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Insulators are critical components in power transmission systems, ensuring electrical 
stability and preventing current leakage to supporting structures. Faults in these 
components can cause power outages, equipment failures, and safety hazards. Traditional 
fault detection methods, such as manual visual inspection, are time-consuming, error-
prone, and inefficient for large-scale grid monitoring. This systematic review explores 
recent advancements in power insulator fault detection using unmanned aerial vehicles 
(UAVs) integrated with advanced imaging systems and machine learning (ML) 
techniques. UAVs equipped with binocular vision and high-resolution cameras enable 
multi-angle, high-fidelity imaging of insulators in remote and hazardous environments. 
The review examines various ML and deep learning approaches, particularly 
convolutional neural networks (CNNs), for detecting cracks, contamination, and surface 
anomalies in aerial imagery. It also addresses key limitations, such as the lack of 
annotated datasets, weak model generalization under variable conditions, and challenges 
in real-time deployment due to computational constraints. A comparative analysis of 
existing techniques is presented, highlighting accuracy, scalability, and application 
readiness. Finally, the study identifies future research opportunities, including 
lightweight model design, multi-sensor data fusion, and explainable AI integration. The 
goal is to enhance fault detection reliability, reduce operational costs, and promote the 
intelligent maintenance of power transmission infrastructure. 
 

Contribution/ Originality: This study is one of the few investigations that have examined UAV-based power 

insulator fault detection through a systematic review, highlighting the role of binocular vision systems, lightweight 

deep learning models, and dataset limitations. The paper provides the first consolidated analysis of hybrid machine 

learning approaches tailored for real-time aerial inspection. 

 

1. INTRODUCTION 

Power grid infrastructure plays a crucial role in ensuring uninterrupted electricity supply, supporting critical 

sectors such as industry, healthcare, and residential areas. Power transmission systems consist of various components, 

and insulators are essential elements that prevent the flow of electrical current to supporting structures. However, 

these insulators are susceptible to faults that can compromise the reliability and safety of the grid [1]. Insulator faults 

can lead to electrical breakdowns, power outages, and pose risks to personnel and equipment. Timely and accurate 

detection of insulator faults is essential for effective maintenance and prevention of electrical faults. 

Traditional drone detection and recognition methods mainly rely on manual feature extraction [2], which 

requires a significant amount of time and effort and cannot handle all complex situations. However, in recent years, 

with the rapid development of deep learning [3], drone detection and recognition technology based on deep learning 
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has made significant progress. The key feature of deep learning is that its algorithm models can autonomously learn 

features without relying on manual extraction. Deep learning-based methods have greatly improved the accuracy and 

efficiency of drone detection and recognition and can handle various complex situations. From the perspective of 

different types of drone data, drone detection and recognition can be divided into methods based on audio, vision, 

radar, and radio frequency [4]. Drone audio detection and recognition utilize environmental audio signals for 

perception and employ neural network classifiers to automatically identify drone audio signals [5]. However, various 

noises and interference signals in real environments can impair the performance of drone audio detection and 

recognition. To address this, the literature [5] proposed a result-level fusion convolutional neural network for drone 

audio detection. Image data contains rich visual information and can capture the appearance features of drones. 

Therefore, researchers have constructed neural networks to train drone visual datasets, enabling the detection and 

identification of drones [6]. However, in certain scenarios, the high-speed movement of drones presents significant 

challenges to image detection, because even if the drone is very close, timely countermeasures may not be possible 

due to delayed responses. To address these issues, the literature [7] proposed a detection method based on heat maps. 

The metal structure and body shape of drones typically cause reflection of radar waves, creating a unique echo signal 

that can be used to distinguish drones from other non-target objects. Consequently, some researchers have attempted 

to utilize radar signals for drone detection and identification [8]. However, due to the small size of the target drone, 

this results in the radar signal being unable to effectively cover the drone. Unlike the above methods, drone RF 

detection and identification have good stability in propagation, are not easily affected by the environment, and have 

high real-time performance. For example, the literature [9] proposed a method for classifying UAV radio frequency 

signals based on deep learning, and achieved a recognition rate of 95% on a real UAV dataset. It can be seen that the 

deep learning method has good adaptability in detection and recognition in different scenarios, especially the method 

based on radio frequency data has better performance and stronger robustness in UAV detection and recognition. In 

summary, the research on UAV detection and recognition based on deep learning has important theoretical 

significance and application value. This paper first clarifies the definition of UAV detection and recognition, as well 

as the research status of traditional methods in this field. Then, the research significance and importance of deep 

learning in UAV detection and recognition are analyzed. Subsequently, UAV detection and recognition are classified 

and reviewed according to different data types, and the principles, advantages, and disadvantages of various 

technologies are discussed. Finally, the current problems are analyzed, and future research directions and 

development trends are prospected. 

The integration of acquisition systems with machine learning techniques has shown great potential in improving 

the reliability and efficiency of power insulator fault detection [10]. However, several research challenges remain to 

be addressed. These challenges include limited annotated datasets for training and evaluation [11], ensuring the 

generalization and robustness of fault detection models to different environmental conditions and insulator types 

[12], real-time processing and analysis of acquired images [8], and interoperability with existing power grid systems 

[13]. 

Power insulators are critical components in power transmission systems that serve the important function of 

maintaining electrical insulation and providing support for the conductors [14]. These insulators are strategically 

placed along the power lines and are designed to prevent the flow of electrical current to the supporting structures, 

thus ensuring safe and efficient electricity transmission. Power insulators are constructed from materials with high 

dielectric strength, which is the ability to withstand high voltage without allowing electrical current to pass through 

[15]. The choice of power insulator material depends on factors such as operating voltage, environmental conditions, 

and mechanical requirements. Common materials used for power insulators include porcelain, glass, and composite 

materials. 
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Figure 1. Schematic diagram of deep learning-based power insulation fault target 
detection using UAV images.  

 

Power insulation faults refer to any anomalies or defects in the insulator’s structure or performance that 

compromise its ability to insulate electrical current effectively [16]. These faults can occur due to various reasons, 

including mechanical stress, aging, contamination, or manufacturing defects. Common types of power insulation 

faults include cracks, flashovers, contamination, leakage, and perforations. As shown in Figure 1, timely detection and 

resolution of these faults are critical to preventing electrical failures, power outages, and ensuring the safe operation 

of power transmission systems. Fault detection in power insulators is essential to maintaining the reliability and 

safety of power transmission systems. Timely detection of insulation faults allows for timely maintenance 

interventions, preventing potential electrical failures and minimizing the risk of power outages [17]. By identifying 

and resolving faults as early as possible, power companies can ensure uninterrupted power supply, reduce downtime, 

and improve the overall efficiency of the power grid [18]. Fault detection also helps prevent safety hazards and 

protect personnel, equipment, and the surrounding environment [19]. To address these challenges and create 

opportunities for future developments in power insulator fault detection, this review aims to provide a comprehensive 

analysis of acquisition systems and deep learning methods in this field. By exploring the significance of using UAV 

binocular vision methods to acquire fault images and investigating various machine learning techniques for fault 

detection, this research article sheds light on the current state of the field and identifies areas for further exploration 

and innovation. The outcomes of this study are expected to optimize power grid maintenance procedures, increase 

the precision of fault detection, and finally enhance the dependability and security of power transmission systems. 

To address these challenges and create opportunities for future developments in power insulator fault detection, 

this review aims to provide a comprehensive analysis of acquisition systems and deep learning methods in this field. 

By exploring the significance of using UAV binocular vision methods to acquire fault images and investigating 

various machine learning techniques for fault detection, this research article sheds light on the current state of the 

field and identifies areas for further exploration and innovation. The outcomes of this study are expected to optimize 

power grid maintenance procedures, increase the precision of fault detection, and finally enhance the dependability 

and security of power transmission systems. 

Based on the above aims, this review seeks to answer the following research questions:  

(1) What are the current technologies and methodologies used in UAV-based power insulator fault detection? 

(2) How effective are machine learning and deep learning approaches in identifying and classifying faults from 

aerial images? 

(3) What are the major limitations and open research challenges in this domain? 

To address these questions, the remainder of the paper is structured as follows: Section 2 presents a 

comprehensive literature review covering UAV imaging, machine learning techniques, and deep learning-based 

detection methods. Section 3 outlines the review methodology. Section 4 introduces public datasets relevant to power 
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insulator fault detection. Section 5 presents a comparative analysis of existing detection methods, while Section 6 

highlights current technological and deployment challenges. Section 7 discusses open research challenges in drone-

based object detection. Section 8 proposes future research directions. Section 9 presents an in-depth discussion of 

findings, and Section 10 concludes the study with key takeaways, limitations, and implications for future research. 

 

2. LITERATURE REVIEW 

2.1. Manual Inspection Methods and Their Limitations 

The application of unmanned aerial vehicles (UAVs) in the domain of power infrastructure inspection has gained 

significant momentum due to the increasing need for efficient, safe, and scalable solutions for monitoring high-voltage 

transmission lines and associated components. Among the most critical elements in these systems are power 

insulators, which provide essential electrical insulation and mechanical support. Faults in these insulators can lead to 

power outages, system failures, and severe safety risks. Consequently, timely and accurate fault detection has become 

a central focus of academic and industrial research. 

Initial approaches to fault detection were primarily based on manual inspection techniques, such as ground 

patrols and aerial surveillance using binoculars or infrared cameras mounted on helicopters. Although these methods 

were widely adopted, they were time-consuming, labor-intensive, and posed safety risks to field personnel. 

Additionally, manual inspections were limited in their ability to access remote or hazardous locations and were prone 

to human error and inconsistency. These limitations underscored the need for more automated, accurate, and scalable 

inspection solutions, ultimately paving the way for UAV-based monitoring. 

 

2.2. UAV-Based Imaging and the Rise of Automated Inspection 

The advent of UAV technology introduced a transformative shift in power insulator inspection, enabling high-

resolution imaging and flexible data acquisition across a variety of terrains and altitudes. Drones equipped with 

advanced cameras, including binocular vision systems, have demonstrated the ability to capture detailed images of 

insulator surfaces from multiple perspectives. This advancement facilitates comprehensive visual analysis and 

supports automated detection workflows. 

With the proliferation of UAV-based inspections, large-scale aerial image datasets have become available, 

allowing researchers to apply computer vision and machine learning techniques for automated fault identification. 

Early studies focused on collecting and annotating such datasets, laying the groundwork for developing intelligent 

models capable of distinguishing between normal and defective insulators. These datasets played a crucial role in 

training both traditional and deep learning models and are now seen as indispensable assets for model development 

and validation. 

 

2.3. Traditional Machine Learning Approaches 

Before the widespread adoption of deep learning, traditional machine learning methods were extensively 

employed for automated fault detection using UAV-captured images. These approaches relied on manual feature 

engineering, where experts extracted specific image characteristics such as texture patterns, shape descriptors, and 

color histograms. These handcrafted features were then fed into classifiers such as support vector machines (SVM), 

decision trees, k-nearest neighbors (KNN), and random forests to distinguish between normal and faulty insulator 

conditions. While these models offered moderate accuracy and were relatively easier to train with limited data, they 

often lacked robustness in complex environments. Factors such as changing lighting conditions, occlusions, image 

noise, and varying backgrounds significantly impacted the reliability of these models. Moreover, manual feature 

extraction was time-consuming and lacked adaptability, especially when dealing with diverse fault types or image 

distortions. These shortcomings highlighted the need for more flexible and scalable solutions. 
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2.4. Deep Learning for Power Insulator Fault Detection 

Deep learning has emerged as a powerful alternative to traditional approaches by enabling models to 

automatically learn hierarchical features directly from raw image data. Convolutional Neural Networks (CNNs) have 

been widely used to classify, segment, and localize faults in power insulators with higher accuracy. Architectures such 

as VGGNet, ResNet, U-Net, and YOLO have demonstrated strong performance in detecting various fault types, 

including cracks, contamination, flashovers, and surface erosion. 

