ˆˆ ˆ ˆ ˆcos sin sin cosx y z x y x y zF F i F j F k F F i F F j F k       = + + = + + − + +          (68) 

( ) ( )ˆ ˆˆ ˆ ˆ ˆcos sin sin cosx y z x y x y zF F i F j F k F F i F F j F k       = + + = − + + +                  (69) 

Where ( )i i j k k jF q E u B u B= + −  and ( )i i j k k jF q E u B u B     = + −  are the Cartesian components of classical 

Lorentz forces in two frames, with , , , ,i j k x y z= ,  which are written as  

( ) ( ) ( ), ,x x y z z y y y z x x z z z x y y xF q E u B u B F q E u B u B F q E u B u B                 = + − = + − = + −       (70) 

( ) ( ) ( ), ,x x y z z y y y z x x z z z x y y xF q E u B u B F q E u B u B F q E u B u B= + − = + − = + −      (71) 

Substituting Cartesian components of Lorentz forces in Equations 70 and 71 into Equation 68 we can write  

( ) ( ) ( )cos sinx y z z y x y z z y y z x x zE u B u B E u B u B E u B u B     + − = + − + + −              (72) 

( ) ( ) ( )sin cosy z x x z x y z z y y z x x zE u B u B E u B u B E u B u B     + − = − + − + + −              (73) 

z x y y x z x y y xE u B u B E u B u B    + − = + −                            (74) 

Using Equation 29b for the Cartesian components the xu , yu , and zu  in Equations 72, 73 and 74 we find the 

following transformation matrix equations for the Cartesian components of the electric and magnetic fields in the

6S  frame in terms of those in the 6S frame. 
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6 6 6
6

cos sin 0 cos sin 0

sin cos 0 ; sin cos 0

0 0 1 0 0 1

x x x x

y y y y

z z z zS S S S

E E B B

E E B B

E E B B

   

   

 

          
          = − = −         
                   

        (75) 

The x, y and z components of magnetic field have a two-fold degeneracy in the 6S  frame. Side by side addition 

of the Cartesian components of electric and magnetic fields gives:   

( ) ( )ˆ ˆˆ ˆ ˆ ˆcos sin sin cosx y z x y x y zE E i E j E k E E i E E j E k            = + + = + + − + +              (76) 

( ) ( )ˆ ˆˆ ˆ ˆ ˆcos sin sin cosx y z x y x y zB B i B j B k B B i B B j B k            = + + = + + − + +        (77) 

Which show that the electric and magnetic fields are invariant along Cartesian coordinate axes between 6S  and

6S under forward Lorentz transformation. In other words, a pure electric (magnetic) field in 6S   frame is composed 

of components of a pure electric (magnetic) field in 6S frame. 

In the case of inverse Lorentz transformation, substituting Cartesian components of Lorentz forces given by 

Equations 71 and 72 into Equation 69 and following the steps in writing Equations 72, 73 and 74, with the use of 

Equation 29a for the Cartesian components xu , yu  and zu of u in the 6S frame, we write: 

6 6 6 6

cos sin 0 cos sin 0

sin cos 0 ; sin cos 0

0 0 1 0 0 1

x x x x

y y y y

z z z zS S S S

E E B B

E E B B

E E B B

   

   

 

 − −         
          = =         
                   

       (78) 

Side by side addition of electric and magnetic field components in matric Equations 78 allow us to write the 

following equations for the electric and magnetic field vectors in the 6S frame: 

( ) ( )ˆ ˆˆ ˆ ˆ ˆcos sin sin cosx y z x y x y zE E i E j E k E E i E E j E k       = + + = − + + +               (79) 

( ) ( )ˆ ˆˆ ˆ ˆ ˆcos sin sin cosx y z x y x y zB B i B j B k B B i B B j B k       = + + = − + + +         (80) 

which shows that Cartesian components of electric and magnetic fields are invariant under the inverse Lorentz 

transformation between two massive frames. In other words, a pure electric (magnetic) field in the 6S   massive 

frame is composed of components of a pure electric (magnetic) field in the 6S massive frame. 

