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Amphibians are among the main affected non-target groups, victim of pesticides. This 
review puts into evidence worldwide studies on lethal and sub-lethal effects of 
pollutants on amphibians and proposes solutions to handle the issue. Literature review 
was carried out from articles and books, on 123 studies. The number of pesticide 
formulations used worldwide in very high. Pesticide effect on the environment and the 
biota in general have been assessed in many studies using tools such as biomonitoring, 
bioassays in laboratory and semi-field conditions and Ecological Risk Assessment 
(EcoRA) with models. The ecological effects of pollutants are varied and often inter-
related. Effects in the organism or at the ecological level are usually considered an early 
warning indicator of potential human health impact. Effects can either be lethal or sub-
lethal comprising cancer, tumours, lesions, reduction of reproductive potential, immune 
suppression, disruption of endocrine system, cellular and Deoxyribonucleic acid (DNA) 
damage, and teratogenic effects. Amphibian conservation can be done via the protection 
of genetic resources, cleaning habitat, sustainable harvesting, captive breeding, cloning 
and reintroduction programmes. Proper use of pesticides and reinforcement of 
regulation remains a necessity to protect environmental health. 
 

Contribution/ Originality: This review is a critical evaluation of available data on pesticide effects on 

amphibians. We would like to clarify the state of knowledge in pesticide ecotoxicology in amphibians in order to 

identify perspectives. After the identification of various threats, proposals have been made for amphibian 

conservation programmes.  

 

1. INTRODUCTION 

Poverty, starvation, famine and hunger related diseases are among the main challenges faced by populations 

worldwide. In order to overcome these challenges, the development of the agricultural stands as a solution 

especially in less developed countries in which economic factors push more and more people into agriculture [1]. 

Unfortunately, crop production is seriously hindered by pest and diseases [2, 3], therefore farmers must make use 

of pesticides to fight against harmful organism and increase the yield [4]. Pesticide use in agriculture is intended to 

combat pests in order to improve the field; unfortunately, extensive use of pesticide in developing countries is often 

accompanied with improper use [5]. Large quantities of pesticides are released into the environment on a routine 

basis with severe consequences on organisms. The amount of pesticides coming in direct contact with or consumed 

by target pests is an extremely small percentage of the amount applied, less than 0.3% in most studies [6]. The 
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larger proportion of pesticides (99.7%) applied gets into the aquatic system through leaching, surface run-off, spray 

drift, soil erosion and volatilisation. The big problem with pesticides in general is non-target effects [7]. Pesticides 

act on living organisms with lethal effects (death) that are very easy to appreciate or sub-lethal effect such as 

reduction of growth, reduced reproductive capacities, teratogenic effects, that are not easy measure in situ [8]. 

Pesticides have been reported to cause genotoxicity, teratogenicity and cell damage in animal models and humans 

[9].  

The biggest contributors of amphibians’ population declines include habitat loss (destruction and 

fragmentation), pollution (pesticides, fertilizers and industrial wastes), exotic species, predators, competition for 

resources such as food and breeding sites, climate change and diseases [10]. Wetlands are very suitable habitats for 

amphibians, unfortunately, agriculture is the main challenge to wetland conservation [11] . Native amphibians in 

agricultural landscapes exhibit endocrine description effects due to agricultural inputs [12]. Amphibian populations 

are declining worldwide [13] and declines are particularly severe in the New World tropics where amphibian 

diversity is among the highest on the planet [14]. Over the past 25 years, reduction in amphibian populations have 

been occurring more dramatically [15]. The permeable skin of amphibians makes them susceptible to desiccation 

[16] hence, amphibians are threaten more than other vertebrate classes [15] because they like shallow, standing 

and temporary ponds around agricultural fields for reproduction; this increases their exposure to contaminants 

[17]. Amphibians are facing a major extinction crisis that requires quick measures at all levels: research, law and 

policy [18]. Pesticides such as Dichlorodiphenyltrichloroethane (DDT) (180g/ha), endosulfan (800 to 300g/ha) 

and dieldrin (14g/ha) has been reported as serious danger to amphibians in sub-Saharan Africa [19]. Amphibians as 

part of the aquatic community compete with groups such as snails, chironomid larvae and dipteran larvae for 

periphyton [20]. Among pollutants, pesticides are the main causes of amphibian population declines [21] even 

though relating wildlife declines to pesticides is not obvious because of many co-variates [22]. Surfactants are 

commonly incorporated into pesticides formulation and may also be risky to the biota [23]. Precipitation, elevation, 

surrounding urban and agricultural land use, and spatial location are covariates of pesticide toxicity [21] hence the 

necessity to assess multiple stressors [24].  

Amphibians play a tremendous role in the regulation of insect pest populations and food webs [25]. Living 

both on land and in water, and having a naked skin used for breathing, amphibians are highly exposed to 

contaminants, making them good bio-indicators of environmental changes. Amphibians play a pivotal role in 

ecosystem as secondary consumers in many food chains. Tadpoles have significant impact in nutritional cycling. 

They are herbivorous to omnivorous and are the prey items for both invertebrates and vertebrates. Adult 

amphibians are the best biological pest controllers. Amphibians are regarded as good ecological indicators. Due to 

high degree of sensitivity, either during tadpole stage or as adults, they respond to very slight change in the 

environment more than mammals. Pollutant effects on amphibians have been assesses at the laboratory, mesocosm 

and landscape levels [22] but few pesticides have been tested on amphibians [26]. Even though, exposure to 

environmental pollutants such as agricultural pesticides has been identified as one of the ultimate causes of decline, 

ecotoxicological studies are extremely rare especially in tropical regions [27]. This review puts into evidence 

worldwide studies on lethal and sub-lethal effects of pesticides on amphibians and proposes potential solutions. This 

will bring more information on various effects on pesticides for better recommendations to pesticides users and for 

decision makers, the outcome being the protection of human and environmental health.  