To enhance model effectiveness, these architectures are often combined with image preprocessing techniques like 

contrast adjustment, noise filtering, and sharpening. Furthermore, recent studies have integrated attention 

mechanisms to focus on relevant fault regions and improve localization. Transfer learning strategies have also been 

adopted to address the challenge of limited training data by leveraging pre-trained models on large image datasets. 

In addition, lightweight model designs are being developed to support real-time deployment on UAV platforms with 

limited computational resources. 

 

2.5. Challenges in Dataset Quality and Generalization 

A major barrier to advancing power insulator fault detection using UAV imagery is the lack of large, diverse, 

and annotated datasets. Many existing datasets are either too small or limited to specific fault types, insulator 

materials, or environmental conditions. This restricts the ability of models to generalize across real-world variations, 

such as lighting differences, background clutter, or diverse geographic regions. Moreover, imbalanced datasets, where 

certain fault types are significantly underrepresented, hinder the training process and skew model predictions toward 

the majority classes. 

Several efforts have attempted to address these issues through techniques such as data augmentation, synthetic 

dataset generation, and simulation-based image creation. Although these strategies help expand dataset diversity and 

volume, synthetic data often lacks the complexity and randomness present in real-world scenarios. As a result, models 

trained on such data may not perform consistently when deployed in practical environments. Therefore, building 

comprehensive, domain-specific datasets that reflect real operational conditions remains a critical need in this field. 

 

2.6. Real-Time Deployment and System Integration 

Integrating deep learning models into UAV-based inspection systems introduces additional challenges related 

to real-time processing, computational efficiency, and system interoperability. UAVs have constraints on onboard 

processing power and battery life, which limit the feasibility of deploying large and complex models in real-time 

scenarios. To address this, lightweight neural architectures and optimized inference frameworks are being developed 

to balance accuracy with processing efficiency. 

Furthermore, for UAV-based fault detection systems to be practically adopted by utility providers, seamless 

integration with existing monitoring and maintenance workflows is essential. This includes ensuring data 

interoperability with SCADA systems, supporting geo-tagged fault reporting, and adhering to operational safety and 

regulatory requirements. Research is ongoing to enhance model interpretability, reduce false positives, and streamline 

decision-making processes, thereby facilitating smarter grid maintenance through UAV-based automation. 

 

2.7. Future Directions and Research Opportunities 

While substantial advancements have been made in UAV-based power insulator fault detection, several research 

directions remain open. One key area is the development of more robust and generalizable deep learning models 

capable of maintaining high performance across diverse environmental conditions, insulator types, and fault 

categories. Leveraging transfer learning, ensemble methods, and domain adaptation can further improve the 

adaptability of models to unseen scenarios. 
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Another important direction is the design of explainable AI (XAI) frameworks that provide transparent insights 

into model decisions. As these systems become part of critical infrastructure, interpretability is crucial for gaining 

trust and ensuring operational safety. In addition, the use of multi-modal data such as combining visual imagery with 

infrared, thermal, or LiDAR inputs could enhance detection accuracy and fault classification capabilities. 

Moreover, the application of edge computing and federated learning may offer solutions for processing 

constraints and data privacy. These techniques allow for real-time inference directly on the UAV or in decentralized 

systems without the need for continuous data transmission. Finally, the creation of standardized benchmarks and 

evaluation protocols for UAV-based power inspection tasks will help unify future research efforts and accelerate 

progress toward practical, scalable solutions. 

 

3. METHODOLOGY  

This review systematically investigates the use of unmanned aerial vehicles (UAVs) and machine learning-based 

estimation methods for power insulator fault detection. Most of the reviewed studies collect data using UAVs 

equipped with high-resolution monocular or binocular cameras, which enable the capture of aerial images of power 

infrastructure from various angles and altitudes. These visual datasets are designed to capture subtle faults such as 

cracks, flashovers, and contamination under different environmental conditions. 

The collected images are typically preprocessed using techniques such as denoising, contrast enhancement, 

segmentation, and resizing to optimize them for learning models. Image annotation is performed either manually or 

using automated tools to ensure reliable ground-truth labeling for supervised learning. 

For estimation, a variety of techniques are employed across the reviewed literature. These include traditional 

machine learning algorithms (e.g., support vector machines, decision trees, random forests) and deep learning 

architectures such as convolutional neural networks (CNNs), You Only Look Once (YOLOv5), Fast R-CNN, and 

autoencoders. Hybrid approaches that integrate handcrafted features with deep learning frameworks are also explored 

to enhance accuracy, efficiency, and interpretability. 

Unlike earlier reviews that primarily focused on algorithmic performance, the present study adopts a broader 

perspective. It highlights the entire fault detection pipeline from UAV image acquisition and preprocessing to fault 

estimation and considers critical deployment challenges. Emphasis is placed on binocular vision systems, dataset 

limitations, lightweight model architectures for real-time UAV processing, and hybrid learning frameworks. This 

holistic review offers valuable insights for developing robust, scalable, and real-world deployable inspection systems. 

 

4. DATA ACQUISITION APPROACH FOR POWER INSULATOR FAULT SAMPLE 

The purpose of obtaining samples of power insulator faults is to detect and fix potential problems early to 

maintain the safe and reliable operation of the power system. Since this review paper centers on machine learning 

approaches for effective insulator fault detection using aerial images, this section will provide a review of the data 

acquisition approach for aerial images. The data acquisition approach involves eight stages: aerial image capturing, 

image pre-processing, dataset construction, data labeling, data partitioning, simulation-based power insulator fault 

dataset, laboratory testing, and data augmentation. 

 

4.1. Aerial Image Capturing 

There are several advantages to using drones with binocular vision for aerial inspection of power insulators. 

Drones equipped with binocular cameras can capture images from all angles, providing a three-dimensional view of 

the insulators [20], allowing for precise detection of surface conditions and faults. Drones offer remote and efficient 

inspection capabilities, reducing the risks and costs associated with manual inspections [21] and can operate in 

challenging terrains and hard-to-reach locations, ensuring comprehensive coverage of grid infrastructure. However, 

drone-based inspection systems also face certain challenges. Variable weather conditions can lead to unstable lighting, 
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which affects image quality [22]. Limited flight time due to battery limitations can reduce coverage efficiency [23]. 

In addition, image distortion caused by drone movement can affect data accuracy and make fault identification more 

difficult [24]. Deploying and maintaining drone systems also requires skilled operators and compliance with 

regulatory guidelines to ensure safe and reliable operation [25]. For image acquisition, it is critical to optimize the 

flight altitude, camera settings, and flight path to achieve the desired resolution and coverage [26]. Image 

georeferencing techniques can also be used to accurately map images to specific geographic coordinates, helping to 

pinpoint faults on power grid infrastructure [27]. 

 

4.2. Image Preprocessing 

Aerial inspection systems use airborne visual sensors to capture image data of operating objects, and 

preprocessing is crucial to improve image quality for effective fault detection in power insulators. Various techniques 

such as contrast adjustment, noise reduction, and sharpening are used to improve the visibility of fault features [28]. 

Contrast adjustment makes faults easier to distinguish by enhancing the visual difference between the fault and the 

background [29]. Noise reduction methods such as median filtering and wavelet denoising can remove artifacts 

caused by sensors or environmental factors [30]. Sharpening techniques further enhance image edges and details, 

making the fault area clearer [31]. 

Segmentation techniques are also vital in preprocessing, helping to isolate fault regions from the background. 

Algorithms such as thresholding [32], region growing [33], and edge-based methods [34] are used to separate fault 

areas from surrounding elements. This accurate delineation allows subsequent fault detection algorithms [35] to 

focus on relevant areas, thereby improving detection accuracy. 

 

4.3. Dataset Construction 

Building a well-annotated dataset is vital for training and validating machine learning models in power insulator 

fault detection [36]. This involves either manual or semi-automated annotation methods. In manual annotation, 

experts inspect images to mark fault regions, requiring specific domain knowledge [37]. Semi-automated approaches 

[38] utilize computer vision algorithms to detect potential fault areas, which human experts then verify and refine. 

Dataset size and diversity are also essential for developing robust, generalizable models [39]. The dataset should 

encompass a range of insulator faults, including cracks, contamination, and flashover, to facilitate the model’s ability 

to discern disparate failure modes [40]. Furthermore, the utilization of random data partitioning and stratified 

sampling can assist in achieving a more balanced distribution of normal and fault samples, thereby enhancing the 

model’s generalization capacity [41]. The combination of aerial inspection, image preprocessing, and comprehensive 

data set construction ensures the acquisition of high-quality data, which in turn allows for the development of accurate 

and reliable fault detection models. 

 

4.4. Data Labeling 

When training machine learning models for power insulator fault detection, data labeling is critical to distinguish 

between normal and fault conditions [42]. This process typically involves domain experts reviewing images and 

assigning labels based on their expertise [43]. Accurate labeling ensures that the model can effectively distinguish 

between these conditions, supporting precise detection and classification. Maintaining labeling accuracy is critical to 

avoid bias that can harm model performance. Consistency and reliability of labeling are crucial, as incorrect or 

inconsistent labels can adversely affect model accuracy [44]. Regular quality checks and validation help maintain the 

integrity of the dataset. Given the subjective nature of labeling, it is recommended to work with domain experts to 

develop clear labeling standards. This approach can minimize uncertainty and improve the quality and reliability of 

the dataset. 
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4.5. Data Partitioning 

Partitioning data into training, validation, and test sets is critical for developing and evaluating machine learning 

models. The training set is used for model learning, the validation set is used for hyperparameter tuning, and the test 

set is used to evaluate the performance of the model on unseen data [45]. To ensure that the model encounters a 

representative sample of normal and faulty cases, data partitioning should be done randomly. This randomness 

reduces potential bias introduced by the order of the data. In addition, using stratified sampling can maintain a 

balanced representation of normal and faulty samples in each partition, which helps the model generalize across a 

variety of scenarios [46]. In the case of imbalanced data, traditional evaluation metrics may not accurately reflect 

model performance, as they may overestimate the accuracy of the majority class [47]. Imbalanced data can cause the 

model to favor common classes and ignore less common classes, complicating model tuning and evaluation. 

 

4.6. Simulation-Based Power Insulator Fault Dataset 

Simulation-based approaches offer an effective alternative for generating power insulator fault samples. Using 

computer models, synthetic data can simulate a variety of fault scenarios, creating a controlled and cost-effective 

environment for training and testing machine learning models [48]. During simulation, parameters such as insulator 

material properties, fault type, environmental conditions, and sensor characteristics can be adjusted to create realistic 

scenarios. This can generate large datasets that enhance the robustness of the model by covering a wide range of fault 

conditions [49]. However, simulated data can lack some of the complexity of the real world, so it is recommended to 

combine it with real data to improve the model’s adaptability to unpredictable situations. In addition, simulation-

based approaches allow for controlled experiments, enabling researchers to test the model’s sensitivity to specific 

parameters and evaluate performance under specific conditions. This flexibility makes simulated data a valuable 

complement to real datasets for developing reliable power insulator fault detection models. 