 

8. RESULTS AND DISCUSSION 

As pointed out in section 1, Equation 9 states that the spacetime coordinates in Voigt and Lorentz 

transformations differ from each other by a factor of Lorentz factor
1/2g =  in the frame of four-dimensional 

spacetime and we can extend this similarity to six-dimensional space as
1/2g  =  and 

1/2g = in 
'

6S and 6S

frames, respectively. The effect of the anisotropy of six-dimensional Lorentz scaling factor on physical parameters 
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such as relativistic mass, momentum and energy of moving particles can’t easily be measured. However, we can 

explain the effect of the anisotropy of the six-dimensional Lorentz scaling factor on the various physical properties 

with the help of the idea proposed by Recami and Mignani [12]; Demers [13]; Mignani and Recami [14]; Cole 

[15]; Dattoli and Mingani [16]; Pappas [17]; Teli [18]; Guy [19]; Franco and Jorge [20]. Figure 7 shows the 

variation of xx , yy , and zz  with   at several   values.  

 

 

Figure 7. Angle variation of Lorentz scaling factors xx (red line) and yy (blue line) for (a) / 6, / 4, / 3, / 2    =  with 

/ 0.8v c = = and (b) for /v c = =0.60, 0.70, 0.80 and 0.90 with / 2 = . 

 

7.1. Relativistic Mass of a Particle  

Since the relativistic energy of a free particle (e.g., photon) is 
2E mc= , dividing both sides of Equation 44a 

with 
2c , the relativistic mass expressions in the '

6S massive frame is written as:  

1/2
2 2 22 2 2 2 2 2
0 20 0

02 2 2 2 2 2 2

// /

1 / 1 / 1 /

yx z

x y z

m u cm u c m u cE
m m

c u c u c u c

     
 = = + + +        − − − 

                    (81) 

With a expression written for the dispersion relation in the 6S massive frame. Dividing both sides of Equation 

44a with 
2c the relativistic mass in the

'

6S massive frame is written as

2 2 22 2 2 2 2 2
00 0

02 2 2 2 2 2 2

// /

2 1 / 2 1 / 2 1 /

yx z

x y z

m u cm u c m u cE
m m

c u c u c u c

 
 = = + + +

   − − −
                               (82) 

With a expression written in the 6S massive frame. Equation 81 and 82 yield 0(0) (0)m m m = =  when 

particle is at rest. Predictions of Equation 40, 81, and 82 are compared with measured data for different  are given 

in Table 1 for the relativistic mass of electron.  
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Table 1. Measured and calculated relativistic electron mass are compared for different 

ratios with 0 = in cartesian coordinates. 

v/c ratio m/m0 
(Measured) 

mxx/m0 

Equation 
40 

m/m0 

Equation 
81 

m/m0 
Equation 

82 

0.317 1.059 (a) 1.055 1.052 1.053 
0.429 1.106 (a) 1.107 1.097 1.102 
0.506 1.188 (b) 1.156 1.139 1.149 
0.634 1.298 (c) 1.293 1.233 1.260 
0.688 1.370 (a) 1.378 1.285 1.326 
0.696 1.404 (c) 1.393 1.294 1.338 
0.707 1.426 (b) 1.402 1.299 1.344 
0.750 1.507 (c) 1.511 1.359 1.425 
0.801 1.6711 (b) 1.667 1.439 1.535 

Note: (a): Bucherer [22] (b): Neumann [23] (c): Rogers, et al. [24]. 

 

The difference between calculated and measured mass is about 0.04% due to Equation 40 and about 4.2% due to 

Equation 81 and 82. 

