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This study presents EATS-MEC an intelligent MEC framework aimed at optimizing 
energy-aware task offloading and resource scheduling in ultra-dense network 
environments. The objective is to improve energy efficiency, scalability, and latency 
compliance under heterogeneous and mobile edge conditions. EATS-MEC integrates 
Deep Reinforcement Learning (DRL) for real-time task allocation and a lightweight 
blockchain module to ensure secure, decentralized execution across edge, fog, and cloud 
layers. Unlike classical models such as Deep Q-Networks (DQN) and Genetic Algorithms 
(GA), EATS-MEC adaptively responds to real-time network and mobility feedback to 
determine the optimal execution location for each task. Simulations demonstrate that 
EATS-MEC reduces peak energy consumption by 32%, extends device battery life by up 
to 20 hours, and achieves a task success rate of 88.3% under stringent deadline 
constraints. The framework shows superior performance in mobility-aware energy usage 
and exhibits near-sublinear energy scaling behavior with increasing device density, 
maintaining high task throughput even with over 100,000 concurrent tasks. Results 
indicate that EATS-MEC outperforms existing baselines in energy-latency trade-offs 
and operates close to the Pareto frontier. Due to its robust, secure, and adaptive nature, 
EATS-MEC is highly suitable for deployment in real-world smart city infrastructures, 
healthcare IoT, and latency-sensitive industrial applications. 
 

Contribution/ Originality: This study contributes to the existing literature on energy-aware task offloading in 

MEC. It uses a new estimation methodology integrating DRL and blockchain. The study introduces a new formula 

for joint energy-latency optimization. It is one of the few studies that have investigated scalability with over 100,000 

tasks. 

 

1. INTRODUCTION 

With the rapid rise of mobile devices and IoT applications, mobile networks are expected to carry 77 percent of 

global IP traffic by 2027 [1-3]. The energy-efficient, low-latency computing solution that has been in demand is 

especially relevant as growth occurs in autonomous vehicles, healthcare IoT, and augmented reality. To address these 

challenges, Mobile Edge Computing (MEC) [4, 5] shifts computational workloads across three levels of 

decentralization: the cloud layer, which handles heavy-duty tasks and manages global scheduling; the fog layer, 

responsible for local computation to meet latency requirements; and the edge layer, which performs real-time tasks 

near data sources [6-8]. However, most existing task offloading strategies fail to optimize instantaneous power 

consumption, particularly in dynamic network environments. For example, static offloading policies waste up to 40% 

of energy because of outdated network state assumptions, heterogeneous device capabilities, and security 

vulnerabilities [9-11]. It puts forth these limitations as proof that the existing technologies will not be able to meet 
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the challenges of energy efficiency, real-time adaptability, and scalability with the coming of 5G/6G networks and 

ultra-dense IoT ecosystems [12, 13]. 

Although there are efforts to improve energy-aware task offloading in Mobile Edge Computing (MEC), the 

current models are unable to achieve the desired trade-off between energy efficiency, real-time adaptability, and 

security in a dynamic multi-tier environment [14]. Traditional static offloading approaches [15] are not flexible, and 

heuristic-based approaches [16] would fail to work in fluctuating network environments. Energy-efficient AI-driven 

models [6, 17] are based on energy efficiency optimization but do not address the security vulnerabilities of multi-

tier collaborative offloading [18]. Furthermore, current frameworks generalize uniform capabilities of devices, 

manifesting energy inequality in IoT device ecosystems [19]. However, most models are not designed to be scalable 

for 5G/6G ultra-dense networks [20]. Therefore, this research proposes a new framework, EATS-MEC, which 

combines DRL for adaptive task scheduling and blockchain based on decentralization and security. It not only 

protects energy-efficient offloading but also prevents unauthorized access and improves scalability in MEC 

environments, aiming to make MEC environments more secure, resilient, and optimized for next-generation 

networks. 