 

4.7. Laboratory Testing 

Laboratory testing collects data from power insulators under controlled conditions, allowing for rapid data 

collection by replicating specific fault scenarios or applying controlled environmental conditions [50]. This approach 

enables the simulation of faults efficiently within a stable setting. 

However, data from laboratory testing may not fully capture real-world complexities, such as insulation material 

aging and environmental variations [51]. Consequently, machine learning models trained on laboratory data should 

be further validated and fine-tuned with real-world data to ensure practical effectiveness. 

 

4.8. Data Augmentation 

Data augmentation enhances dataset size and diversity by applying various transformations to existing samples, 

improving the generalization capability of machine learning models and reducing overfitting risks, especially valuable 

in power insulator fault detection [52]. Common techniques include rotation, scaling, flipping, and noise addition. 

For example, rotation helps models recognize faults from different angles, scaling simulates varied object distances, 

flipping aids in identifying symmetrical patterns, and noise addition prepares models for environmental distortions 

[53]. Beyond these, advanced methods like Generative Adversarial Networks (GANs) and image morphing further expand dataset 

diversity by generating realistic synthetic samples and creating transitional images, allowing models to detect subtle fault 

variations [54]. Strategic data augmentation increases model robustness and adaptability to real-world challenges. 

Regular validation with augmented data ensures models can handle diverse scenarios, enhancing the effectiveness of 

fault detection systems. By following a comprehensive approach including aerial inspection, image preprocessing, 

thorough dataset construction, precise labeling, balanced data partitioning, simulation, lab testing, and data 

augmentation the dataset becomes more representative and suitable for training accurate, robust models. These steps 

collectively strengthen fault detection systems, supporting the reliability and safety of power transmission networks. 
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5. DEEP LEARNING-BASED POWER INSULATOR FAULT DETECTION APPROACHES 

Deep learning techniques have shown great promise in automating power insulator fault detection. This section 

explores various machine learning-based approaches used for fault detection, including deep learning methods and 

hybrid approaches. 

 

5.1. Deep Learning Based Power Insulation Fault Detection Approaches 

The application of deep learning techniques in power insulator fault detection leverages their robust ability to 

handle complex data and extract intricate features, which traditional machine learning methods often struggle to 

accomplish effectively. Convolutional Neural Networks (CNNs), for example, are widely employed for analyzing 

image data of insulators, enabling the detection of visual anomalies associated with faults [55]. These networks excel 

in identifying specific fault patterns in image data, yet they are heavily reliant on large, well-labeled datasets to 

perform optimally, which can be a limitation in contexts where such datasets are difficult to obtain. Furthermore, 

recurrent neural networks (RNNs) and autoencoders offer a significant advantage in processing time series data, such 

as voltage and current signals, due to their capacity to capture temporal dependencies that may indicate a failure in a 

power insulator. The capacity of RNNs to analyze patterns that evolve over time renders them particularly efficacious 

for the detection of faults. However, this approach also encounters challenges in terms of scalability and typically 

necessitates the availability of extensive training data to ensure the reliability of the results [55]. 

 

5.2. Hybrid ML-Based Power Insulator Fault Detection Approaches 

Deep learning technology is applied to power insulator fault detection, taking advantage of its powerful ability 

to process data and extract features, which is difficult to achieve through traditional machine learning methods. For 

example, convolutional neural networks (CNNs) are widely used to analyze image data of insulators and are able to 

detect faults. Figure 2 illustrates the development history of object detection algorithms from 2013 to 2023, including 

key models such as R-CNN, YOLO, RetinaNet, and EfficientDet, which are widely used in aerial image-based fault 

detection. 

 

 
Figure 2. Development history of object detection algorithms. 

 

These networks are effective at identifying specific fault patterns in image data, but their capabilities heavily 

depend on large, well-labeled datasets. Additionally, recurrent neural networks (RNNs) and autoencoders are more 

advantageous for processing time series data, such as voltage and current signals, because they can capture the time 

dependencies that indicate power insulator failures. The ability of RNNs to analyze patterns that change over time is 
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particularly useful for fault detection; however, this approach has limitations in scalability and requires a substantial 

amount of training data [56]. 

Deep learning models are particularly capable of learning complex fault patterns from large amounts of historical 

data, thereby improving the prediction accuracy and reliability of insulator fault detection. For example, transfer 

learning has been adopted in the field to compensate for the scarcity of large labeled datasets dedicated to power 

insulators by fine-tuning pre-trained deep learning models on existing image datasets. This approach is especially 

beneficial for settings where creating expansive fault-specific datasets may not be feasible [57]. In parallel, 

autoencoders facilitate efficient dimensionality reduction and anomaly detection by learning the normal operational 

patterns of insulators, which allows them to identify deviations that signal potential faults [58]. However, while 

autoencoders streamline feature extraction, they can also struggle to handle highly variable environmental data, 

sometimes reducing their robustness in diverse operational settings. 

Further advancements in object detection and localization techniques, such as Faster R-CNN and YOLO (You 

Only Look Once), offer powerful methods for identifying and pinpointing specific fault regions within insulator 

images. For instance, Liu, et al. [59] focused on using the YOLOv5 architecture to enhance real-time fault detection 

in electrical insulators, addressing the need for speed and accuracy in operational environments. The YOLOv5 model 

showed impressive detection accuracy and efficiency, offering an essential improvement over traditional image 

processing methods. However, Liu, et al. [59] also highlighted significant limitations, notably the dependency on 

large, well-labeled datasets and the high computational power required to implement these models. Figure 3 

illustrates a lightweight object detection framework integrating convolution, self-attention, and feature fusion to 

improve UAV-based insulator fault detection under limited computational environments. Such limitations may hinder 

practical implementation, especially in resource-constrained environments, making it challenging to deploy these 

models where computational resources are scarce or datasets are insufficient. 

 

 
Figure 3. Lightweight strategy for target detection algorithm. 

  

Liang, et al. [60] similarly applied Fast R-CNN techniques to improve fault detection efficiency and accuracy by 

automating the identification of complex features in insulator images. Their approach yielded high classification rates 

and efficient training times, which are critical in scenarios requiring quick, accurate fault analysis. Despite these 

benefits, Fast R-CNN is resource-intensive and requires significant computational support and extensive data, 
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creating barriers to adoption in less technologically advanced or data-limited environments. These constraints 

underscore the challenges that accompany the adoption of deep learning methods, as their reliance on computational 

resources can limit accessibility and practical implementation in broader applications. 

Another notable study by Li, et al. [61] introduced a two-phase aerial image detection approach using a Region-

based CNN, fine-tuned on the Cifar10 dataset, to identify faults in insulators from aerial imagery. This method 

achieved high accuracy and highlighted its potential to reduce labor costs typically associated with manual inspection. 

However, the training phase required extensive epochs to achieve optimal accuracy, posing challenges in practical 

deployment. Furthermore, the risk of model overfitting to training data, potentially limiting generalization to 

different environments, presents a challenge for the widespread application of this method in real-world scenarios 

where environmental conditions vary. 

In an effort to enhance traditional defect detection, Liu, et al. [59] utilized a suite of deep learning models, 

including R-CNN, Faster R-CNN, and YOLO, for real-time insulator defect detection in complex environmental 

conditions. Among these models, YOLOv5 stood out for achieving detection rates as high as 41 frames per second, 

demonstrating the potential for real-time application. This performance underscores the advantage of integrating 

deep learning in operational environments, allowing for more effective monitoring of power transmission systems 

and heightened safety. Nevertheless, such implementations often come at the cost of high computational demand and 

extensive training times, which may challenge resource-constrained facilities and create obstacles for large-scale 

deployment. 

In resource-limited environments, Maduako, et al. [62] explored the use of high-resolution UAV imagery 

combined with CNN architectures to develop an automated inspection system capable of identifying faulty 

components in electricity transmission networks. The Single Shot Multibox Detector (SSD), integrated with a 

Feature Pyramid Network (FPN), achieved high precision and a balanced performance in fault localization and 

classification, reaching a mean Average Precision (mAP) of 89.61%. Although this method is effective in developing 

regions with limited resources, it remains dependent on specialized hardware and trained personnel, which may limit 

its accessibility for smaller utilities. 

Lastly, Shang, et al. [63] at the State Grid Xinjiang Electric Power Research Institute demonstrated that Fast 

R-CNN combined with multi-fault target detection algorithms can significantly improve fault detection rates for 

insulator defects, achieving an accuracy of 82.4% with a brief training period. While this system presents a valuable 

improvement, it also remains reliant on computational resources and extensive labeled datasets, which are often not 

available in all regions, limiting the practical scalability of this approach. 

As summarized in Table 1, recent advancements in fault detection for power insulators have seen a significant 

application of sophisticated deep learning techniques, as evidenced by a series of studies each aiming to improve the 

reliability and efficiency of current methodologies. Liu, et al. [59] embraced a variety of algorithms, including R-

CNN and YOLOv5, achieving real-time detection with high accuracy, though their methods require substantial 

computational resources, which may not be feasible in less developed regions. Similarly, Maduako, et al. [62] utilized 

high-resolution UAV imagery and sophisticated neural networks to automate fault detection, yielding high precision 

but facing challenges when applied to diverse and complex real-world conditions outside of their training data. 

Meanwhile, Shang, et al. [63] at the State Grid Xinjiang Electric Power Research Institute implemented Fast R-

CNN to achieve rapid and accurate classification, with the caveat that extensive computational and data resources 

limit its broader application.  Zheng, et al. [64] also developed a novel image detection method that, while reducing 

manual labor costs and increasing accuracy, requires long training periods and risks overfitting to specific datasets, 

potentially compromising effectiveness in varied operational scenarios. Collectively, these studies highlight the dual 

edge of current deep learning approaches in insulator fault detection. While they push the boundaries of what’s 

possible in terms of speed and accuracy, they also underscore the critical need for solutions that accommodate the 

limitations of computational intensity and data availability in diverse environmental settings. 
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5.3. Hybrid ML-Based Power Insulator Fault Detection Approaches 

The field of power insulator fault detection is experiencing significant advancements due to the integration of 

both traditional and modern deep learning techniques. The hybrid approaches described combine the interpretability 

of traditional machine learning algorithms with the complex pattern recognition capabilities of deep neural networks, 

such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). Deep learning models, 

especially CNNs, excel in feature extraction from images, identifying patterns associated with wear, damage, or 

potential faults. For example, as seen in work by Tao, et al. [55] CNNs can automatically detect visual indicators of 

damage in insulators, improving the accuracy and speed of fault detection over traditional manual inspections. 

In addition to CNNs, RNNs are useful for analyzing time series data, such as voltage or current readings, which 

can indicate faults when analyzed over time. Autoencoders further enhance detection by compressing data to identify 

anomalies that deviate from the norm, which may signify a developing fault [65]. Such advanced methods 

significantly enhance fault detection accuracy, reducing the need for labor-intensive manual inspection and improving 

maintenance practices. 