 

7.2. Rest Mass of a Relativistic Particle 

In the framework of the classical theory of special relativity [9] one is required to  substitute 0 0m =  into the 

energy dispersion relation 
2 2 2 2 2 2 4

0E c p m c= = + to translate it into an energy-momentum relation 

E cp= =  to satisfy Maxwell wave equations for electromagnetic waves travelling at constant speed of light in 

vacuum. However, the existence or nonexistence of the rest mass of photon in nature have been questioned by 

means of theoretical [32-40] and experimental [31, 41, 42] studies over the years.  Recent experiments [31, 42] 

and observation [41] suggest that the photon rest mass is not zero, although its magnitude is small. In order to 

prove this view we use 
2E mc= =  and divide Equation 58 with 

2c to write the rest mass as 

1/ 2
2 22 2 2 2

0 2 2 2 2 2 2 2

// /
1

1 / 1 / 1 /

yx z

x y z

u cu c u c
m

u c u c u c c


−

  
= + + +    − − − 

                 (83) 

Likewise, dividing both sides of Equation 59 with 
2c ,  we can write the rest mass as 

1
22 2

0 22 2 2 2 2 2
1

2 1 / 2 1 / 2 1 /

yx z

x y z

uu u
m

cu c u c u c


−

  
 = + + +
   − − −
 

           (84) 

Equation 83 and 84 suggest that 0m is linear function of frequency at any azimuthal angle   in spherical 

coordinates, with 0 0m =  at v=c when one frame moves parallel to ±x axes ( 0, = and / 2 = ) or parallel to 

±y axes ( / 2 = , 3 / 2 ) of another frame. It is gratifying to note that this is in excellent agreement with the 

Einstein’s assumption of the photon rest mass at speed of light as two frames move in opposite directions relative to 

each other. Furthermore,  

(i) 
2

0 /m c=  at v=0 as its limiting case at any angle ( 0 2    and 0    ). 
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The second result (ii) is compared with the prediction of Heisenberg uncertainty principle, which yields the 

following upper bound for the rest mass of photon in the inertial frame. 

0

2 2 2/ ( / 2 ) / / 2ubE t m c T h f c c     → = = =                                      (85) 

where 
0

2ubE m c =  is the rest energy and 0 01/ 13.80t T f Gyr = =  , is the age of the Universe [43].  

It is interesting to note that the photon rest mass predicted by Equation 60 and 61 is 2 times higher than 

that predicted by Equation 62. When the azimuthal angle increases in counterclockwise direction.  

from the horizontal x-axis 0 / 2   calculations suggest that 0 0m   for / 6, / 4, / 3   = .  

Table 2 compares the nonzero photon rest mass calculated by using Equation 83 and 84 and 85 with the 

measured upper bound [31, 42] and observed data [41]. The dynamic torsion balance measurement of Luo, et al. 

[31] yields upper bound 
0

54( ) 1.2 10ubm c kg−=  for the photon mass at  f=7.41x10-4Hz. Equation 60 and 61 give 

0 ( )m c = 4.34x10-55kg at the same frequency. We also discover that the predicted rest mass 1.38 × 10−54 kg is in 

close agreement with the most recently observed photon mass 1.75x 10-53 kg at 2.36 × 10−3 Hz by Spallicci, et 

al. [41] who sought the deviation from Ampere-Maxwell law due to photon, through the NASA Magnetospheric 

Multiscale Mission (MMS) data for over six years. Calculated, measured and observed data suggest  

that photon rest mass has a small magnitude but never zero.  

 

Table 2. Comparison of calculated and measured rest mass of photon (m0/kg). 

f (Hz) Equation 83 and 84 Equation 85 (Measured) 

1.16x10-5 4.28x10-56 6.28x10-57 2.0x10-53 [42] 
7.41x10-4 4.34x10-55 6.91x10-56 1.24x10-54 [31] 
2.36 x10-3 1.38x10-54 2.20x10-55 x10-53 [41] 
2.30x10-18 8.48x10-69 1.35x10-69 Uncertainty principle 

 

7.3. Maxwell’s Wave Equations with and without Photon Rest Mass 

In this section, based on the Lorentz invariance of electric and magnetic fields given in section 7 , we will show 

that Maxwell’s wave equations are invariant under the forward and inverse Lorentz transformations between two 

massive frames, we first need to prove the constancy of speed of light in all directions in both massive frames. We 

first  write the Gauss laws of electrostatics and magnetostatics and Faraday’s and Maxwell’s laws of  inductions [2] 

in the 6S frame in vacuum.   