 

1.1. Energy-Efficient Task Offloading Optimization in MEC 

To perform energy-aware task offloading in MEC, an advanced optimization framework for computing resource 

assignment is required to minimize power consumption while satisfying computational performance. The problem 

involves dynamically deciding whether to execute tasks locally or offload them to edge, fog, or cloud layers, 

considering constraints related to energy, network variation, and task dependencies. 

Let 𝒯 be the set of all tasks, 𝐸𝑖 the energy consumption for executing task 𝑖, 𝐶𝑖 the computational complexity, 

and 𝐷𝑖  the deadline constraint. Define 𝑥𝑖 as a binary offloading decision variable and 𝑓𝑖 as the allocated CPU frequency 

for task execution. 

min ∑ [𝑥𝑖 (
𝐶𝑖

𝑓𝑖
𝑃𝑒𝑑𝑔𝑒) + (1 − 𝑥𝑖) (

𝐶𝑖

𝑓𝑐𝑙𝑜𝑢𝑑
𝑃𝑐𝑙𝑜𝑢𝑑)]𝑖∈𝒯       (1) 

Subject to: 

𝑥𝑖 ∈ {0,1}, ∀𝑖 ∈ 𝒯          (2) 

𝑓𝑖 ≥ 𝑓𝑚𝑖𝑛 , 𝑓𝑖 ≤ 𝑓𝑚𝑎𝑥 , ∀𝑖 ∈ 𝒯     (3) 

∑ (𝑥𝑖𝐶𝑖)𝑖∈𝒯 ≤ 𝑅𝑒𝑑𝑔𝑒 , ∑ ((1 − 𝑥𝑖)𝐶𝑖)𝑖∈𝒯 ≤ 𝑅𝑐𝑙𝑜𝑢𝑑      (4) 

𝐷𝑖 ≥
𝐶𝑖

𝑓𝑖
+

𝑆𝑖

𝐵𝑖
, ∀𝑖 ∈ 𝒯     (5) 

Where 𝑃𝑒𝑑𝑔𝑒  and 𝑃𝑐𝑙𝑜𝑢𝑑  denote the power consumption per computational cycle for edge and cloud computing, 

respectively, 𝑆𝑖 is the data size of task 𝑖, and 𝐵𝑖  is the bandwidth available for task transmission. 

Similarly, this formulation solves the problem of task offloading to minimize energy consumption while using 

dynamic task allocation, frequency scaling of the CPU, and constraints on the network bandwidth [21, 22]. The 

frequency scaling and offloading decisions, taken together with the objective function, ensure energy efficiency subject 

to the constraint, which guarantees computational and network resource feasibility. 

 

1.2. Latency-Constrained and Scalable Task Scheduling in MEC 

The scheduling of tasks in MEC is not only important as it must provide minimum latency but also minimize 

network congestion, computational constraints, and system scalability. The crucial problem is to devise a sound 

scheduling algorithm when there are heterogeneous computational nodes and stochastic task inputs [23, 24]. 

Let 𝒯 represent the task set, 𝐿𝑖 be the latency of task 𝑖, 𝑃𝑖  the priority weight, and 𝑅𝑖 the allocated resources. 

min ∑ 𝑃𝑖𝑖∈𝒯 [
𝐿𝑖

𝑅𝑖
+ 𝛼 ⋅ 𝑒−𝛽⋅𝑥𝑖]     (6) 
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Subject to: 

𝐿𝑖 ≤ 𝐿𝑚𝑎𝑥 , ∀𝑖 ∈ 𝒯     (7) 

𝑅𝑖𝑥𝑖 ≤ 𝑅𝑒𝑑𝑔𝑒 + 𝑅𝑓𝑜𝑔 + 𝑅𝑐𝑙𝑜𝑢𝑑 , ∀𝑖 ∈ 𝒯     (8) 

∑ 𝑥𝑖𝑖∈𝒯 ≤ 𝑁𝑚𝑎𝑥 , ∑
𝐿𝑖

𝑃𝑖
𝑖∈𝒯 ≤ 𝜆𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑      (9) 

∑ 𝑒−𝛾⋅𝐿𝑖
𝑖∈𝒯 ≥ 𝛿, ∀𝑖 ∈ 𝒯        (10) 

Where 𝛼, 𝛽, 𝛾, 𝛿 are system-defined parameters controlling latency sensitivity and task distribution constraints, 

ensuring an adaptive and balanced task allocation. 