 

2. MAIN GROUPS OF CHEMICAL POLLUTANTS  

A non-exhaustive list of water chemical pollutants includes heavy metals, pesticides, hydrocarbons, 

organohalogen compounds (Polychlorinated Biphenyls-PCBs, Polybrominated biphenyls-PBBs, Polychlorinated 

dibenzodioxins-PCDDs and Polychlorinated dibenzofurans-PCDFs), detergents and surfactants, chlorophenols, 

organometallic compounds, gases and radioactive isotopes [28].  

https://ehp.niehs.nih.gov/doi/abs/10.1289/ehp.02110125
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2.1. Case of Agrochemicals  

Pesticides are substances or mixtures of substances destined to repel, destroy or fight against pests of plants or 

vectors of animal and human diseases [29]. Based on their chemical composition, there are organic (contain carbon 

in their chemical structure) and inorganic (do not contain carbon and are usually derived from mineral ores) 

pesticides. According to their target, pesticides can be divided into insecticides (kill insects), fungicides (kill fungi), 

herbicides (destroy weeds), nematicides (nematodes), molluscicides (molluscs), avicides (birds) and son on. Based on 

their toxicity, pesticides can be classified as shown in Table 1.  

 

Table 1. Classification of pesticides according to their toxicity [30]. 

WHO Class  Toxicity Level  Oral LD50 for the Rat (mg/kg of body weight)  Example 

Class Ia Extremely Hazardous <5 Dieldrin 
Class Ib Highly Hazardous 5 -50 Eldrin 
Class II Moderately Hazardous 50 -2000 DDT 
Class III Slightly Hazardous 2000 -5000 Malathion 
Class IV Virtually Non-Toxic >5000 Carbetamide 
Note: 

 
• DDT: Dichlorodiphenyltrichloroethane. 

• WHO: World Health Organization. 

• LD50: Dose that can kill 50% of the population 

 

Pesticides use in agriculture is a common rule worldwide: there are many documented surveys on pesticide use 

in agriculture [4, 31-48].  

The number of pesticide formulations used worldwide in very high. For instance, 107 pesticides commercial 

names corresponding to 54 active ingredients, were reported to be used by farmers of the Fako Division, South-

West Cameroon in a single crop season by small-scale farmers and the CDC (Cameroon Development Corporation) 

[37] thirty-one pesticide commercial names corresponding to 18 active ingredients were reported to be used by 

market gardeners in Fotouni (West Cameroon) with Chlorothalonil occupying the top position [36];  thirty-two 

pesticide commercial names (17 active ingredients) were recorded in Balessing, a locality of the West Region of 

Cameroon [45]. Some of these pesticides especially fungicides have a heavy metal component. These agrochemicals 

have many negative effects on the environment and the biota.  

 

2.2. Agrochemical Effects on Environment and the Biota  

Pesticide effect on the environment and the biota in general have been assessed in many studies using tools 

such as biomonitoring, bioassays in laboratory and semi-field conditions and Ecological Risk Assessment (EcoRA) 

with models. Pesticides such cypermethrin, lambda-cyhalothrin, cadusafos and malathion have been reported to be 

very  risky to water, Daphnia and fish in the Benoe stream, South-West Cameroon [49] furthermore,  

chlorpyriphos-ethyl, chlorothalonil and cypermethrin were reported to be risky  to streams [50] whereas,  the 

mixture imidaclprid+lambda-cyhalothrin is very toxic to amphibians [51].  Pesticide residues above have been 

detected in water bodies in Yaoundé, Centre Region of Cameroon [48]. How do these agrochemicals act on 

amphibians? 

 

3. POLLUTANTS EFFECTS ON AMPHIBIANS  

The ecological effects of pollutants are varied and often inter-related. Effects in the organism or at the 

ecological level are usually considered an early warning indicator of potential human health impact. Effects can 

either be lethal [52] and easy to appreciate (death), or sub-lethal, not easy to assess in routine experiments: cancer, 

tumours,  lesions; reproduction failure, immune suppression , disruption of endocrine system [53] cellular and 

DNA damage, and teratogenic effects [54] and intergenerational effects. These associated stresses need not be 

large to have a synergistic effect with organic minor pollutants. Worldwide studies have revealed that, pollutants 

have lethal and sub-lethal effects on amphibians. Mortality is generally expressed as a dose-response curve 

https://ehp.niehs.nih.gov/doi/abs/10.1289/ehp.02110125
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graphically represented as the relationship between the quantity of the contaminant and the magnitude of the 

induced impact [55]. 

 

3.1. Lethal Effects   

3.1.1. Fungicides  

Fungicides generate lethality in amphibians but the LC50 is higher. Bioassays with fungicides have been mainly 

done with copper sulphate, Chlorothalonil, Pyraclostrobin, Captan and Spiroxamine.  

Copper sulphate is the chemical compound with the chemical formula : CuSO4, 5H2O; it is a protectant foliar 

fungicide often used in ponds to control algae [56]. This chemical had a 120h LC50 of 0.058 mg/L (Table 2) with 

the larvae of the green toad Bufo viridis [15]. 

 

Table 2. Toxicity value for fungicides summarized from studies done on tadpoles. 

Species Duration Pollutant LC50 Reference 

Bufo viridis 120h Copper Sulphate 0.058mg/L [15]  

Rana utricularia  24h Mancozeb 800ppb [57]  

R. utricularia 24h Fosetyl-Al 45.280ppb [57]  

R. utricularia 24h Chlorothalonil 28ppb [57]  

Agalychnis callidryas 96h Chlorothalonil 26.6 µg/L [58]  

Isthmohyla pseudopuma  96h Chlorothalonil 25.5 µg/L [58]  

Smilisca baudinii 96h Chlorothalonil 32.3 µg/L [58]  
 Note: • Al : Aluminium. 