Transfer learning is also a powerful tool in fault detection, as shown in recent studies. It allows models pre-

trained on large, generic datasets to be adapted for power insulator tasks with smaller, more specific datasets. This is 

especially beneficial in scenarios where large labeled datasets are difficult to obtain. Faster R-CNN and YOLO are 

other deep learning frameworks that support object detection, allowing the precise localization of faults, which Liu, 

et al. [59] demonstrated effectively by enhancing real-time defect detection accuracy. Another promising method is 

ensemble learning, which aggregates predictions from multiple models to improve accuracy. For instance, a hybrid 

system may combine CNNs for feature extraction with algorithms like decision trees for interpretation [66]. This 

approach provides the benefits of both complex feature extraction and efficient decision-making, ensuring fault 

detection systems can handle the diverse nature of power insulator data. 

 

Table 1. Summary of DL based power insulator fault detection approaches. 

Article Citation Used 
Method 

Detected 
Fault 

Accuracy Drawbacks 

Omar, et al. 
[67] 

Wavelet analysis 
and 
SVM 

Partial 
discharges 

92-96% High complexity 
and 
need for expert 
knowledge 

High accuracy and 
reliable fault 
prevention 

Sarwar, et al. 
[68] 

PCA and SVM High 
impedance 
faults 

98% High computational 
demand 

Fast and reliable fault 
detection. 

Gustavo, et 
al. [69] 

Wavelet 
transform and 
SVM 

Series arcs 90% Complex signal 
processing, not 
suitable for real-
time 

High detection 
accuracy and 
sensitivity 

Zhou, et al. 
[70] 

Binary tree SVM 
and 
image feature 
analysis 

Winding 
faults 

83.17% Complexity and 
high 
computational effort 

High detection 
accuracy 

Zhang, et al. 
[71] 

Genetic
 algorith
ms, 
GAP - SVM, and 
RFA 

Boundary 
conditions 

83.60% High complexity 
and 
need for high 
computing power 

Improved decision 
accuracy and 
robustness 

Ding, et al. 
[72] 

Improved 
sparrow search 
algorithm and 
SVM 

Transformer 
faults 

90% Iterative nature 
leading to efficiency 
problems 

Improved accuracy of 
fault diagnosis 

Yin, et al. 
[73] 

Multi-scale 
feature 
extraction and 

Series arcs Not 
specified 

Scalability issues 
with 
large datasets 

Robustness and fast 
processing capability 
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Article Citation Used 
Method 

Detected 
Fault 

Accuracy Drawbacks 

random forest 

Wang and 
Zhang [74] 

SVM with Gabor 
features and 
background 
subtraction 

No accuracy, 
but can 
reduce time 

50% Challenges in 
accuracy in varied 
scenarios 

Efficient identification 
in complex 
backgrounds. 

Salem, et al. 
[75] 

Leakage current 
analysis and new 
assessment 
metrics 

Polluted 
polymer 
insulators 

80.40% Need for high 
quality 
and varied data 

Innovative 
assessment approach 

Liu, et al. 
[76] 

YOLOv5 and 
various CNNs 

More than 
50% insula- 
tors faults 

Not 
specified 

Dependency on 
large 
datasets and high 
computational 
demands 

Efficiency in real-time 
detection 

Huang, et al. 
[77] 

Fast R - CNN 
and deep 
learning 

Complex 
insulators 
faults 

Not 
specified 

High computational 
resources and large 
datasets required 

High classification 
rates and quick 
training times 

Zheng, et al. 
[64]  

Region-based 
CNN and Faster 
R-CNN 

Faulty 
insulators 

93.33% Extensive training 
periods and risk of 
over-fitting 

Cost-effective and re- 
duces labor costs 

Madakur, et 
al. [78] 

SSD with FPN Components 
in UAV 
imagery 

89.61% Faulty accuracy may 
be compromised 
under varied real-
world conditions 

Efficient for resource-
limited environments. 

Huang, et al. 
[77] 

Multi-fault 
target detection 
and Fast R-CNN 

Insulator 
faults 

82.4% Dependency on 
computational 
resources and large 
datasets 

Allows for 
simultaneous multiple 
fault detection. 

 

Moreover, innovative studies extend beyond basic fault detection to pre-fault analysis and protection schemes, 

such as Lin, et al. [79] who employed Support Vector Data Description (SVDD) to address faults in Distributed 

Energy Resources (DERs). They used a hyperspherical data generation model that enhances training speed, 

demonstrating that advanced machine learning can effectively manage complex distribution system challenges. 

As research advances, hybrid approaches integrating both traditional and deep learning techniques promise 

enhanced detection performance, more accurate classification, and robust solutions for real-world operational 

challenges. Such integration allows for the practical, scalable application of these models in diverse environments, 

which can lead to more resilient and cost-effective power system management strategies. 

As mentioned in Table 2, the research articles collectively advance various aspects of engineering and technology 

through innovative approaches and methodologies. Despite their significant contributions, each study has its 

limitations. Lin, et al. [79] improved robustness in distribution systems with DERs but faced real-world applicability 

issues. Sambyal and Sarwar [80] enhanced HIF detection accuracy but struggled with scalability and computational 

demands. Ali and Zhang [81] provided a reliable fruit maturity monitoring method, yet their lab-based approach 

limited real-world applicability. Qi and Tang [82] advanced slope stability prediction, though their high model 

complexity and limited dataset raised concerns. Shi, et al. [83] improved recommendation systems in HINs but at a 

high computational cost. Kumar, et al. [84] increased islanding detection accuracy, yet their method’s generalizability 

was limited. Ren, et al. [85] effectively predicted cable insulation health but relied on simulated data. Pijarski and 

Belowski [86] and Teimourzadeh, et al. [87] streamlined dynamic security assessments in power systems but 

required further validation for fault generalization. Lastly, Ndung’u [88] improved fault detection in transmission 

lines, facing challenges with model complexity and training data needs. 
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These studies collectively highlight the advancements and ongoing challenges in applying machine learning and 

innovative techniques to practical engineering problems. The combination of these qualities ease of use and 

interpretation, effectiveness with categorical data, compatibility with other techniques, and intelligent variable 

selection makes decision trees (DTs) and CART powerful tools in the machine learning arsenal, particularly suitable 

for applications where transparency and understandability are as crucial as predictive accuracy. 

By utilizing machine learning approaches, power insulator fault detection systems can automatically analyze and 

classify acquired data, enabling early detection of faults and facilitating prompt maintenance actions. These 

approaches offer the potential for real-time monitoring and can assist in preventing costly power outages and 

ensuring the reliability of the power grid. 
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Table 2. Summary of hybrid-based power insulator fault detection approaches. 

Article Problem Solved Objective Methods Results Advantages Limitations 

Lin, et al. [79] Complexity and bi-
directional power flow in 
distribution systems due to 
DERs. 

Propose a data-driven 
protection framework. 

SWI/SVM, incremental 
learning, artificial neural 
network, hyperbolic tangent 
data generation model 

Validated effectiveness on 123-
node test feeder, enhanced speed, 
improved robustness under DER 
integration levels. 

Enhanced speed, 
improved robustness 
under DER integration 
levels. 

Relies on simulation; 
environment-wide results 
may be inaccurate. 

Sambyal and 
Sarwar [80] 

High Impedance Fault 
(HIF) detection and 
location 

Enhance HIF detection and 
location accuracy. 

PCA, FDA, binary, and multi-
class SVM 

Outperformed existing methods in 
accuracy, stability, and speed of 
detection and location of HIF. 

Increased reliability, 
security, and stability of 
the distribution 
network. 

Small test network 
scalability; large-scale 
application needs more 
research. 

Chen, et al. 
[89] 

Non-destructive prediction 
of fruit maturity 

Use E-Nose technology to 
predict fruit maturity. 

PCA, DA Successfully predicted fruit 
maturity stages with high 
accuracy. 

Successfully predicted 
fruit maturity stages 
with high accuracy. 

Reliance on specific 
environmental conditions; 
limited dataset size 

Qi and Tang 
[82] 

Slope stability prediction 
using dataset collection 

Evaluate advanced AI 
approaches in slope stability 
prediction. 

Logistic regression, decision 
tree, random forest, boosting, 
gradient boosting machine, 
SVM, MLP neural network. 

SVM optimized with SMOTE 
outperformed others, achieving 
accuracy between 0.822 and 0.967. 

SVM optimized with 
SMOTE outperformed, 
achieving an accuracy of 
0.822–0.967. 

Data may not represent all 
geographical conditions; 
high-quality data is 
required. 

Zhao, et al. 
[90] 

High-level semantic 
representation and 
improvement in 
recommendation systems 

Improve recommendation 
accuracy in heterogeneous 
networks (HIN). 

Meta-graph, factorization 
techniques 

Proposed method outperformed 
state-of-the-art algorithms. 

Proposed method 
outperformed state-of-
the-art algorithms. 

High computational 
complexity; challenges in 
handling heterogeneous 
data. 

Kumar, et al. 
[84] 

 

Passive islanding detection 
in distributed generation 
systems 

Enhance the accuracy and 
speed of islanding detection. 

Wavelet transforms and 
machine learning-based 
islanding detection system 

Combined wavelet design and 
machine learning effectively 
detected islanding events. 

Increased detection 
accuracy and system 
reliability. 

Relies on specific test 
systems; generalizability 
may be limited and requires 
more real-world validation. 

Ren, et al. [85] Aging and partial discharge 
detection in cable insulation 

Predict insulation health 
condition 

SVM, ANN, ANFIS, Naïve 
Bayes 

SVM achieved 98% accuracy in 
prediction 

Assessed multiple-fault 
scenarios with reduced 
training needs. 

Generalization to different 
fault types requires further 
research. 

Pijarski and 
Belowski [86] 

Multi-fault dynamic 
security assessment in 
power systems 

Propose an efficient DSA 
(Dynamic Security 
Assessment) method. 

Single model, transfer learning Assessed multiple-fault scenarios 
with reduced training needs. 

Assessed multiple-fault 
scenarios with reduced 
training needs. 

Generalization to different 
fault types requires further 
research. 

Teimourzadeh, 
et al. [87] 

Multi-fault dynamic 
security assessment in 
power systems 

Improve accuracy and 
efficiency of dynamic 
security assessment (DSA). 

Single model, transfer 
learning, adapted to various 
fault scenarios. 

Assessed multiple fault scenarios 
with high accuracy. 

Assessed multiple-fault 
scenarios with high 
accuracy. 

Adaptation to different 
scenarios requires more 
research. 

Ndung’u [88] Fault detection in 
transmission lines 

Improve fault detection 
accuracy and speed. 

TF method, CNN, DNNL Outperformed existing methods in 
early fault detection. 

Outperformed existing 
methods in early fault 
detection. 

High-level accuracy 
requires large-scale 
training data. 
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6. UAV AERIAL IMAGE DATASET 

There are many classic datasets in the field of machine vision based on deep learning. When training models, 

datasets are often divided into training sets, validation sets, and test sets. In recent years, datasets related to target 

detection and semantic segmentation based on UAV aerial images have also been rapidly updated. The following is a 

collection of datasets recently established based on UAV aerial images: 

• Roundabout UAV Image Dataset: Produced by Puertas, et al. [91]. It contains 61,896 color images, captured 

at a flight altitude of 100-120m, annotated in Pascal VOC format, divided into 6 target categories, with an 

image resolution of 1920×1080 pixels. 