The formulation here is to minimize latency while maintaining system scalability. The exponential latency 

scaling-based objective function dynamically balances the priority of the tasks, and the constraint handles the 

computational resources, ensuring that congestion limits are not exceeded. The result is that real-time processing 

and scalability are kept efficient. 

This research addresses key questions such as: 

How can task offloading in dynamic MEC environments be made both energy-efficient and latency-aware? 

What role can deep reinforcement learning and blockchain integration play in optimizing secure workload 

distribution in ultra-dense IoT networks? 

Can an adaptive, mobility-aware framework outperform traditional offloading models in terms of energy-latency 

trade-off and scalability? 

To answer these questions, the study proposes the EATS-MEC framework, formulates energy-latency 

optimization objectives, designs a tri-layer MEC architecture with RL-based decision-making, and evaluates its 

performance through comprehensive simulations compared to DQN and GA baselines. 

EATS-MEC integrates mobility-aware adaptability, a secure framework, and resolves energy-latency tradeoffs 

in dynamic MEC environments to develop EATS-MEC, a secure and energy-efficient task offloading framework. 

To develop EATS-MEC, a hybrid AI-blockchain model that enables secure and adaptive task offloading in MEC 

while minimizing energy consumption. 

To design mobility-aware scheduling algorithms using deep learning to dynamically predict and adapt to 

network fluctuations for energy-efficient task execution. 

To optimize energy-latency trade-offs by integrating deep reinforcement learning techniques to enhance resource 

allocation in MEC with 5G/6G support. 

To validate the scalability of EATS-MEC under ultra-dense IoT workloads, demonstrating real-time processing 

of 100,000+ tasks with minimal performance degradation. 

As mentioned above, this research integrates AI-driven adaptability with blockchain security to provide 

scalability, energy efficiency, and optimized real-time performance for next-generation networks. 

Hybrid AI-blockchain model: Plugin to DRL-based scheduling is EATS-MEC, where scheduling is integrated 

with blockchain authentication for secure, decentralized, and adaptive task offloading. 

Mobility-aware adaptive scheduling: Mobility prediction based on LSTM reduces energy waste by 30% and 

improves network adaptability in dynamic environments. 

Energy-latency optimization framework: It has been shown that EATS-MEC reduces the energy-delay product 

(EDP) by 45% compared to state-of-the-art offloading techniques [25]. 

5G-enabled scalability: It shows a 60% improvement in task speed and supports more than 100,000 simultaneous 

tasks in ultra-dense MEC environments. 

The rest of the paper is structured as follows: Literature Review, which investigates the existing studies on 

energy-aware task offloading and MEC optimization strategies. The Methodology section describes proposed 

mathematical models, optimization techniques, and system design. Experimental evaluations, comparative analysis, 
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and performance metrics insights are provided in the Results and Discussions. The Conclusion summarizes key 

findings, limitations, and future research directions. 

 

2. LITERATURE REVIEW 

Consequently, Mobile Edge Computing (MEC) has become the paradigm for providing computational resources 

next to mobile devices to reduce latency and enhance energy efficiency. This has led to an increasing demand for such 

computationally intensive applications, which call for intelligent task offloading mechanisms to alleviate processing 

loads among mobile devices, edge servers, fog nodes, and the cloud. The task offloading considers energy awareness 

and optimizes the computation task assignment to reduce power consumption with the aim of satisfying performance 

and low latency constraints. Liu et al. [26] point out that considering offloading decisions for delay-sensitive tasks 

is crucial to reduce energy consumption by up to 35%. Zhao and Lu [17] and Mondal et al. [27] also propose a deep 

DQN method for task offloading based on medical mobile devices, achieving 42% power saving but with the 

computational efficiency still very high. The model was effective in real time with moderate deviation from accuracy, 

processing 500 inference tasks per second. Sada et al. [25] also emphasize that energy saving, in addition to energy 

reduction through selective inference task offloading, can achieve an additional 20% for real-time applications, making 

it a viable technique for healthcare and IoT systems.  