• LC50: median lethal concentration; is the amount of a substance required to kills 50% of a test organism.  

• ppb: parts per billion (1 ppb = 1 ug/L). 

 

Chlorothalonil, used to control a wide range of fungal diseases on a broad range of crops, is moderately toxic to 

birds, honeybees and earthworms but considered to be more toxic to aquatic organisms [56]. Chlorothalonil had an 

LC50 value of 59.36 µg/L following 8-days acute toxicity assays carried out on individually reared Agalychnis 

callidryas tadpoles [59].  Chlorothalonil is a fungicide used on maize, potatoes and fruits; it has been detected in 

superficial water, rain and air, so human beings and other living organisms can be heavily exposed if they use water 

from these sources. This fungicide is very toxic to tadpoles and those that survive have very weak immune system 

[59]. Chlorothalonil has also been reported to be very toxic to amphibians (Agalychnis callidryas, Isthmohyla 

pseudopuma and Smilisca baudinii) with a 96h LC50 ranging from 25.5 to 32.3µg/L (Table 2); this high toxicity was 

accompanied by a spontaneous rupture of linea alba and posterior evisceration in tadpoles that died after 24h of 

exposure [58].  

Pyraclostrobin is a fungicide used to control major plant pathogens in cereals and other crops; Captan is a 

dicarboximide fungicide used on fruit and other crops; this carcinogenic compound may also cause endocrine 

disruption; Spiroxamine is a systemic fungicide used to control common fungal diseases on cereals and fruits [56]. 

These three fungicides brought about an acute mortality of 100% after 1 hour and 40% after seven days of exposure 

in juvenile of the European common frogs, Rana temporaria [60].  

 

3.1.2. Insecticides  

In general, there is a higher aquatic risk associated with insecticides as compared to other pesticide families 

[49]. Organochlorine insecticides are particularly toxic to amphibians; DDT (110g/Ha), dieldrin (800g/Ha) and 

endosulfan (>200g/Ha) are among the most toxic, causing death of adult amphibians [19]. Endosulfan, diazinon, 

chlorpyrifos, alpha-cypermetrhin, malathion, dimethoate and fenitrothion have been used in bioassays with 

amphibians.  

Endosulfan is an insecticide and acaricide with low aqueous solubility and is volatile; it may have a tendency to 

leach to groundwater while Diazinon is a general-purpose insecticide, moderately soluble and highly volatile, highly 
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toxic to most aquatic [56]. These two insecticides generated high adult mortality especially Diazinon which is an 

enzyme inhibitor. Endosulfan is a ubiquitous environmental contaminant. The chemical is semi-volatile and 

persistent to degradation processes in the environment. Endosulfan and Diazinon showed evidence of bio-

concentration because of the significant positive correlation between accumulated residues and mortalities [61]. 

Diazinon (Basudin) also induced a dose-dependent mortality in tadpoles of Ptychadena bibroni with a 96h LC50 of 

0.86 µg/L [62] (Table 3).  

 

Table 3. Toxicity value for insecticides summarized from studies done on amphibians. 

Species Duration Pollutant  LC50 Stage  Reference 

Bufo regularis 96h Diazinon  0.44mg/L Adults [61] 

Bufo regularis 96h Endosulfan 0.73mg/L Adults  [61] 

Xenopus laevis  Methoxychlor  72nM Adult females  [63] 

Hoplobatrachus 
chinensis 

24h Chlorantraniliprole  5.37mg/L Tadpoles  [25] 

Hoplobatrachus 
chinensis 

24h Flubendiamide-
abamectin 

4.90mg/L Tadpoles [25] 

Hoplobatrachus 
chinensis 

72h Chlorantraniliprole  1.74mg/L Tadpoles [25] 

Hoplobatrachus 
chinensis 

72h Flubendiamide-
abamectin 

1.45mg/L Tadpoles [25] 

Amietophrynus regularis 24h Imidacloprid+lambda-
cyhalothrin 

3.66 mg/L Tadpoles  [51] 

Bufo Melanostictus 48h Chlorpyrifos  1.47ppm Tadpoles [64] 

Bufo Melanostictus 48h Dimethoate 8.89ppm Tadpoles [64] 

Rhinella arenarum 504h Dimethoate  12.82mg/L Larvae  [65] 

Rhinella arenarum 504h Dimethoate 16.38mg/L Embryos  [65] 

Ptychadena bibroni 96h Diazinon 0.860µg/L Tadpoles  [62] 

Bufotes variabilis 96h Alpha-cypermethrin 15.62µg/L Gosner Stage 19 [66] 

Rana berlandieri  24h Imidacloprid  184.5µg/L Tadpole  [57] 

Rana berlandieri 24h Carbaryl  51.581µg/L Tadpole  [57] 

Rana berlandieri 24h Chlorpyrifos  1.13µg/L Tadpoles [57] 

Pseudacris triseriata  24h Imidacloprid  388.5µg/L Tadpoles  [57] 

Pseudacris triseriata 24h Carbaryl  58.08µg/L Tadpoles [57] 

Pseudacris triseriata 24h Chlorpyrifos  1.13µg/L Tadpoles [57] 

Bufo americanus  24h Imidacloprid  468µg/L Tadpoles  [57] 

Bufo americanus 24h Carbaryl  63.17µg/L Tadpoles [57] 

Bufo americanus 24h Chlorpyrifos  1.32µg/L Tadpoles [57] 

 

Chlorpyrifos is an organophosphate insecticide with a low aqueous solubility. Chlorpyrifos has been reported to 

be  highly toxic to birds, fish, aquatic invertebrates and honey bees, and is moderately toxic to aquatic plants, algae 

and earthworms [56]. As shown in Table 3, chlorpyrifos significantly reduced tadpoles’ survival of Asian common 

toads with 1.46ppm as 48h LC50 [64].  