2

1
0, 0; ,i i

i i

B E
E B E B

t c t

 
 =  =   = −   =

 
         (86a) 

( . . ) ( . . )

0 0( , ) ; ( , )i t k r i t k rE r t E B r t B − − − −= =                    (86b) 

Where , , , ,i j k x y z= axes, respectively. Similarly, we write the Gauss laws of electrostatics and 

magnetostatics and Faraday’s and Maxwell’s laws of induction in the '

6S massive frame in vacuum.     

2

1
0, 0; ,i i

i i

B E
E B E B

t c t

  
         =   =   = −   =

  
        (87a) 
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( . . ) ( . . )

0 0( , ) e ; ( , ) ei t k r i t k rE r t E B r t B        − − − −       = =                     (87b) 

In proving the constancy of the speed of light in both massive frames, we insert the electric and magnetic fields 

into Faraday’s and Maxwell’s laws of inductions in one dimensional form and write the following equations.     

( . . ) ( . . ) 0
0 0

0

i t k r i t k r E
kE B c

B k

  
− − − −− = − → = =                       (88a) 

( . . ) ( . . ) 0
0 0 0 0

0 0 0 0 0

/ 1i t k r i t k r E k
kB E

B c

  
  

   

− − − −− = − → = =             (88b) 

Combining Equation 88a and 88b one finds 
1/2 8

0 0( ) 3 10 /c m s = =   in the 6S frame. Furthermore, for 

p k mu= = ,
2E mc= , combination of Equation 65a and 65b gives   

2 2 2 2 2 4

2 2 2 2 2 2

0 0

1E m c

k k p m u

 

 
= = = =                                          (89) 

Which also gives 
1/2 8

0 0( ) 3 10 /c m s = =  for u c= . Furthermore, Equation 89 allows us to write the 

following one-dimensional energy dispersion relation in the 6S frame  

2 2 2 2 4 2 2 2 4 2 2 2 2 2 4

0 0 0xx xE m c p c m c m u c m c = = = + = +           (90) 

Where 
2 2 1/21/ (1 / )x xu c = − is equivalent to 

2 2 1/2(1 / )v c = − in Equations 2a and 2b.   

In the second step, inserting electric and magnetic fields given by Equation 87b into Equation 87a, for 

Faraday’s and Maxwell’s laws of inductions in one dimensional form, we find.   

( . . ) ( . . ) 0
0 0

0

e ei t k r i t k r E
k E B c

B k

  


       − − − −  
    − = − → = =

 
                         (91a) 

( . . ) ( . . ) 0
0 0 0 0

0 0 0 0 0

/ 1
e ei t k r i t k r E k

k B E
B c

  
  

   

       − − − −   
   − = − → = =

 
             (91b) 

Combining Equation 91a and 91b one finds 
1/2 8

0 0( ) 3 10 /c m s   = =   in the
'

6S frame.  Furthermore, using 

p k m u   = = and 
2E m c  = , combination of Equation 91a and 91b gives 

2 2 2 2 2 4

2 2 2 2 2 2

0 0

1E m c

k k p m u

 

 

    
= = = =

    
                                      (92) 

which gives 
1/2 8

0 0( ) 3 10 /c m s   = =   For u c = in the 
'

6S  frame. Furthermore, Equation 69 allows us 

to write the following one-dimensional energy dispersion relation in the 6S   frame  



Journal of Asian Scientific Research, 2022, 12(4): 188-217 

 

 
214 

© 2022 AESS Publications. All Rights Reserved. 

2 2 2 2 4 2 2 2 4 2 2 2 2 2 4

0 0 0x x xE m c p c m c m u c m c          = = = + = +                        (93) 

where 2 2 1/21/ (1 / )x xu c   = − .  We then conclude that the speed of light is Lorentz scalar  

83 10 /c c m s = =   in both frames with or without nonzero photon rest mass.  

We are now ready to demonstrate that Maxwell’s electromagnetic wave equations are invariant under Lorentz 

transformation between two massive frames in the frame of the 6-dimensional spacetime theory. 