• UAV floating objects (AFO) dataset: Established by Gąsienica-Józkowy, et al. [92]. It is used for maritime 

rescue and other applications. The dataset contains 3,647 images and 39,991 annotated objects, spanning a 

total of 6 categories. Image resolutions range from 1280×720 to 3840×2160 pixels. The UAV flight altitude 

during image capture was between 30 and 80 meters. 

• NITRDrone dataset: Created by Behera, et al. [93] for road segmentation tasks. It consists of 16 video 

sequences of 8GB in size and 1,000 images, divided into 6 target categories. The drone’s flight altitude ranged 

from 5 to 80 meters during shooting, and the image resolution ranged from 1280×720 to 3000×4000 pixels. 

• UAV Detection and Tracking (UAVDT) dataset: Created by Du [94] for target detection, single target 

tracking, and multi-target tracking tasks. It consists of 100 video sequences, including a variety of common 

scenes and different target categories. 

• HERIDAL dataset: Created by Božić-Štulić, et al. [95] for search and rescue work. It contains 68,750 images 

of 4000×3000 pixels in size, shot at an altitude of 30 to 40 meters, covering a variety of real scenes. 

• AeroScapes semantic segmentation dataset: Established by Nigam, et al. [96] it includes 3,269 images 

extracted from 141 outdoor scene sequences captured by drones. The dataset is categorized into 12 different 

classes. The drones operated at altitudes ranging from 5 to 50 meters during image acquisition. The images 

have a resolution of 1280×720 pixels. 

• Campus dataset: Established by Robicquet, et al. [97] used for target detection, multi-target tracking, and 

large-scale trajectory prediction. Shot by drones in outdoor environments, it contains more than 100 different 

bird’s eye views and 20,000 targets participating in various types of interactions. The targets are divided into 

6 categories. The flight altitude during shooting is about 80m, and the image resolution is 1400×1904 pixels. 

• Large-Scale Parking Lot (CARPK) dataset: Established by Hsieh, et al. [98] used for target detection and 

counting. It contains drone images taken from 4 different parking lots, all targets are marked with the upper 

left and lower right corner coordinates, a total of 89,777 cars, the drones were flying at an altitude of about 

40m during shooting, and the image size was 1000×600 pixels. 

• Human action detection dataset Okutama Action: Created by Barekatain, et al. [99] it consists of 43-minute 

video sequences with comprehensive annotations, including 12 typical outdoor action categories. The drone 

was flying at an altitude of 10-45 meters during filming, with the camera tilted at angles of 45° or 90°, and the 

image resolution was 3840×2160 pixels. 

• SARD dataset: Created by Sambolek and Ivašić-Kos [100] it is used for search and rescue missions in complex 

environments in drone images. It consists of 1981 images, including typical motion types, simulating 

behavioral differences caused by different age groups and physical fitness. The drone was flying at an altitude 

of 5-50m, and the shooting angle was 45°-90°. 

• UAV123 dataset: Created by Mueller, et al. [101] it is used for target detection and tracking in drone images. 

It contains 123 video sequences, divided into 3 subsets, covering a variety of outdoor scenes and target 

categories, with common visual tracking task challenges. The drone was flying at an altitude of 5-25m when 

shooting, and the image size was 1280×720 pixels. 
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• VisDrone DET dataset: Du et al. [94] released a target detection challenge based on drone images, with a 

total of 8,599 images and 10 different target categories, with rich annotations, occlusions, and real scenes. Some 

very similar categories make the target detection task more challenging. These datasets have their own 

characteristics in terms of target category, image resolution, shooting height, etc., providing rich data support 

for the research on target detection and semantic segmentation of drone aerial images. 

 

7. OPEN RESEARCH CHALLENGES 

With the rapid development of drone technology and deep learning, the fusion of the two has shown great 

promise in drone-based object detection. However, there are still some key challenges in research and practical 

applications. The following are the main problems and future research directions for object detection in drone images: 

• Model lightweight: Current model improvements usually focus on improving detection accuracy by extending 

the backbone network output, adding additional modules, and enhancing feature fusion structures. However, 

these adjustments typically increase model complexity and the number of parameters, making the training 

process more resource-intensive and slowing down detection. It is crucial to design lightweight models 

optimized for real-time performance on drones with limited processing power. 

• Small object: Due to the high-altitude flight of drones, the objects captured in the images are usually very 

small, occupying only a few pixels. Multiple downsampling operations within the model can cause the loss of 

small object features, which significantly reduces the detection accuracy of these targets. 

• Complex background interference: Drones capture images in various environments with diverse backgrounds, 

which introduces a lot of noise and interference compared to standard images. Complex backgrounds make 

accurate object detection challenging, especially in natural or cluttered environments. 

• Large field of view (FOV): Drone images typically have a wide FOV and high resolution, which pose challenges 

for real-time processing. A wide FOV increases image processing time, while high resolution raises 

computational requirements. Efficient algorithms capable of handling wide FOV and high-resolution images 

are necessary for effective real-time detection. 

• Uneven distribution of objects: Objects in drone images are often distributed at different densities, with some 

areas being sparsely populated and others densely populated. For example, animals in a pasture may be spread 

out, while vehicles in a parking lot may be tightly clustered. Such distribution extremes may reduce recall 

because the detection algorithm may erroneously suppress true positives in densely populated areas. 

• Object rotation: Objects in drone images are often randomly oriented rather than horizontally aligned, 

complicating detection. Tilted objects are more susceptible to background interference during detection, 

resulting in bounding boxes that may include too much background, making feature extraction more difficult. 

Developing robust methods to handle object rotation is a priority. 

• Unbalanced dataset classes: In drone datasets containing multiple object types, some classes often have far 

fewer samples than others, resulting in data imbalance. This imbalance can negatively impact model training, 

making it more difficult for the model to learn discriminative features for the minority class, thereby reducing 

the mean average precision (mAP) for object classes. Ensuring that the dataset is balanced or implementing 

strategies to address imbalance is critical to improving detection accuracy. 

 

8. RESEARCH DIRECTIONS 

In view of the above problems, the research trends of target detection methods for drone aerial images in the 

future are as follows: 

1) In the optimization and upgrading of the model, more attention should be paid to factors such as computational 

complexity and detection speed. A high-performance model needs to achieve a good balance between detection 
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accuracy and operational speed. How to improve detection accuracy while maintaining or even reducing model 

complexity is a challenging area of research. 

2) In the feature extraction part of the model, most of them use multi-layer stacked residual networks. Residual 

networks help alleviate gradient problems and can improve the detection performance of the model by increasing 

depth. How to optimize the traditional residual structure to enhance its feature extraction ability for small targets 

requires further research. 

3) In image processing, attention modules are often used to eliminate the interference of complex backgrounds 

and improve the detection performance of the model. Through previous research, the attention mechanism has a 

variety of implementation forms, mainly divided into channel attention and spatial attention modules. How to design 

a more effective and lightweight attention module is very meaningful. 

4) For the problem of processing multi-scale targets in large field of view images, the use of feature pyramid 

structures is a common solution. Pyramid structures such as FPN, PANet, NAS-FPN, and BiFPN have been 

proposed. How to strengthen the fusion of features of different scales, enhance feature reuse, and improve feature 

extraction still requires further research. 

5) In the target detection algorithm, bounding box regression (BBR) is used to locate the target, which is a key 

step in determining the target positioning performance. A good loss function is crucial for bounding box regression. 

A variety of loss functions based on intersection-over-union have been proposed, such as IOU loss, GIOU loss, DIOU 

loss, CIOU loss, and EIOU loss. A well-designed loss function is conducive to better measuring the difference between 

the predicted value and the true value, and guiding the next step of training in the right direction. 

6) There is still room for further improvement in the selection of model optimizers. In previous studies, the 

optimizer selection was too limited, primarily using only the SGD optimizer or Adam optimizer for momentum. In 

the future, combining adaptive and non-adaptive methods to optimize network model parameters could enable the 

model to better approach or reach the optimal value. 

7) In terms of data set production, comprehensive data from multiple different sources should be used to verify 

the model, avoiding images collected from a single category and a single background. In addition, the number of 

pictures included is also an important indicator for measuring the dataset. In the subsequent data set production, we 

need to pay attention to issues such as multiple categories, multiple backgrounds, and the number of pictures. 

 

9. DISCUSSION 

The reviewed literature highlights significant advancements in using deep learning and hybrid machine learning 

models for power insulator fault detection through UAV-acquired imagery. Several recent studies support the efficacy 

of modern deep learning architectures such as CNNs, YOLOv5, and Faster R-CNN. For instance, Shi, et al. [102] 

demonstrated that YOLOv5 achieved superior accuracy and speed in detecting surface damage in composite 

insulators, outperforming traditional detectors like SSD and RetinaNet. 

However, recent studies have also highlighted challenges and limitations in deep learning-based fault detection 

systems. For instance, Buda, et al. [103] demonstrated that YOLOv5 models, even when enhanced for UAV-based 

remote sensing, exhibited poor generalization when tested under real-world conditions such as occlusion, variable 

lighting, and dense scenes. This underscores the need for domain adaptation and environmental robustness in 

practical deployments. Similarly, Wang, et al. [104] found that traditional SVM classifiers using handcrafted features 

like HOG and Gabor filters sometimes outperformed CNN-based models in scenarios involving small or highly 

imbalanced datasets. This was attributed to the increased risk of overfitting in deep networks when trained on limited 

or skewed data distributions. 

In the case of hybrid approaches, Zhao, et al. [90] proposed an ensemble-based Mixture-of-Experts (MoE) 

framework that combined multiple classifiers to enhance fault detection robustness in UAV systems. Their model 

demonstrated improved performance under noisy backgrounds and occluded imagery, which aligns with this review’s 
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conclusion that hybrid methods can improve detection stability. Nevertheless, Huang, et al. [105] highlighted that 

such hybrid and ensemble models often result in increased inference time and computational overhead, making them 

less practical for real-time UAV applications with limited onboard processing capabilities. 

Dataset imbalance and lack of diversity continue to be critical challenges. While public datasets such as UAVDT 

and Okutama Action provide multi-environment and multi-object data, specialized datasets for insulator fault 

detection often suffer from limited class variety, weather variability, and resolution inconsistencies. Liu et al. [76] 

emphasized that the scarcity and imbalance of training samples in insulator datasets hinder effective training and 

evaluation of deep learning models. Additionally, Liu, et al. [106] reported that inconsistent image resolutions and 

limited scene diversity significantly reduce the generalization capability of models when deployed in real-world 

operational environments. 

In summary, while recent studies largely support the benefits of deep learning and UAV-based approaches for 

power insulator fault detection, emerging evidence also reveals important limitations. These include weak 

generalization to novel environments, high computational costs, and dataset biases. Addressing these issues through 

model compression, domain adaptation, transfer learning, and improved dataset design will be essential for developing 

reliable, scalable solutions suitable for real-world deployment in power grid inspection systems. 

 

10. CONCLUSION 

10.1. Key Findings and Implications 

This review systematically examined the integration of binocular vision systems with unmanned aerial vehicles 

(UAVs) and machine learning techniques for power insulator fault detection. The findings highlight how advanced 

imaging methods, such as binocular vision and optical correction, combined with deep learning models like YOLOv5 

and Faster R-CNN, have significantly improved detection accuracy, inspection efficiency, and operational safety in 

power transmission systems. The integration of UAV platforms with AI-driven analysis presents a scalable and cost-

effective solution for modernizing power grid maintenance. 