Alpha-cypermethrin is a widely used pyrethroid insecticide considered to be a serious water pollutant [56]. A 

study on the effect of this compound on tadpoles of the variable green toad Bufotes vairabilis revealed a 96h LC50 of 

15.62 µg/L [66] so it is highly toxic to amphibians (Table 3). 

In an outdoor mesocosm study, malathion at low concentration (10-250µg/L), has indirect effect on 

amphibians. Moderately toxic to mammals, Malathion is a cholinesterase inhibitor and a neurotoxin, highly toxic to 

honey bees and aquatic species with the exception of algae [56]. This insecticide affected zooplankton, 

phytoplankton, periphyton and larval amphibians; the Leopard frog (Rana pipiens) which has a long time to 

metamorphosis had serious population reduction while the effects were little on wood frogs Rana sylvatica [67].  

http://en.wikipedia.org/wiki/Semi-Volatile_Organic_Compound
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Fenitrothion is an insecticide with low aqueous solubility; moderately toxic to mammals, it is considered to be 

an endocrine disrupter and a cholinesterase inhibitor [56]. In green frogs and bullfrogs, fenitrothion at doses 

between 2 and 9ppm caused 50% mortality [68] (Table 3).  

Dimethoate is an organophosphate insecticide, highly soluble in water, it is highly toxic to birds and honeybees, 

moderately toxic to most aquatic species and earthworms [56]. Banned in Cameroon [69] this insecticide is still 

used by many farmers [37]. Dimethoate caused an acute mortality of 100% after 1 hour and 40% after seven days of 

exposure in juvenile of the European common frogs, Rana temporaria [60]. Dimethoate represents a risk on Rhinella 

arenarum survival (Table 3) with larvae being more vulnerable than embryos [65].  

 

3.1.3. Herbicides  

The most detrimental impact of a contaminant on an exposed organism is to cause death. Because of 

confounding effects and the inability to provide controlled environments in the field, toxicity of substances are most 

commonly assessed through laboratory trials [55]. Worldwide, bioassays have been done mainly with Atrazine, 

Propanil, Glyphosate, Bromoxynil-octanoate, Fenoxapto-P-ethyl and 2,4-D.  

Atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-trazine) is a selective, pre- and post-emergence herbicide, 

used on a variety of terrestrial food crops, non-food crops, forests, residential turf, gold course turf, recreational area 

and rangeland. In plants, it inhibits photosynthesis by blocking the protein D1 of photosystem II [70]. Atrazine 

generated 100% mortality in one-week old tadpoles of Ptychadena bibroni at 96h. This high lethality decreased in 

successive developmental stages of two, three- and four-weeks tadpoles at 96h and the respective mortality were 

90%, 80% and 75%. The LC50 values ranged between 230.058 and 431.323 µg/L of different stages of development 

(Table 4). The accidental or intentional release of this herbicide in water is then very detrimental to amphibians’ 

survival [71].  

Propanil is a post-emergence herbicide used for broad-leaved and annual grass weed control in rice and other 

crops [56] it significantly reduced tadpoles’ survival of Asian common toads with a 48h LC50 of 1.47ppm [64].  

Glyphosate is a broad-spectrum synthetic herbicide, highly soluble in water [56] thus requires surfactants too 

increase activity [72]. It is more toxic to tadpoles than embryos [72]. Glyphosate (Round-up) caused a large 

reduction in the survival of three amphibian species, the grey tree frog, Hyla versicolor; American toad, Bufo 

americanus; and leopard frog, Rana pipiens in pond mesocosms [26]. In laboratory bioassays, glyphosate (round-up) 

caused substantial mortality in the three species; from 96% to 32% in juvenile wood frog, from 100% to 18% in 

juvenile tree frog and from 100% to 24% in juvenile toad [26]. Moreover, Glyphosate is very toxic to amphibians 

especially the Ultra-Max (ULT) formulation with a 2.42mg/L LC50 at 48h [73]. 

Bromoxynil-octanoate is an herbicide used for post-emergence control of annual broad-leaved weeds and 

Fenoxapto-P-ethyl is a post-emergence herbicide used to control annual and perennial grasses [56]. These two 

compounds generated an acute mortality of 100% after 1 hour and 40% after seven days of exposure in juvenile of 

the European common frogs (Rana temporaria) [60]. 

The herbicide known as 2,4-D is a selective, systemic compound, highly soluble in water: this  volatile herbicide 

has a low potential to leach to groundwater: it is non-persistent in soil but may persist in aquatic systems under 

certain conditions [56]. 2,4-D had a LC50 of 536.2mg/L following 8-days acute toxicity assays carried out on 

individually reared Agalychnis callidryas tadpoles [59] (Table 4). 
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Table 4. Toxicity value for herbicides summarized from studies done on amphibians. 

Species Duration Pollutant  LC50 Stage  Reference 

Ptychadena bibroni 96h Atrazine 230.058-
431.321µg/L 

Tadpoles [71] 

Hoplobatrachus chinensis 24h Penoxsulam 4.68mg/L Tadpoles [25] 

Engystomops pustulosus 96h Glyphosate 2799µg/L Tadpoles [72] 

Hypsiboas crepitans 96h Glyphosate 2203µg/L Embryo  [72] 

Hypsiboas crepitans 96h Glyphosate 1424µg/L Tadpoles [72] 

Rana marina 96h Glyphosate 2270µg/L Embryo  [72] 

Rana marina 96h Glyphosate 2170µg/L Tadpoles [72] 

Rana humboldti 96h Glyphosate 3336µg/L Embryo   [72] 

Rana humboldti 96h Glyphosate 2121µg/L Tadpoles [72] 

Rhinella arenarum 48h Glyphosate (ULT) 2.42 mg/L Tadpoles  [73] 

Rhinella arenarum 48h Glyphosate (INF™ 38.76 mg/L Tadpoles [73] 