Task execution is optimized by MEC through multiple layers that collectively facilitate this enhancement. Jiang 

et al. [28] highlight that cloud resources serve as a fallback when there is no power available for computations, with 

the cloud layer responsible for more complex calculations and long-term data storage. Beneath the fog layer, an 

intermediary provides local processing to meet the requirements of latency-sensitive applications. Mehrabi et al. [29] 

propose a cooperative edge offloading model that reduces dependency on the cloud by 30%, while also decreasing 

transmission costs and energy consumption. Xiong et al. [30] demonstrate that the edge layer can enhance 

computational efficiency by 27% in terms of energy efficiency using an energy-aware algorithm. Their findings 

indicate that for critical applications, task execution times can be as low as 10 milliseconds, compared to previously 

reported times of 200 microseconds. Furthermore, Mondal et al. [27] note that intelligent edge offloading strategies 

can support up to 50,000 simultaneous task executions without performance degradation, thereby improving the 

scalability of MEC solutions.    

Static and dynamic offloading methods can be applied in task offloading strategies in MEC. Static methods define 

where tasks are to be executed 'up front,' while the dynamic ones adjust to real-time conditions. Hao et al. [15] have 

conducted research indicating that static methods are inefficient for resource allocation, and dynamic offloading can 

increase system utilization by 33%. Bi et al. [16] explore heuristic-based approaches such as Genetic Algorithms and 

Particle Swarm Optimization, which show up to a 22% reduction in overall system energy consumption. Contrary to 

the common belief that reinforcement learning and other AI-based models are difficult to apply to real-world 

problems, these AI models, especially reinforcement learning techniques, are becoming increasingly popular. Zhao 

and Lu [17] find that their DQN-based model reduces energy usage by 40% without significant deterioration of task 

execution efficiency. Datasets of over 100,000 tasks could be handled without significant degradation in decision-

making performance using their model. However, Jiang et al. [28] and  Alharbi et al. [18] propose that challenges 

within MEC environments include stochastic network conditions, varying capabilities, and security concerns. 

Furthermore, Chen and Liu [31]; Chen et al. [3];  Chen et al. [32] and Cheng et al. [4] also propose a dynamic task 

offloading mechanism, which, together with NOMA, can reduce latency by 50% and achieve energy savings of 45%. 

To achieve energy-efficient energy consumption, power consumption models, AI-based optimization, and trade-

offs between latency and energy efficiency have been proposed. Li et al. [33] and Li et al. [10] develop energy-

reducing scheduling frameworks that decrease energy consumption without compromising performance and achieve 

a 38% improvement in energy efficiency. Jiao et al. [6] present deep reinforcement learning (DRL) models that 

integrate energy usage to reduce instantaneous power consumption by 25 percent. In Mobile Edge Computing 
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(MEC), Chen et al. [32] demonstrate that a trade-off exists between latency and energy consumption and introduce 

a novel scheduler that results in a 40% improvement in energy efficiency. This framework is scalable to resource 

allocation for workloads up to 1.5 terabytes per day. Additionally, Almuseelem [34] presents security-aware task 

offloading models designed to ensure data encryption during transfer and provide sufficient authentication with 

minimal computational overhead.  

The efficacy of task offloading strategies is only determined through performance evaluation. Power 

consumption, execution latency, throughput, and energy delay product (EDP) are commonly used benchmarks. 

Selective inference task offloading can reduce EDP by 32% as reported in Sada et al. [25]. Silva et al. [35] observe 

that AI-driven models have 30% superiority in energy saving over conventional heuristics. They tested offloading 

strategies on more than 10,000 independent tasks with an independent benchmark and consistently chose the AI-

based approach over others. Nevertheless, Almuseelem [34] and Mondal et al. [27] point out that 5G/6G 

technologies and security-aware task offloading strategies are required for scalability and security. On the other hand, 

Tripathy and Sahoo [36] propose fog-based offloading strategies for enhancing task allocation efficiency, which can 

lead to nearly 55% reduction in network congestion compared to regular models. 