 

10.2. Limitations 

Despite promising advancements, several challenges persist. These include limited availability of diverse, 

annotated UAV datasets, generalization issues in deep learning models across varying environmental conditions, and 

the computational complexity of deploying real-time solutions on UAVs with constrained resources. Additionally, 

many existing studies lack benchmarking standards, making cross-comparison difficult. 

 

10.3. Future Research Directions 

Future research should prioritize the development of lightweight and generalizable models for real-time UAV 

deployment, address dataset imbalance through augmentation and simulation, and incorporate multi-sensor fusion 

approaches such as thermal imaging or LiDAR. Emphasis should also be placed on standardized evaluation protocols, 

explainable AI, and deployment-aware architectures to enhance practical adoption and reliability in diverse field 

conditions. 

 

Funding: This study received no specific financial support.  
Institutional Review Board Statement: Not applicable. 
Transparency: The authors state that the manuscript is honest, truthful, and transparent, that no key aspects 
of the investigation have been omitted, and that any differences from the study as planned have been clarified. 
This study followed all writing ethics. 
Competing Interests: The authors declare that they have no competing interests. 
Authors’ Contributions: Both authors contributed equally to the conception and design of the study. Both 
authors have read and agreed to the published version of the manuscript. 

 

 



Journal of Asian Scientific Research, 2025, 15(3): 395-419 

 

 
414 

© 2025 AESS Publications. All Rights Reserved. 

REFERENCES 

[1] H. Mirshekali, A. Q. Santos, and H. R. Shaker, "A survey of time-series prediction for digitally enabled maintenance of 

electrical grids," Energies, vol. 16, no. 17, p. 6332, 2023.  https://doi.org/10.3390/en16176332 

[2] A. A. R. M. A. Ebayyeh and A. Mousavi, "A review and analysis of automatic optical inspection and quality monitoring 

methods in electronics industry," IEEE Access, vol. 8, pp. 183192-183271, 2020.  

[3] R. Blake and H. Wilson, "Binocular vision," Vision Research, vol. 51, no. 7, pp. 754-770, 2011.  

https://doi.org/10.1016/j.visres.2010.10.009 

[4] Z. Chen, Y. Yi, C. Gan, Z. Tang, and D. Kong, "Scene Chinese recognition with local and global attention," Pattern 

Recognition, vol. 158, p. 111013, 2025.  https://doi.org/10.1016/j.patcog.2024.111013 

[5] R. Vaish, U. D. Dwivedi, S. Tewari, and S. M. Tripathi, "Machine learning applications in power system fault diagnosis: 

Research advancements and perspectives," Engineering Applications of Artificial Intelligence, vol. 106, p. 104504, 2021.  

https://doi.org/10.1016/j.engappai.2021.104504 

[6] I. Guyon and A. Elisseeff, "An introduction to feature extraction. In Feature extraction: Foundations and applications." 

Berlin, Heidelberg: Springer Berlin Heidelberg., 2006, pp. 1-25.  

[7] S. Lei, C. Xia, Z. Li, X. Li, and T. Wang, "HNN: A novel model to study the intrusion detection based on multi-feature 

correlation and temporal-spatial analysis," IEEE Transactions on Network Science and Engineering, vol. 8, no. 4, pp. 3257-

3274, 2021.  

[8] S. Wei, Y. Qi, L. Liu, Y. Li, and X. Gao, "Industrial process fault detection based on IGA‐combinatorial model decision 

mechanism," Journal of Chemometrics, vol. 38, no. 12, p. e3602, 2024.  https://doi.org/10.1002/cem.3602 

[9] C. Avcı, M. Budak, N. Yağmur, and F. Balçık, "Comparison between random forest and support vector machine 

algorithms for LULC classification," International Journal of Engineering and Geosciences, vol. 8, no. 1, pp. 1-10, 2023.   

[10] F. Aminifar, M. Abedini, T. Amraee, P. Jafarian, M. H. Samimi, and M. Shahidehpour, "A review of power system 

protection and asset management with machine learning techniques," Energy Systems, vol. 13, no. 4, pp. 855-892, 2022.  

https://doi.org/10.1007/s12667-021-00448-6 

[11] I. Spasic and G. Nenadic, "Clinical text data in machine learning: Systematic review," JMIR Medical Informatics, vol. 8, 

no. 3, p. e17984, 2020.  https://doi.org/10.2196/17984 

[12] A. Abid, M. T. Khan, and J. Iqbal, "A review on fault detection and diagnosis techniques: basics and beyond," Artificial 

Intelligence Review, vol. 54, no. 5, pp. 3639-3664, 2021.  https://doi.org/10.1007/s10462-020-09934-2 

[13] W. Strielkowski, A. Vlasov, K. Selivanov, K. Muraviev, and V. Shakhnov, "Prospects and challenges of the machine 

learning and data-driven methods for the predictive analysis of power systems: A review," Energies, vol. 16, no. 10, p. 

4025, 2023.  https://doi.org/10.3390/en16104025 

[14] P. Gill, Electrical power equipment maintenance and testing. Boca Raton, FL, USA: CRC Press, 2016.  

[15] L. Yao and Y. Li, "The role of direct current electric field-guided stem cell migration in neural regeneration," Stem Cell 

Reviews and Reports, vol. 12, no. 3, pp. 365-375, 2016.  https://doi.org/10.1007/s12015-016-9654-8 

[16] V. A. Thiviyanathan, P. J. Ker, Y. S. Leong, F. Abdullah, A. Ismail, and M. Z. Jamaludin, "Power transformer insulation 

system: A review on the reactions, fault detection, challenges and future prospects," Alexandria Engineering Journal, vol. 

61, no. 10, pp. 7697-7713, 2022.  https://doi.org/10.1016/j.aej.2022.01.026 

[17] S. Meradi, K. Benmansour, and S. Laribi, "Failure analysis of medium voltage underground power Câbles based on 

voltage measurements," Journal of Failure Analysis and Prevention, vol. 23, no. 5, pp. 1860-1868, 2023.  

https://doi.org/10.1007/s11668-023-01736-2 

[18] V. Sultan and B. Hilton, "Electric grid reliability research," Energy Informatics, vol. 2, no. 1, pp. 1-29, 2019.  

https://doi.org/10.1186/s42162-019-0069-z 

[19] J. Zhu et al., "Disentangling the effects of the surrounding environment on street-side greenery: Evidence from 

Hangzhou," Ecological Indicators, vol. 143, p. 109153, 2022.  https://doi.org/10.1016/j.ecolind.2022.109153 

https://doi.org/10.3390/en16176332
https://doi.org/10.1016/j.visres.2010.10.009
https://doi.org/10.1016/j.patcog.2024.111013
https://doi.org/10.1016/j.engappai.2021.104504
https://doi.org/10.1002/cem.3602
https://doi.org/10.1007/s12667-021-00448-6
https://doi.org/10.2196/17984
https://doi.org/10.1007/s10462-020-09934-2
https://doi.org/10.3390/en16104025
https://doi.org/10.1007/s12015-016-9654-8
https://doi.org/10.1016/j.aej.2022.01.026
https://doi.org/10.1007/s11668-023-01736-2
https://doi.org/10.1186/s42162-019-0069-z
https://doi.org/10.1016/j.ecolind.2022.109153


Journal of Asian Scientific Research, 2025, 15(3): 395-419 

 

 
415 

© 2025 AESS Publications. All Rights Reserved. 

[20] Y. Yang et al., "Realization of a three-dimensional photonic topological insulator," Nature, vol. 565, no. 7741, pp. 622-

626, 2019.  https://doi.org/10.1038/s41586-018-0829-0 

[21] B. P. Mohan, M. Shakhatreh, R. Garg, S. Ponnada, and D. G. Adler, "Efficacy and safety of EUS-guided liver biopsy: A 

systematic review and meta-analysis," Gastrointestinal Endoscopy, vol. 89, no. 2, pp. 238-246, 2019.  

https://doi.org/10.1016/j.gie.2018.10.018 

[22] Z. Fang and A. V. Savkin, "Strategies for optimized uav surveillance in various tasks and scenarios: A review," Drones, 

vol. 8, no. 5, p. 193, 2024.  https://doi.org/10.3390/drones8050193 

[23] R. M. Amir et al., "An area coverage scheme based on fuzzy logic and shuffled frog-leaping algorithm (SFLA) in 

heterogeneous wireless sensor networks," Mathematics, vol. 9, no. 18, p. 2251, 2021.  

https://doi.org/10.3390/math9182251 

[24] T. Wasilewski et al., "Molecularly imprinted polymers for the detection of volatile biomarkers," TrAC Trends in Analytical 

Chemistry, vol. 177, p. 117783, 2024.  https://doi.org/10.1016/j.trac.2024.117783 

[25] S. A. H. Mohsan, N. Q. H. Othman, Y. Li, M. H. Alsharif, and M. A. Khan, "Unmanned aerial vehicles (UAVs): Practical 

aspects, applications, open challenges, security issues, and future trends," Intelligent Service Robotics, vol. 16, no. 1, pp. 

109-137, 2023.  https://doi.org/10.1007/s11370-022-00452-4 

[26] H. Golnabi and A. Asadpour, "Design and application of industrial machine vision systems," Robotics and Computer-

Integrated Manufacturing, vol. 23, no. 6, pp. 630-637, 2007.  https://doi.org/10.1016/j.rcim.2007.02.005 

[27] S. W. Turner, J. Y. Ng, and S. Galelli, "Examining global electricity supply vulnerability to climate change using a high-

fidelity hydropower dam model," Science of the Total Environment, vol. 590, pp. 663-675, 2017.  

https://doi.org/10.1016/j.scitotenv.2017.03.022 

[28] T. Li, L. Fan, M. Zhao, Y. Liu, and D. Katabi, "Making the invisible visible: Action recognition through walls and 

occlusions," in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 872- 881.  

[29] H. Abarbanel et al., "Note that the leading numerals' 87'are omlRed from the access numbers; also note that, strictly 

speaking, this is an index of names, not authors--if an author's name has appeared two ways in the literature, it may 

appear two ways here," Ager, vol. 505, p. 2734, 2023.  

[30] L. Ebadi, H. Z. Shafri, S. B. Mansor, and R. Ashurov, "A review of applying second-generation wavelets for noise removal 

from remote sensing data," Environmental Earth Sciences, vol. 70, no. 6, pp. 2679-2690, 2013.  

https://doi.org/10.1007/s12665-013-2325-z 

[31] G. De Boer, R. M. A. De Bie, and B. E. K. S. Swinnen, "Symptomatic treatment of extrapyramidal hyperkinetic movement 

disorders," Current Neuropharmacology, vol. 22, no. 14, pp. 2284-2297, 2024.  

https://doi.org/10.2174/1570159X22666240517161444 

[32] Y. Zhang, Z. Li, and H. Wu, "Interactive machine learning for segmenting pores of sandstone in computed tomography 

images," Gas Science and Engineering, vol. 126, p. 205343, 2024.  https://doi.org/10.1016/j.jgsce.2024.205343 

[33] A. Tremeau and N. Borel, "A region growing and merging algorithm to color segmentation," Pattern Recognition, vol. 

30, no. 7, pp. 1191-1203, 1997.  