Rhinella arenarum 48h Glyphosate 
(Glifoglex™) 

73.77 mg/L Tadpoles [73] 

Rhinella arenarum 48h Glyphosate (C-K 
FAV™) 

77.52 mg/L Tadpoles  [73] 

Hoplobatrachus chinensis 72h Penoxsulam 1.29mg/L Tadpoles [25] 

Hoplobatrachus chinensis 48h Penoxsulam 0.021mg/L Tadpoles [25] 

R. pipiens 24h Glyphosate (Herbicide) 20.47ppb Tadpoles [57] 

R. pipiens 24h Prodiamine (Herbicide) 840.83ppb Tadpoles [57] 

R. pipiens 24h Dimethylamine salt of 
2,4-D, mecoprop and 
dicamba (Herbicide) 

432ppb Tadpoles [57] 

Bufo Melanostictus 48h Propanil 1.46ppm Tadpoles [64] 

Bufo Melanostictus 48h Glyphosate 45.94ppm Tadpoles [64] 

Engystomops pustulosus 96h Glyphosate 3904µg/L Embryo  [72] 

Note:  • ULT : Ultra-Max (Commercial name). 

• INF: Infosate (Commercial name). 

• C-K FAV: C-K Yuyos FAV (Commercial name). 

• ™: trademark. 

 

3.2. Mixture of Pesticides  

Most often, many farmers mix pesticide before use, for many reasons: save time, effectiveness [37] therefore 

some studies have been done of the effect of pesticide mixtures on the biota. A study on the impact of agricultural 

inputs on amphibians in China revealed that chlorantraniliprole (insecticide) and penoxsulam (herbicide) exhibited 

moderate toxicity to the Chinese tiger frog while flubendiamide-abamectin was highly toxic to this amphibian. The 

joint toxicity of chlorantraniliprole + flubendiamide-abamectin was synergistic after 24h while other combinations 

were antagonistic [25]. This makes the response of the tiger frog to pollutants very complicated to understand. 

When combined with other stressors, pollutants most often fail to exhibit synergistic effects [74]. 

Organophosphates and Carbamates (cholinesterase-inhibiting pesticides) were more strongly associated with 

population declines of the Yosemite toad (Bufo canorus), the California red-legged frog (Rana aurora draytonii), the 

foothill yellow-legged frog (R. boylii), the Cascades frog (R. cascadae), and the mountain yellow-legged frog (R. 

muscosa) in California, than any other class of pesticides [21]. Carbaryl is an obsolete carbamate insecticide with a 

suspected endocrine disruptor function [56]. Its toxicity may be influenced in the presence of covariates. For 

instance, Ultraviolet B (UV-B) radiation intensity positively influenced tadpole survival to metamorphosis and the 

presence of UV-B radiation made carbaryl less toxic [24]. 

Tadpoles exhibited narcosis when exposed to surfactants such as Nonylphenol Ethoxylates (NPE) and alcohol 

alkoxylate in a static-renewal  acute toxicity test, and the toxicity increased under high temperature and low 

oxygen conditions [23]. Table 5 gives LC50 values of common agricultural surfactants on amphibians.  
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Table 5. LC50 at 48hours of surfactants on amphibians at the tadpole stage. 

Amphibian Species Compounds LC50 (mg/L) Reference 

Crinia insignifera Nonylphenol (Teric GN* 3.8 [23]  

Crinia insignifera Nonylphenol (Agrab®600* 3.5 [23]  

Crinia insignifera Alcohol alkoxylate (BS1000®*) 6.0 [23]  

Limnodynastes dorsalis Nonylphenol (Agrab®600™) 4.1 [23]  

Limnodynastes dorsalis Alcohol alkoxylate (BS1000®*) 14.3 [23]  

Xenopus laevis Nonylphenol (Teric GN*) 2.8 [23]  

Xenopus laevis Nonylphenol (Agrab®600*) 2.3 [23]  

Bufo marinus Nonylphenol (Teric GN*) 5.1 [23]  

Bufo marinus Nonylphenol (Agrab®600*) 5.4 [23]  

Litora moorei Nonylphenol (Agrab®600*) 4.6 [23]  

Heleioporus eyrei Nonylphenol (Agrab®600*) 12.1 [23]  

Heleioporus eyrei Alcohol alkoxylate (BS1000®*) 25.4 [23]  

Note: *Commercial names. 

 

3.3. Sub-Lethal Effects 

Pesticides have many sublethal effect on amphibians: endocrine disruption, altered growth and behavioural 

changes [22]. Pesticides showed significant sub-lethal effects on activity and growth, and in all cases these effects 

occurred at concentrations lower than or equal to the corresponding LC50 values. For instance, the nematicides 

terbufos and ethoprophos and the fungicide chlorothalonil have been reported to be highly toxic with evident effects 

below 100µg/L [59]. Measurable concentrations of endosulfan have been detected in amphibians (Hyla regilla) as 

well as 4,4’-dichlorodiphenyldichloroethylene, 4,4’-DDT, and 2,4’-DDT residues [75] evidence of their 

bioaccumulation potential.  

 

3.3.1. Physiological and Biochemical Implications  

Pollutants have many physiological effects on amphibians. Most often, the direction of the effect is not 

obviously predictable. Agricultural activities have been reported to cause a reduction in the amount of plasmatic 

retinol in males of Rana catesbeiana [76]. Pesticides have been reported to alter spermatogenesis and 

metamorphosis in amphibians; Moreover, pesticide extracts are able to cause delayed metamorphosis, skewed sex 

ratios and altered gonadal differentiation in Xenopus laevis and Bufo bufo [12]. Pesticides lower egg hatching in 

amphibians especially carbaryl which significantly generated low egg hatching in Ambystoma jelfersonianum; most 

eggs exposed to pesticides that even succeeded to hatch did not survive to metamorphosis; those that succeed to 

metamorphose took a longer time [57]. Physiological and biochemical effects of pesticides have been mainly 

assessed with atrazine, methoxychlor, diazinon, chlorpyrifos, glyphosate and chlorothalonil.  