However, there are still several open challenges. Emerging studies by Kim et al. [37] suggest that current models 

do not scale with increasing network complexity. It is expected that with the integration of 5G/6G technologies, the 

efficiency of task offloading will improve, as indicated by Min et al. [20], which predicts a 45% improvement in task 

execution speed with next-generation networks. As discussed by Li et al. [33], collaborative task offloading models 

have security vulnerabilities; therefore, encryption and authentication techniques need to be robust to prevent 

unauthorized access to data. Their security system processes over 1 million authentication requests per day without 

being compromised. In addition, Zaman et al. [38] propose that mobility-aware computational offloading frameworks 

and the benefits of mobility predictions for improving energy efficiency are demonstrated feasibly in MEC by 60. 

This systematic literature review is focused on recent advancements in energy-aware task offloading in MEC. 

AI-based and heuristic approach methods have improved efficiency to a great extent, but much work remains on 

responsiveness over real-time, security, as well as large-scale deployment issues. Future research should aim to 

develop hybrid models of MEC integrating AI, 6G, and blockchain technologies to enhance the scalability and 

security of MEC environments. Furthermore, they should propose mobility-aware and federated learning-based 

approaches for devising real-time, secure, and adaptive energy-efficient task offloading strategies for MEC systems. 

 

Table 1. Comparison of energy-aware task offloading studies. 

Study Methodology Key findings Energy 
savings 

Latency 
improvement 

Scalability 

Liu, et al. 
[26] 

Delay-sensitive task 
offloading 

Optimized decision-
making for task 
allocation. 

35% 
reduction 

Not specified Improved resource 
utilization 

Zhao and 
Lu [17] 

DQN for medical 
mobile devices 

Enhanced power 
efficiency for 
inference tasks. 

42% 
reduction 

Real-time 
effectiveness 

Processed 500 
tasks/sec 

Mehrabi, 
et al. [29] 

Cooperative edge 
offloading 

Reduced cloud 
dependency and 
transmission costs 

30% 
reduction 

Improved 
processing speed 

Supports edge and 
fog layers 

Xiong, et 
al. [30] 

Energy-aware 
algorithm for edge 
computing 

Enhanced real-time 
processing near 
data sources 

27% 
reduction 

Task execution 
time of 10ms 

Optimized for 
critical applications 

Chen and 
Liu [31] 

NOMA-aided 
dynamic task 
offloading 

Balanced latency 
and energy 
efficiency 

45% 
reduction 

50% latency 
improvement 

Supports 1.5TB 
workload/day 

Mondal, et 
al. [39] 

Intelligent edge 
offloading 
strategies 

Scalable solution 
for simultaneous 
task execution 

Not 
specified 

50% execution 
speed 
improvement 

Handles 50,000 
tasks without 
degradation. 
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The comparison of significant studies on energy-aware task offloading in MEC is provided in Table 1 concerning 

methodologies, key findings, energy savings, latency improvements, and scalability aspects. 

 

3. METHODOLOGY 

The proposed EATS-MEC framework is designed to support task placement decisions in mobile edge computing 

applications where multiple computational components must be assigned optimally across nearby processing nodes. 

It leverages a hybrid optimization strategy that integrates deep reinforcement learning (DRL) for adaptive, real-time 

scheduling with convex programming for efficient resource allocation under network and energy constraints. The 

system model comprises 𝑁 mobile devices 𝒰 = {𝑢1, . . . , 𝑢𝑁}s, 𝑀 edge servers ℰ = {𝑒1, . . . , 𝑒𝑀}, and a cloud layer 𝒞, 

forming a hierarchical MEC architecture. 

 

 
Figure 1. Advanced MEC architecture for energy-aware task offloading. 

 

Figure 1 illustrates the architecture of the proposed multi-layer MEC system for energy-aware task offloading. 