[34] A. T. Z. AI-Taie and S. M. H. Almehmdy, "Effect of moisture depletion and perlite levels on specific hydraulic standards 

and water use efficiency for potatoes under drip irrigation system," Indian Journal of Ecology, vol. 48, no. 17, pp. 83-86, 

2021.  

[35] M. Dhimish and S. Silvestre, "Estimating the impact of azimuth-angle variations on photovoltaic annual energy 

production," Clean Energy, vol. 3, no. 1, pp. 47-58, 2019.  https://doi.org/10.1093/ce/zky022 

[36] Z. Deng, T. Han, Z. Cheng, J. Jiang, and F. Duan, "Fault detection of petrochemical process based on space-time 

compressed matrix and Naive Bayes," Process Safety and Environmental Protection, vol. 160, pp. 327-340, 2022.  

https://doi.org/10.1016/j.psep.2022.01.048 

[37] T. Schoening et al., "Report on the marine imaging workshop 2017," Research Ideas and Outcomes, vol. 3, p. e13820, 2017.  

https://doi.org/10.3897/rio.3.e13820 

https://doi.org/10.1038/s41586-018-0829-0
https://doi.org/10.1016/j.gie.2018.10.018
https://doi.org/10.3390/drones8050193
https://doi.org/10.3390/math9182251
https://doi.org/10.1016/j.trac.2024.117783
https://doi.org/10.1007/s11370-022-00452-4
https://doi.org/10.1016/j.rcim.2007.02.005
https://doi.org/10.1016/j.scitotenv.2017.03.022
https://doi.org/10.1007/s12665-013-2325-z
https://doi.org/10.2174/1570159X22666240517161444
https://doi.org/10.1016/j.jgsce.2024.205343
https://doi.org/10.1093/ce/zky022
https://doi.org/10.1016/j.psep.2022.01.048
https://doi.org/10.3897/rio.3.e13820


Journal of Asian Scientific Research, 2025, 15(3): 395-419 

 

 
416 

© 2025 AESS Publications. All Rights Reserved. 

[38] Sakshi and V. Kukreja, "Image segmentation techniques: Statistical, comprehensive, semi-automated analysis and an 

application perspective analysis of mathematical expressions," Archives of Computational Methods in Engineering, vol. 30, 

no. 1, pp. 457-495, 2023.  https://doi.org/10.1007/s11831-022-09805-9 

[39] J. Wang et al., "Generalizing to unseen domains: A survey on domain generalization," IEEE Transactions on Knowledge 

and Data Engineering, vol. 35, no. 8, pp. 8052-8072, 2022.  https://doi.org/10.1109/TKDE.2022.3178128 

[40] L. Maraaba, M. Almuhaini, M. Habli, and M. Khalid, "Neural networks based dynamic load modeling for power system 

reliability assessment," Sustainability, vol. 15, no. 6, p. 5403, 2023.  https://doi.org/10.3390/su15065403 

[41] J. Hossbach et al., "Deep learning‐based motion quantification from k‐space for fast model‐based magnetic resonance 

imaging motion correction," Medical Physics, vol. 50, no. 4, pp. 2148-2161, 2023.  https://doi.org/10.1002/mp.16119 

[42] N. Huang, Q. Chen, G. Cai, D. Xu, L. Zhang, and W. Zhao, "Fault diagnosis of bearing in wind turbine gearbox under 

actual operating conditions driven by limited data with noise labels," IEEE Transactions on Instrumentation and 

Measurement, vol. 70, pp. 1-10, 2020.  https://doi.org/10.1109/TIM.2020.3025396 

[43] D. Eridani, E. D. Widianto, I. P. Windasari, W. B. Bawono, and N. F. Gunarto, "Internet of things based attendance 

system design and development in a smart classroom," Indonesian Journal of Electrical Engineering and Computer Science, 

vol. 23, no. 3, pp. 1432-1439, 2021.  https://doi.org/10.11591/ijeecs.v23.i3.pp1432-1439 

[44] P. Ren, T. Song, L. Chi, X. Wang, and X. Miao, "The adverse effect of anxiety on dynamic anticipation performance," 

Frontiers in Psychology, vol. 13, p. 823989, 2022.  https://doi.org/10.3389/fpsyg.2022.823989 

[45] S. Vignali, A. G. Barras, R. Arlettaz, and V. Braunisch, "SDMtune: An R package to tune and evaluate species distribution 

models," Ecology and Evolution, vol. 10, no. 20, pp. 11488-11506, 2020.  https://doi.org/10.1002/ece3.6786 

[46] S. Mahmud, M. Mohsin, M. N. Dewan, and A. Muyeed, "The global prevalence of depression, anxiety, stress, and 

insomnia among general population during COVID-19 pandemic: A systematic review and meta-analysis," Trends in 

Psychology, vol. 31, no. 1, pp. 143-170, 2023.  https://doi.org/10.1007/s43076-021-00116-9 

[47] F. Thabtah, S. Hammoud, F. Kamalov, and A. Gonsalves, "Data imbalance in classification: Experimental evaluation," 

Information Sciences, vol. 513, pp. 429-441, 2020.  https://doi.org/10.1016/j.ins.2019.11.004 

[48] M. Šuppa, K. Benešová, and A. Švec, "Cost-effective deployment of bert models in serverless environment," in Proceedings 

of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language 

Technologies: Industry Papers, 2021, pp. 187-195.  

[49] R. S. Gonzales, In vitro studies of monocyte adhesion to the endothelium under flow: Implications on the progession of atherosclerosis. 

Georgia: Georgia Institute of Technology, 1995.  

[50] M. Farzaneh, H. Vierheilig, A. Lössl, and H. Kaul, "Arbuscular mycorrhiza enhances nutrient uptake in chickpea," Plant, 

Soil and Environment, vol. 57, no. 10, pp. 465-470, 2011.  

[51] C. M. Sgrò, T. C. Kutz, and C. K. Mirth, "Interacting with change: Diet mediates how larvae respond to their thermal 

environment," Functional Ecology, vol. 33, no. 10, pp. 1940-1951, 2019.  https://doi.org/10.1111/1365-2435.13414 

[52] C. Shorten and T. M. Khoshgoftaar, "A survey on image data augmentation for deep learning," Journal of Big Data, vol. 

6, no. 1, pp. 1-48, 2019.  https://doi.org/10.1186/s40537-019-0197-0 

[53] R. Gao, Z. Chen, C. Liu, and Y. Wang, "A review of data augmentation techniques for fault diagnosis using deep 

learning," IEEE Access, vol. 11, pp. 22345–2236, 2023.  

[54] J. Uesato et al., "Solving math word problems with process-and outcome-based feedback," arXiv preprint 

arXiv:2211.14275, 2022.  https://doi.org/10.48550/arXiv.2211.14275 

[55] X. Tao, X. Gong, X. Zhang, S. Yan, and C. Adak, "Deep learning for unsupervised anomaly localization in industrial 

images: A survey," IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1-21, 2022.  

https://doi.org/10.1109/TIM.2022.3196436 

[56] S. Gawde, S. Patil, S. Kumar, P. Kamat, K. Kotecha, and A. Abraham, "Multi-fault diagnosis of industrial rotating 

machines using data-driven approach: A review of two decades of research," Engineering Applications of Artificial 

Intelligence, vol. 123, p. 106139, 2023.  https://doi.org/10.1016/j.engappai.2023.106139 

https://doi.org/10.1007/s11831-022-09805-9
https://doi.org/10.1109/TKDE.2022.3178128
https://doi.org/10.3390/su15065403
https://doi.org/10.1002/mp.16119
https://doi.org/10.1109/TIM.2020.3025396
https://doi.org/10.11591/ijeecs.v23.i3.pp1432-1439
https://doi.org/10.3389/fpsyg.2022.823989
https://doi.org/10.1002/ece3.6786
https://doi.org/10.1007/s43076-021-00116-9
https://doi.org/10.1016/j.ins.2019.11.004
https://doi.org/10.1111/1365-2435.13414
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.48550/arXiv.2211.14275
https://doi.org/10.1109/TIM.2022.3196436
https://doi.org/10.1016/j.engappai.2023.106139


Journal of Asian Scientific Research, 2025, 15(3): 395-419 

 

 
417 

© 2025 AESS Publications. All Rights Reserved. 

[57] S. Gupta, A. Kumar, and J. Maiti, "A critical review on system architecture, techniques, trends and challenges in 

intelligent predictive maintenance," Safety Science, vol. 177, p. 106590, 2024.  https://doi.org/10.1016/j.ssci.2024.106590 

[58] S. Frizzo Stefenon et al., "Electrical insulator fault forecasting based on a wavelet neuro-fuzzy system," Energies, vol. 13, 

no. 2, p. 484, 2020.  https://doi.org/10.3390/en13020484 

[59] Y. Liu, T. Zhou, J. Xu, Y. Hong, Q. Pu, and X. Wen, "Rotating target detection method of concrete bridge crack based 

on YOLO v5," Applied Sciences, vol. 13, no. 20, p. 11118, 2023.  https://doi.org/10.3390/app132011118 

[60] L. Liang et al., "Study and application of image water level recognition calculation method based on mask R-cnn and 

faster R-cnn," Applied Ecology & Environmental Research, vol. 21, no. 6, pp. 5039–5053, 2023.  

https://doi.org/10.15666/aeer/2106_50395053 

[61] H. Li, Y. He, Q. Xu, J. Deng, W. Li, and Y. Wei, "Detection and segmentation of loess landslides via satellite images: A 

two-phase framework," Landslides, vol. 19, no. 3, pp. 673-686, 2022.  https://doi.org/10.1007/s10346-021-01789-0 

[62] I. Maduako et al., "Deep learning for component fault detection in electricity transmission lines," Journal of Big Data, vol. 

9, no. 1, p. 81, 2022.  https://doi.org/10.1186/s40537-022-00630-2 

[63] Z. Shang, C. Wu, C. Pan, W. Li, and H. Cheng, "Intelligent fault diagnosis of double-aligned domain adaptation based 

on multi-structure fusion and multi-attention mechanism," Measurement Science and Technology, vol. 35, no. 5, p. 056201, 

2024.  https://doi.org/10.1088/1361-6501/ad21d0 

[64] Y. Zheng, M. Xu, and H. Jiang, "A review of deep learning approaches for machinery fault diagnosis with data 

augmentation," Sensors, vol. 23, no. 2, p. 568, 2023.  

[65] S. F. Stefenon, L. O. Seman, N. F. Sopelsa Neto, L. H. Meyer, V. C. Mariani, and L. d. S. Coelho, "Group method of data 

handling using Christiano–Fitzgerald random walk filter for insulator fault prediction," Sensors, vol. 23, no. 13, p. 6118, 

2023.  https://doi.org/10.3390/s23136118 

[66] B. Andressa, L. O. Seman, E. Camponogara, S. F. Stefenon, V. C. Mariani, and L. d. S. Coelho, "Machine fault detection 

using a hybrid CNN-LSTM attention-based model," Sensors, vol. 23, no. 9, p. 4512, 2023.  

https://doi.org/10.3390/s23094512 

[67] M. Omar, S. Rehman, and M. A. Khan, "Deep learning-based fault diagnosis for industrial machinery: A review," Journal 

of Manufacturing Systems, vol. 62, pp. 828–846, 2022.  

[68] M. Sarwar, J. Sun, C. Wang, and Y. He, "Data augmentation techniques for deep learning in fault diagnosis of rotating 

machinery: A review," IEEE Access, vol. 8, pp. 86564–86592, 2020.  