Atrazine appeared capable of altering spermatogenesis, but the contexts and generality of these effects could 

not be firmly established [77]. Atrazine has possible effects on the glycogen level in tadpoles. Glycogen level 

decreased with increased pesticide concentration with no significant difference [71]. One of the worst effects of this 

herbicide is to make the leopard frog (Rana pipiens) hermaphrodite, bearing both male and female sex organs [78] 

this  is responsible of amphibian population decline all over the world since atrazine reaches water bodies very 

easily. Atrazine was associated with increased aromatase gene expression, either increase or decrease in time to 

metamorphosis  and altered sex hormone concentrations [77].  

Methoxychlor or 1,1-(2,2-dichloroethylidene) bis(4-methoxybenzene) is a chemical transformation product 

with some insecticidal action [56]. Methoxychlor inhibited oocyte maturation in Xenopus laevis with a median 

inhibition concentration of 72nM with a dose-dependent, reversible and early-acting mechanism [63].  

Diazinon (Basudin) significantly decreased glycogen levels in the amphibia P. bibroni, a hypoglycaemia that 

most often preceded mortality [62]. This pesticides also affects the brain and tongue cholinesterase (ChE) in H. 

reginella [75]. In the same line, chlorpyrifos has been reported to be a potent ChE inhibitor [75].  
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Tadpoles exposed to four glyphosate formulations at 48h, showed decreases in the activities of B-esterases,  and 

Glutathion S-transferase (GST) with inhibition rates ranging from 71.52% to 86.12% [73]. 

Chlorothalonil (fungicide) hindered the development of the amphibian Smilisca baudinii at 20µg/L with no effect 

on the total length ad body weight [58]. Tadpoles of Isthmohyla pseudopuma exposed to 3µg/L chlorothalonil had a 

lower ChE activity. A significant increase in GST activity was observed in livers of Smilisca baudinii exposed to 10 

to 20µg/L chlorothalonil with a dose-response relationship. Chlorothalonil had no significant effect on Liver Lipid 

Peroxidation (LPO) liver levels [58]. 

Dimethoate had neurotoxic outcomes on Rhinella arenarum  as it hindered the compound 

butyrylcholinesterase at doses between 0.5 and 1 mg/L [65]. Because of its dangerousness, dimethoate has been 

prohibited in Cameroon [79].  

On the long run, superoxide dismutase (SOD) and glutathione peroxidase (GPX) enzyme activities may be 

potential biomarkers for monitoring contaminant levels in the environment [80] while body glycogen level may 

also be suitable as a biomarker of environmental contamination in amphibians [62].  

 

3.3.2. Morphological and Anatomical Changes 

Malformation, length alteration and weight modification are the three main morphological effects of pesticides 

on amphibians [81]. Bioassays have been done with endosulfan, diazinon, malathion, propanil, chlorpyrifos, 

glyphosate, atrazine, malathion, alpha-cypermethrin, chlorothalonil and dimethoate.  

Endosulfan and diazinon created morphological changes in Bufo regularis [71]. Malathion significantly 

shortens developing Xenopus laevis tadpoles at concentrations of 1.0 to 2.5 mg/L following a 72h exposure [82]. 

Propanil and chlorpyrifos together with dimethoate and glyphosate are responsible for retarded 

metamorphosis, skin ulcer, oedema and malformation in Asian common toad [64].  

Glyphosate is the most widely used herbicide in the world with application in agriculture, forestry, industrial 

weed control, garden and aquatic environments [72]. In microcosms, glyphosate (herbicide) caused no statistic 

difference among treatments for larval body size, embryonic development and swimming performance [72]. 

Mortality related to glyphosate was less than 50% in microcosms, so no calculation of LC50 was possible [72]. In 

laboratory experiments, glyphosate at high sublethal concentrations is responsible for a decrease in tadpole body 

size in four anuran species E. pustulosus, R. humboldti, R. marina and H. crepitans [72]. In R. humboldti, glyphosate 

generates a significant delay in embryonic development [72]. Glyphosate is a bladder and liver toxicant added to 

its ability to disrupt aromatase activity [56].  

Atrazine consistently affected male gonadal morphology in amphibians [77]. Malathion exhibited reliable and 

dramatic effects on the morphology (bent) of Xenopus [82]. Alpha-cypermethrin has many sublethal effects on 

amphibians; this compound generated axial anomaly, visceral oedema, deformation of the mouth and tail 

malformation in tadpoles of the variable greed toad [66]. Chlorothalonil created lesions on the tails of the 

amphibians Smilisca baudinii and Isthmohyla pseudopuma [58]. 

Dimethoate (insecticide) has been reported to elucidate morphological changes and disruption the 

metamorphosis process in amphibians of the species Rhinella arenarum [67]. This compound is therefore a good 

contributor to amphibian population decline as it impairs growth.  

 

3.3.3. Behavioural Changes  

Endosulfan and diazion pesticides created behavioural changes in Bufo regularis, because of their neurotoxic 

effects. Both compounds generated the following symptoms: hyperactivity, loss of coordination, erratic swimming, 

unusual retention of water, prolonged and motionless lying down on the aquarium bottom. In addition, to these, 

diazinon caused skin discoloration, reddening of the snout and the protrusion of the intestine from the anus [61].  
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Abnormal behavioural responses were also observed with Atrazine in tadpoles and the response was positively 

correlated with the concentration gradient [71]. Some of these adverse behavioural effects included reduced 

reaction to stimuli, short swimming distance and loss of equilibrium induced by copper sulphate in tadpoles of the 

greed toad, Bufo viridis [15]. Atrazine reduced amphibian water-conserving behaviours, which increased their rate 

of water loss. Amphibians are extremely susceptible to desiccation; thus atrazine-induced changes in water 

conserving behaviours would be expected to increase mortality risk [77].  