The architecture consists of three hierarchical layers, namely Cloud Computing, Fog Computing, and Edge 

Computing, that jointly optimize computational efficiency and reduce power consumption. Dynamic task scheduling 

for offloading is also based on reinforcement learning (RL) optimization, and the architecture provides blockchain 

security to guarantee the secure and verifiable offloading decisions. 

The Cloud Computing Layer at the top layer offers high processing power with high latency and high energy 

consumption caused by transmission delays of data. Typically, this layer is responsible for executing resource-

intensive and complex heavy-duty tasks. On the lower layer, the Blockchain Security Module ensures data integrity 

and security between various computational layers under the cloud. 

Fog Node 1 and Fog Node 2 are the middle layer of Fog Nodes that serve as the intermediate processing units 

between the edge and cloud layers. The nodes help reduce cloud dependency by performing computational workloads 

that require moderate processing power and have low latency interactions with mobile users. 

Here, there are two Edge Servers, i.e., Edge Server 1 and Edge Server 2, which serve as the bottom layer and 

offer real-time processing and time-sensitive tasks near mobile devices. Task execution delays and energy 

consumption are greatly reduced when tasks are executed on edge servers as opposed to cloud-based processing. 

Mobile devices (Mobile Device 1 and Mobile Device 2) at the user level are task generators that continuously 

offload computational tasks to edge or fog layers depending on network conditions, power constraints, and 

computational requirements. 
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With this, we position a central decision-making mechanism, which we refer to as the Task Offloading Decision 

(RL-based), that dynamically decides the optimal offloading strategy. A reinforcement learning (RL)-based decision 

module is developed to analyze online resource-based factors such as network bandwidth, task complexity, and energy 

constraints. It allows task execution to be adaptive and energy-efficient by choosing the best computational layer to 

process: edge, fog, or cloud. 

In Figure 1, directional arrows indicate the task offloading flow in different layers. The task requests are initiated 

by mobile devices and subsequently processed at the appropriate computational layer according to real-time network 

conditions. The system’s performance is constantly optimized in an energy-efficient, constant-latency-aware manner 

in an RL-based optimization module that monitors system performance and schedules tasks accordingly. 

The proposed architecture integrates power consumption, task execution, and latency minimization, providing 

optimal power utilization through AI-driven adaptation, task offloading, blockchain security, and hierarchical 

computing layers. This approach achieves scalability and robustness for the proposed architecture in next-generation 

5G/6G-enabled MEC environments. 

 

3.1. System Model 

The tri-layer computational architecture is characterized by: 

Network Model: Let 𝐺(𝑡) = (𝒱, ℒ(𝑡)) represent the time-varying network graph where 𝒱 = 𝒰 ∪ ℰ ∪ 𝒞. The 

link capacity between nodes 𝑖, 𝑗 ∈ 𝒱 follows: 

𝐵𝑖𝑗(𝑡) = 𝑊𝑖𝑗log2 (1 +
𝑃𝑖(𝑡)ℎ𝑖𝑗(𝑡)

𝜎2+𝐼𝑖𝑗(𝑡)
)    (11) 

Where 𝑊𝑖𝑗 is bandwidth, 𝑃𝑖  transmit power, ℎ𝑖𝑗 channel gain, 𝜎2 noise variance, and 𝐼𝑖𝑗 interference. 

Task Model: Each task 𝜏𝑘 = (𝑠𝑘 , 𝑐𝑘, 𝑑𝑘 , 𝜆𝑘) is characterized by input size 𝑠𝑘 , computational demand 𝑐𝑘 , deadline 

𝑑𝑘 , and priority weight 𝜆𝑘 ∈ [0,1]. 

Energy Model: The energy consumption for processing task 𝜏𝑘 at layer 𝑙 ∈ {local,edge,cloud} is: 

𝐸𝑙(𝜏𝑘) = 𝛿𝑙𝑃𝑙
𝑐𝑜𝑚𝑝

𝑐𝑘
⏟

Computation

+ (1 − 𝛿𝑙) (
𝑃𝑡𝑥𝑠𝑘

𝐵𝑙
+

𝑃𝑟𝑥𝑠𝑘

𝐵𝑙
)

⏟

Transmission

    (12) 

Where 𝛿𝑙 is the offloading decision variable, 𝑃𝑙
𝑐𝑜𝑚𝑝

 the computational power, and 𝐵𝑙  the available bandwidth. 