[69] S. Gustavo, L. Pereira, and A. Silva, "A survey on data augmentation for deep learning in industrial applications," 

Procedia Computer Science, vol. 194, pp. 268–275, 2021.  

[70] Y. Zhou, J. Chen, and X. Zhang, "Transfer learning and data augmentation for deep bearing fault diagnosis under 

variable working conditions," IEEE Access, vol. 8, pp. 124484–124493, 2020.  

[71] W. Zhang, C. Li, G. Peng, Y. Chen, and Z. Zhang, "A deep convolutional neural network with new training methods for 

bearing fault diagnosis under noisy environment and different working load," Mechanical Systems and Signal Processing, 

vol. 100, pp. 439–453, 2020.  

[72] Y. Ding, Z. Chen, and Y. Liu, "Data augmentation and transfer learning for improved bearing fault diagnosis," Mechanical 

Systems and Signal Processing, vol. 142, p. 106630, 2020.  

[73] S. Yin, Y. Li, and H. Gao, "Recent advances in data-driven fault detection and diagnosis: A review," IEEE Transactions 

on Industrial Informatics, vol. 19, no. 2, pp. 1234–1246, 2023.  

[74] T. Wang and Q. Zhang, "Fault diagnosis of rotating machinery using data augmentation and deep convolutional neural 

networks," International Journal of Advanced Manufacturing Technology, vol. 87, no. 5–8, pp. 2089–2100, 2016.  

[75] M. Salem, S. B. Othman, and S. B. Hassen, "An overview of deep learning techniques for bearing fault diagnosis," Applied 

Sciences, vol. 12, no. 7, p. 3456, 2022.  

[76] Y. Liu, D. Liu, X. Huang, and C. Li, "Insulator defect detection with deep learning: A survey," IET Generation, 

Transmission & Distribution, vol. 17, no. 16, pp. 3541-3558, 2023.  https://doi.org/10.1049/gtd2.12916 

https://doi.org/10.1016/j.ssci.2024.106590
https://doi.org/10.3390/en13020484
https://doi.org/10.3390/app132011118
https://doi.org/10.15666/aeer/2106_50395053
https://doi.org/10.1007/s10346-021-01789-0
https://doi.org/10.1186/s40537-022-00630-2
https://doi.org/10.1088/1361-6501/ad21d0
https://doi.org/10.3390/s23136118
https://doi.org/10.3390/s23094512
https://doi.org/10.1049/gtd2.12916


Journal of Asian Scientific Research, 2025, 15(3): 395-419 

 

 
418 

© 2025 AESS Publications. All Rights Reserved. 

[77] J. Huang, B. Chen, and H. Wang, "Enhanced data augmentation for fault diagnosis of rotating machinery under variable 

working conditions," Measurement, vol. 212, p. 112639, 2023.  

[78] R. Madakur, R. Ramesh, and K. Kumar, "Data augmentation strategies for deep learning-based fault diagnosis of 

industrial equipment: A survey," Journal of Intelligent Manufacturing, vol. 33, no. 7, pp. 1745–1760, 2022.  

[79] Z. Lin et al., "One-class classifier based fault detection in distribution systems with varying penetration levels of 

distributed energy resources," IEEE Access, vol. 8, pp. 130023-130035, 2020.  

https://doi.org/10.1109/ACCESS.2020.3009385 

[80] D. Sambyal and A. Sarwar, "Recent developments in cervical cancer diagnosis using deep learning on whole slide images: 

An Overview of models, techniques, challenges and future directions," Micron, vol. 173, p. 103520, 2023.  

https://doi.org/10.1016/j.micron.2023.103520 

[81] M. L. Ali and Z. Zhang, "The YOLO framework: A comprehensive review of evolution, applications, and benchmarks in 

object detection," Computers, vol. 13, no. 12, p. 336, 2024.  https://doi.org/10.3390/computers13120336 

[82] C. Qi and X. Tang, "Slope stability prediction using integrated metaheuristic and machine learning approaches: A 

comparative study," Computers & Industrial Engineering, vol. 118, pp. 112-122, 2018.  

https://doi.org/10.1016/j.cie.2018.02.028 

[83] C. Shi, B. Hu, W. X. Zhao, and P. S. Yu, "Heterogeneous information network embedding for recommendation," IEEE 

Transactions 0n Knowledge and Data Engineering, vol. 31, no. 2, pp. 357-370, 2018.  

https://doi.org/10.1109/TKDE.2018.2833443 

[84] H. Kumar, M. Shafiq, K. Kauhaniemi, and M. Elmusrati, "A review on the classification of partial discharges in medium-

voltage cables: detection, feature extraction, artificial intelligence-based classification, and optimization techniques," 

Energies, vol. 17, no. 5, p. 1142, 2024.  https://doi.org/10.3390/en17051142 

[85] C. Ren, H. Yuan, Q. Li, R. Zhang, and Y. Xu, "Pre-fault dynamic security assessment of power systems for multiple 

different faults via multi-label learning," IEEE Transactions on Power Systems, vol. 38, no. 6, pp. 5501-5511, 2022.  

https://doi.org/10.1109/TPWRS.2022.3223166 

[86] P. Pijarski and A. Belowski, "Application of methods based on artificial intelligence and optimisation in power 

engineering—introduction to the special issue," Energies, vol. 17, no. 2, p. 516, 2024.  

https://doi.org/10.3390/en17020516 

[87] H. Teimourzadeh, A. Moradzadeh, M. Shoaran, B. Mohammadi-Ivatloo, and R. Razzaghi, "High impedance single-phase 

faults diagnosis in transmission lines via deep reinforcement learning of transfer functions," IEEE Access, vol. 9, pp. 

15796-15809, 2021.  https://doi.org/10.1109/ACCESS.2021.3051411 

[88] N. C. Ndung’u, "‘Rapid assessment of pesticide residues in fruits and vegetables using machine learning assisted diffuse 

reflectance spectroscopy," Ph.D. Dissertation, University of Nairobi, 2021.  

[89] Z. Chen, F. Gholizadeh Nouri, and M. Maqbool, "Monitoring mango fruit ripening after harvest using electronic nose 

(zNose™) technique," presented at the International Conference on Postharvest and Quality Management of 

Horticultural Crops, University of Nottingham Malaysia Campus, Semenyih, Malaysia, 2018.  

[90] G. Zhao et al., "Application progress of UAV-LARS in identification of crop diseases and pests," Agronomy, vol. 13, no. 9, 

p. 2232, 2023.  https://doi.org/10.3390/agronomy13092232 

[91] E. Puertas, G. De‐Las‐Heras, J. Fernández‐Andrés, and J. Sánchez‐Soriano, "Dataset: Roundabout aerial images for 

vehicle detection," Data, vol. 7, no. 4, p. 47, 2022.  https://doi.org/10.3390/data7040047 

[92] J. Gąsienica-Józkowy, M. Knapik, and B. Cyganek, Aerial dataset of floating objects (AFO). Kraków, Poland: AGH 

University of Science and Technology, 2021.  

[93] T. K. Behera, S. K. Bakshi, and N. Sa, Aerial road segmentation dataset for UAV imagery. Burla, India: VeDaS Lab, Veer 

Surendra Sai University of Technology, 2023.  

[94] D. Du, The unmanned aerial vehicle benchmark: Object detection and tracking. China: Northwestern Polytechnical University 

& Chinese Academy of Sciences, 2019.  

https://doi.org/10.1109/ACCESS.2020.3009385
https://doi.org/10.1016/j.micron.2023.103520
https://doi.org/10.3390/computers13120336
https://doi.org/10.1016/j.cie.2018.02.028
https://doi.org/10.1109/TKDE.2018.2833443
https://doi.org/10.3390/en17051142
https://doi.org/10.1109/TPWRS.2022.3223166
https://doi.org/10.3390/en17020516
https://doi.org/10.1109/ACCESS.2021.3051411
https://doi.org/10.3390/agronomy13092232
https://doi.org/10.3390/data7040047


Journal of Asian Scientific Research, 2025, 15(3): 395-419 

 

 
419 

© 2025 AESS Publications. All Rights Reserved. 

[95] D. Božić-Štulić, Ž. Marušić, and S. Gotovac, Heridal: Aerial search-and-rescue dataset for person detection in difficult terrain. 

Split, Croatia: University of Split, 2021.  

[96] I. Nigam, C. Huang, and D. Ramanan, Aeroscapes: Aerial semantic segmentation dataset. Pittsburgh, PA, USA: Carnegie 

Mellon University, 2018.  

[97] A. Robicquet, A. Sadeghian, A. Alahi, and S. Savarese, Stanford drone dataset (SDD). Stanford, CA, USA: Stanford 

University, 2016.  

[98] M. H. Hsieh, Y. L. Lin, and W. H. Hsu, Carpk: A benchmark for counting cars in parking lots in aerial images. Taipei, Taiwan: 

Academia Sinica, 2017.  

[99] M. Barekatain et al., "Okutama-action: An aerial view video dataset for concurrent human action detection," in Proceedings 

of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. IEEE, 2017, pp. 28–35.  

[100] S. Sambolek and M. Ivašić-Kos, Sard: A drone-based dataset for search and rescue person detection. Rijeka, Croatia: University 

of Rijeka, 2021  

[101] M. Mueller, N. Smith, and B. Ghanem, Uav123: A benchmark for UAV-based visual tracking. Thuwal, Saudi Arabia: King 

Abdullah University of Science and Technology (KAUST), 2016.  

[102] H. Shi, W. Yang, D. Chen, and M. Wang, "ASG-YOLOv5: Improved YOLOv5 unmanned aerial vehicle remote sensing 

aerial images scenario for small object detection based on attention and spatial gating," Plos One, vol. 19, no. 6, p. 

e0298698, 2024.  https://doi.org/10.1371/journal.pone.0298698 

[103] M. Buda, A. Maki, and M. A. Mazurowski, "A systematic study of the class imbalance problem in convolutional neural 

networks," Neural Networks, vol. 106, pp. 249-259, 2018.  https://doi.org/10.1016/j.neunet.2018.07.011 

[104] L. Wang, Y. Cheng, B. Jiang, Y. Zhang, J. Zhu, and X. Tan, "Adaptability study of an unmanned aerial vehicle actuator 

fault detection model for different task scenarios," Drones, vol. 9, no. 5, p. 360, 2025.  

https://doi.org/10.3390/drones9050360 

[105] X. Huang et al., "Federated knowledge distillation for enhanced insulator defect detection in resource‐constrained 

environments," IET Computer Vision, vol. 18, no. 8, pp. 1072-1086, 2024.  https://doi.org/10.1049/cvi2.12290 

[106] J. Liu, Z. Zhang, J. Chen, and Y. Li, "Insulator fault detection using deep learning: A review of challenges and techniques," 

IEEE Access, vol. 9, pp. 123456–123469, 2021.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Views and opinions expressed in this article are the views and opinions of the author(s), Journal of Asian Scientific Research shall not be responsible or answerable 
for any loss, damage or liability etc. caused in relation to/arising out of the use of the content. 

 

https://doi.org/10.1371/journal.pone.0298698
https://doi.org/10.1016/j.neunet.2018.07.011
https://doi.org/10.3390/drones9050360
https://doi.org/10.1049/cvi2.12290