Abnormal avoidance responses were recorded in tadpoles of P. bibroni exposed to diazinon [62]. Malathion 

reduced swimming frequency in Xenopus [82]. Shortening of the swimming distance and immobility are the two 

behavioural changes caused by alpha-cypermethrin on the variable greed toad [66]. Decreased activity of tadpoles 

in response to sublethal doses of carbaryl have been reported in many anurans species [57].  

Fenitrothion at doses between 5 and 9ppm paralyses tadpoles, making them lack a normal avoidance response 

in wood and leopard frogs. American toads and spotted salamanders are less sensitive to fenitrothion; doses of this 

compound between 2 and 5 ppm caused abnormal avoidance response in a few tadpoles [68].  

The compound dimethoate caused abnormal behaviour in amphibians of the species Rhinella arenarum [65]. 

Behavioural manipulation may make the amphibian, vulnerable to predators and parasites. Parasites are known to 

cause serious problem in wildlife conservation [83] along with other covariates of species endangerment such as 

habitat loss, climate change, pollution, competition, invasive species.  

 

3.3.4. Bioconcentration and Carcinogenic Effects 

Current-use pesticides especially fungicides are accumulating in Pseudacris regilla (pacific chorus frog). Nine 

pesticides and three pesticide degradates were detected in males P. regilla. The fungicides (pyraclostrobin and 

tebuconazole) and the herbicide (Simazine) were frequently detected: this is the first field study reporting the 

occurrence of those three pesticides in frog tissues [84].   

Pesticides bioaccumulate in amphibian tissues and disrupt the endocrine system. The compound 2, 2', 4, 4', 5-

pentabromodiphenyl ether (Penta-BDE) is easily up taken by juvenile stages of Xenopus tropicalis [85]. 

 

3.3.5. Histological Changes 

Copper sulphate (0.1 mg/L) caused oedema with B. viridis larvae. This oedema brought about increase distance 

between organs such as the medulla oblongata, notochord, pronephric tubules, liver, stomach and intestine. This 

fungicide generated deformations in the epithelial cells of the stomach, intestines and pronephric tubules. 

Deformation was observed in the somites of the tadpoles that were exposed to 0.05 and 0.1 mg/L of Copper 

Sulphate [15]. Histological abnormalities caused by copper sulphate included tissue deformation observed through 

a cross-section of the liver as a result of degeneration of hepatocytes and increase intercellular areas. These same 

deformations were observed in the epithelia of the pronephric tubules and somites, in addition to poor development 

[15]. 

Trends or statistically significant alterations in at least one aspect of general gonadal morphology are 

associated with atrazine exposure; those effects include discontinuous and multiple testes, sexually ambiguous 

gonadal tissue, Testicular Ovarian Follicles (TOFs), altered Gonadal Somatic Index (GSI), expanded testicular 

lobules, and spermatogenic tubule diameter [77].  

 

3.3.6. Diseases   

Parasites and diseases have been reported as factors of biodiversity decline [83]. Chytridiomycosis is one of the 

most virulent diseases of amphibians caused by Batrachochytrium dendrobatidis (the amphibian chytrid fungus); this 

disease has been associated with amphibian population decline [18]. 
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Pollutants increase the susceptibility of amphibians to parasites. In this light, synergistic effects of trematode 

infection and exposure to chemical contaminants (atrazine, malathion and esfenvalerate) were reported [86]. 

Trematode-mediated limb deformities at amphibians natural breeding sites were a function of proximity to 

agricultural runoffs [86]. Studies done with atrazine have revealed that this pesticide was associated with an 

increase in infection end points in amphibians, consistently reduced immune functioning of amphibians, and this 

compound elevated trematode, nematode, viral, and bacterial infections [77].  

Anuran species such as Amnirana galamensis , Ptychadena bibroni ,, Ptychadena pumilio ,  Sclerophrys pentoni ,  

Sclerophrys maculata, Sclerophrys regularis, Sclerophrys xeros , and Xenopus fischbergi , have been reported to be common 

hosts of the trematode Mesocoelium with prevalence up to 86% documented in the amphibian Sclerophrys maculate 

[87].  

Parasites such as the trematode Ribeiroia are able to bring about pelvic limbs malformations in anurans [88]. A 

mixture of atrazine, methribuzine, endosulfan, lindane, dieldrin and aldicarb caused immunosuppression in X. laevis 

and Rana pipiens [89].  

Atrazine, malathion and esfenvalerate in high concentration significantly reduced eosinophil count of the wood 

frogs, Rana sylvatica. Exposure to these pesticides had dramatic effects on cercarial encystment: more cercariae 

encysted under high pesticide conditions; the implications being limb deformities: polymelia, amelia and polydactyly 

[86]. 

Sublethal exposure of Rana clamitans to atrazine, glyphosate, carbaryl and malathion, increases the 

susceptibility of this anuran to infection of the trematode Echinostoma trivolvis [90].  

The impact of pollutants on amphibians is moderately to highly negative [74]. Parasites (Trematode infection) 

have a synergistic effect with high pesticide concentration [86, 89] the outcome being limb deformities in 

amphibians [86]. Variation in sensitivity to pollutants is generally independent of phylogeny [74]. Unfortunately 

in a country like Cameroon, studies on the impact of pollutants on amphibians are very rare; moreover, pesticide 

importation, distribution and use are done under conditions that are far from ideal [91] and regulation on pesticide 

use is still at the embryonic stage [7]. Pesticide users are unfortunately not conscious of the implications of their 

actions. In the Fako Division (South-West, Cameroon) some pesticide users discard empty pesticide containers in 

water (11%) or in the bush (7%), a practice that will increase pesticide residues in the environment [92]. Amphibian 

vulnerability to pollutants also depends on the presence of prey and competitors [20] this stresses the need to carry 

out studies at the community level in order to evaluate other covariates. Amphibians are less susceptible to 

herbicides as compared to other pesticide families [20, 92] but as herbicides reduce periphyton population, 

amphibians populations will suffer from indirect effects [92].  