 

3.2. Problem Formulation 

We formulate a joint optimization problem that minimizes both energy consumption and latency. 

min
𝛅,𝐟,𝐩

∑ [𝛼𝐸(𝜏𝑘) + 𝛽𝑇(𝜏𝑘)]𝐾
𝑘=1 + 𝛾 ∥ 𝛅 ∥0    (13) 

Subject to: 

𝐶1: ∑ 𝛿𝑘𝑙
𝐾
𝑘=1 𝑐𝑘 ≤ 𝑓𝑙

max ∀𝑙 ∈ ℰ ∪ 𝒞       (14) 

𝐶2: ∑ 𝛿𝑘𝑙
𝑀
𝑙=1 ≤ 1 ∀𝑘 ∈ {1, . . . , 𝐾}          (15) 

𝐶3: 𝑇𝑘
total =

𝑠𝑘

𝐵𝑢𝑙
+

𝑐𝑘

𝑓𝑙
+

𝑠𝑘

𝐵𝑑𝑙
≤ 𝑑𝑘             (16) 

𝐶4: 𝑃𝑖
𝑡𝑥 ≤ 𝑃max , ∀𝑖 ∈ 𝒰                    (17) 

𝐶5: 𝛿𝑘𝑙 ∈ {0,1}, 𝑓𝑙 ≥ 𝑓min                  (18) 

Where δ is the offloading decision matrix, f the computational resource allocation vector, and p the transmission 

power vector. 

 

3.3. Hybrid Optimization Framework 

We decompose the NP-hard problem into two subproblems using Lagrangian duality: 
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𝐿(𝛿, 𝑓, 𝑝, µ, 𝜈) =  𝑂𝑏𝑗. (13) + ∑ µ𝑖𝑀
𝑖=1 (𝐶1) + ∑ 𝜈𝑘𝐾

𝑘=1 (𝐶3)           (19) 

 

3.3.1. Reinforcement Learning Formulation 

Model the problem as a Markov Decision Process (MDP) with. 

State Space: 

𝒮 = {E(𝑡), Q(𝑡), H(𝑡), L(𝑡) }     (20) 

Where E is energy states, Q queue states, H channel states, and L load states. 

Action Space: 

𝒜 = {𝛅(𝑡), 𝐟(𝑡), 𝐩(𝑡)} ∈ {0,1}𝑀 × ℝ+
𝑀 × ℝ+

𝑀      (21) 

Reward Function: 

𝑟(𝑡) =
1

𝑁
∑ [𝛼

𝐸𝑖
max−𝐸𝑖(𝑡)

𝐸𝑖
max + 𝛽

𝑇𝑖
max−𝑇𝑖(𝑡)

𝑇𝑖
max ]𝑁

𝑖=1 − 𝛾 ∥ 𝛅(𝑡) − 𝛅(𝑡 − 1) ∥1     (22) 

3.3.2. Deep Dueling Double DQN Architecture 

The Q-network estimates state-action values through. 

𝑄(𝐬, 𝐚; 𝜃) = 𝑉(𝐬; 𝜃𝑉) + 𝐴(𝐬, 𝐚; 𝜃𝐴) −
1

|𝒜|
∑ 𝐴𝐚′ (𝐬, 𝐚′; 𝜃𝐴)      (23) 

With target network update: 

𝜃− ← 𝜏𝜃 + (1 − 𝜏)𝜃− where𝜏 ≪ 1     (24) 

 

3.4. Heuristic Optimization Layer 

The RL actions are refined through constrained simulated annealing: 

Algorithm 1 Hybrid RL-Heuristic Optimization 

1: Initialize temperature T ←  T₀, solution set a 
2: While the termination condition is not met, do. 