Applying the vector identity 2=−  [2] to Faraday’s and Maxwell’s laws of inductions, we 

write 

Maxwell’s wave equations in 6S  and '

6S massive frames: 

( ) ( )
2 2

2 2

2 2 2 2

1 1
;

i i

i i i i

i i

E B
E B B E

t c t t c t

   
− = −   = − − = −   = −

   
    (94a) 

( ) ( )
2 2

2 2

2 2 2 2

1 1
;i i i i

i i i i

E B
E B B E

t c t t c t

    
       − = −   = − − = −   = −

      
   (94b) 

Where ( ) 0i i E   = , ( ) 0i i E     = , ( ) 0i i B   = , and ( ) 0i i B     = .  Using chain rules for 

differential operators of x and xt  in Equations 20a and 20b and related ones in Equation 94a and 94b, we write 

2 2 2 2 2 2
2 '2

2 2 2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2 2

1 1

1
x x y y z z

x y z x y z

xx yy zz t t t t t t

x y z

E E E E E E
E E

c t t t c t t t

E E E E E E
a a a a a a

x y z c t t t

          
 − + + =  − + +                

           
= + + − + +             

                          (95a) 

2 2 2 2 2 2
2 '2

2 2 2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2 2

1 1

1
x x y y z z

x y z x y z

xx yy zz t t t t t t

x y z

B B B B B B
B B

c t t t c t t t

B B B B B B
a a a a a a

x y z c t t t

          
 − + + =  − + +                

           
= + + − + +             

            (95b) 

where a are coefficients given by Equation 18. Component by component matching of both sides of 

Equations 95a and 95b gives 1xxa = , 1yya = , 1zza =  1
x xt ta = , 1

y yt ta = , and 1
z zt ta = . Therefore, the 

covariant. 

Maxwell wave equations become invariant under Lorentz transformation between two massive frames, which 

yields the Cartesian components of Lorentz scaling factor in Equation 19. 

One can easily extend the invariance condition of Maxwell’s wave equations in vacuum to materials medium by 

replacing c  and c  with 1/m m mc  =   and 1/m m mc    =  in 6S and 
'

6S frames, respectively, in Equations 

95a and 95b with the anisotropic Lorentz scaling factors. 
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2 2 2

, , , , , ,1/ 1 , 1/ 1 , 1/ 1
x x y y z zm xx m t t mx m yy m t t my m zz m t t mz        = = − = = − = = −        (96) 

Where /mx x mv c = , /my y mv c = , /mz z mv c = are the normalized x, y, and z-components of relative 

velocities of 6S  and 
'

6S  frames in material medium. Here ( )m m    and ( )m m   are the Lorentz scalar dielectric 

constant and magnetic permittivity of material medium in both frames.  

 

9. CONCLISIONS  

In this work extended the classical four- dimensional Minkowski spacetime theory to six dimensions by adding 

two extra time coordinates, which allows spatial time (position) change in position (time) in three coordinate axes 

and still satisfy the covariance and invariance conditions of the metric and Maxwell’s wave equations between two 

frames under Voigt and Lorentz transformations, respectively. We introduce a new velocity transformation rule 

which is valid at any relative speed of reference frames moving with respect to each other. We derived expressions 

for relativistic mass, energy, time dilation, length contraction, Doppler shift, and photon rest mass, and Lorentz 

invariance of Maxwell wave equations between two reference frames in vacuum and materials medium. The 

predicted nonzero photon rest mass 4.34 × 10−53 kg at 𝑓 = 7.41 × 10−4 Hz is in good agreement with 

measured upper bound 1.24 × 10−54 kg due to rotation torsion balance technique of Luo, et al. [31]. The 

calculated photon rest mass 1.38 × 10−54 kg at 2.36 × 10−3 Hz is also in close agreement with the most 

recently observed mass 1.75x 10-53 kg by Spallicci, et al. [41] who sought the deviation from Ampere-Maxwell law 

due to photon, through the NASA Magnetospheric Multiscale Mission (MMS) data for over six years. Calculated, 

measured and observed data suggest that photon rest mass has a small magnitude. But never zero. Furthermore, we 

also show that Maxwell’s wave equations are form invariant under Lorentz transformation between two massive 

frames with and without nonzero photon mass in vacuum and in material medium. 
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