 

4. REDUCTION OF POLLUTANTS EFFECTS ON AMPHIBIANS 

Monitoring amphibians’ populations is the first and most important step in this process. Many techniques can 

be implemented for that purpose: call surveys, egg mass count and nocturnal road surveys, and assessment of land 

use and water physicochemical quality [93]. The purpose of the monitoring exercise is to map Key Biodiversity 

Areas (KBAs) all over the bio-geographical regions using biological and geophysical data [94]. Frogs of genus 

Phrynobatrachus, endemic to sub-Saharan Africa are threatened by a number of factors bringing about a gradual 

population decline [95]. Another Cameroonian frog Arthroleptis palava (Anura: Arthroleptidae) may also be facing 

population decline [96]. Amphibian conservation can be done via the protection of genetic resources, cleaning 

habitat, sustainable harvesting, captive breeding, cloning and reintroduction programmes.  

 

4.1. Protecting the Genetic Resources of Amphibians 

Good amphibian conservation research programs should be implemented in order to maintain their genetic 

resources; applied reproductive technologies and bio-banking are emerging tools for this purpose [97, 98]. Bio-
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banking and especially cryopreservation has been reported to be an adequate solution to amphibian population 

decline related to anthropogenic pressure, climate fluctuation and diseases [99].  

 

4.2. Cleaning Up Habitats 

This is done by preventing pollutants from reaching their habitats or protecting their habitats. This will 

prevent them from predators. Prevention is the best way to avoid the occurrence of diseases in the ecosystem; but 

the disease is already established, control measures should be implemented for its eradication. Habitats can be 

cleaned by removing pollutants with phytoremediation techniques, i.e., use of plants and their associated microbes 

for environmental clean-up [100-102].  

 

4.3. Sustainable Harvesting 

Amphibians are used as tools for biological experiments as well as they are consumed by populations. 

Endangered amphibian species such as Mantella milotympanum are edible in Madagascar are collected for overseas 

export [103]. Frogs have been reported to be a god source of protein in southeast Nigeria , mainly consumed by 

farmers and teachers [104]. Conraua goliath, C. robusta and Trichobatrachus robustus, three endemic amphibians of 

Mt. Nlonako (Cameroon) are consumed by local population [17]. The anuran species, Conraua goliath in particular 

is widely hunted for human consumption, hence it currently deserves exceptional protection in Cameroon [105].  

Many amphibian and reptiles species are exploited for pests and food worldwide [103, 106]. Community 

outreach stands as an important strategy to educate masses on amphibian preservation by a sustainable harvesting 

of species used as pet and food [107, 108] and even other living organisms whose reduction in diversity may affect 

amphibians [109]. 

 

4.4. Captive Breeding, Cloning and Reintroduction 

The ex-situ conservation is a short-term or even the only solution in establishing conservation assurance of 

species at risk of extinction[110]. Amphibians (eggs and adults) can be cultured in the laboratory: Eggs masses are 

cut into clusters of about 10-20 eggs and placed in a 200mL aquarium containing dechlorinated water: the surface 

area should be large enough to allow gaseous exchange [111]. For adult amphibians, 4-5 individuals can be placed 

in an aquarium of 40cm x 50cm x 30cm, to study behaviour, adult advertisement call and spawning [95]. Cloning is 

another technique that can be implemented for amphibian preservation [112, 113]. Cloning is asexual reproduction 

implying the production of identical copies of a biological entity [114]. Cloning includes gene cloning or 

recombinant DNA technology, therapeutic cloning and reproductive cloning. The purpose of cloning and captive 

breeding is the re-introduction of species in the wild; reintroduction of amphibians have been done with success 

[115, 116] despite constraints such as lack of immunity to diseases due to inbreeding,  loss of ability for escape 

from predators and habitat loss [117].  

On the long run, apart from amphibians, pollutants are very risky for the aquatic environment. Insecticides in 

particular exhibit a very high aquatic toxicity. In an assessment of chemical pollution related to pesticides in 

freshwater using the Pesticide RIsks in the tropics to Man, Environment and Trade (PRIMET) model, five pesticides 

(cypermethrin, lambda-cyhalothrin, cadusafos, malathion and ethoprophos) exhibited very high aquatic risk [49]. 

Insecticides in particular exhibit a very high risk as compared to other pesticide families [7, 118, 119]. Signs 

observed in aquatic life in general and amphibians in particular are early warnings of human health implications. 

Pesticides are among the major poisoning agents recorded in patients referred to the Buea and Limbe Regional 

Hospital in the south-west region of Cameroon [120, 121]. In men, exposure to pesticides  is associated with sperm 

quality, DNA damage, sperm aneuploidy or diploidy [122] pesticides have been reported to seriously lower men’s 

reproductive capacities in Djutitsa, West Cameroon [91] as well as kidney and liver functions of farmers in the 

Buea municipality, South-West Cameroon [123].  
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5. CONCLUSION 

Pesticides are necessary for agriculture production but have negative effects on non-target organisms. 

Agrochemicals have lethal and sub-lethal effects on amphibians. Responses recorded at the individual level make the 

prediction of what will happen in a complex environment very complicated. Further studies are needed under 

laboratory, semi-field (microcosms and mesocosm) and field conditions. Farmers should be trained on pesticides 

application, population should be trained on proper aquatic resources management and protection, and stakeholders 

should be provided with relevant information from researchers for proper environmental management scheme. The 

regulation on the importation, distribution and use of agrochemicals should be reinforced.     
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