3: Generate neighbor solution 𝑎′ =  𝑎 +  𝒩(0, 𝜎2) 

4: Calculate 𝛥E =  J(𝑎′) −  J(𝑎) 

5: if 𝛥E <  0 or exp(−
𝛥E

𝑇
) >  𝑟 𝑎𝑛𝑑(0, 1) then 

6: 𝑎 ←  𝑎′ 
7: End if 

8: T ←  αT  ▹ Temperature decay 

9: End while 

10:   Return a ⁎ =  arg min J(a) 

 

3.5. Energy-Latency Tradeoff Analysis 

Using fractional programming, we derive the Pareto optimal frontier. 

∂𝐸

∂𝑇
= −

𝛽

𝛼
(∑

∂𝐸𝑘

∂𝛿𝑘

𝐾
𝑘=1 ) (∑

∂𝑇𝑘

∂𝛿𝑘

𝐾
𝑘=1 )

−1

     (25) 

The stability condition for the queuing system is given by. 

∑ 𝜆𝑘
𝐾
𝑘=1 𝔼[𝑐𝑘] < ∑ 𝑓𝑙

max𝑀
𝑙=1 + 𝑓cloud        (26) 

 

3.6. Convergence Analysis 

The hybrid algorithm converges almost surely when. 

∑ 𝜂𝑡
∞
𝑡=1 = ∞ and  ∑ 𝜂𝑡

2∞
𝑡=1 < ∞       (27) 

Where 𝜂𝑡 is the learning rate schedule satisfying. 

𝜂𝑡 =
𝜂0

1+𝜖𝑡𝛾 ,  𝛾 ∈ (0.5,1]      (28) 
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4. RESULTS AND DISCUSSION 

In this section, a comprehensive analysis of the experimental results for the proposed EATS-MEC system under 

the perspectives of energy efficiency and computational performance is presented and compared with DQN and GA-

based optimization frameworks. The results are displayed using various figures and tables that illustrate different 

aspects, including energy consumption, scalability, mobility-aware consumption, task completion rates, and battery 

efficiency. 

 
4.1. Real-Time Energy Consumption Comparison 

As shown in Figure 2, three task offloading approaches, EATS-MEC, DQN, GA, are plotted against the 

instantaneous power consumption over a period of 24 hours of continuous operation. Segments of the time axis are 

shown to represent typical mobile edge computing workload intervals with changes in energy demand over a day. 

For this reason, the EATS-MEC method shows better energy optimization compared to the other methods by keeping 

the power profile constant and smooth, with a mean consumption of approximately 0.72 W over the whole day. In 

particular, DQN and GA experience large power spikes (>1.4 W) during the peak load period (hours 8 to 11), while 

EATS-MEC keeps a power below 0.9 W, resulting in a reduction of the peak consumption of about 32%. 

Additionally, it is found that the network congestion interval from hours 16 to 19, is unstable for both DQN and 

GA curves, with power variations of up to 1.5 W and 1.3 W. However, EATS-MEC remains able to operate in an 

envelope that is optimized towards power management. The shaded region labeled. 

 

 
Figure 2. Real-time energy consumption comparison of EATS-MEC, DQN offloading, and GA optimization. The shaded regions indicate 
periods of peak load and network congestion, which influence instantaneous power demand. 

 

4.2. Energy-Latency Trade-Off 

A joint energy-latency probability density distribution for the EATS-MEC, DQN, and GA-based offloading 

strategies is given in Figure 3. With kernel density estimation (KDE) contour, the contours represent iso-probability 

regions to compare each model in terms of energy consumption and latency in dynamic edge computing contexts. 

The Pareto frontier line, represented by the theoretical bound 𝐸 ⋅ 𝐿 = 2 × 106  mJ⋅ms, defines the ideal trade-off 

zone—where both energy and latency are jointly optimized. The EATS-MEC method is positioned significantly 

closer to this frontier, achieving an average energy consumption of 𝜇𝐸 = 557.3 mJ and an average latency of 𝜇𝐿 =
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15.0 ms. In contrast, the DQN strategy consumes approximately 𝜇𝐸 = 908.1 mJ and 𝜇𝐿 = 24.9 ms, while GA 

performs even less efficiently, averaging 𝜇𝐸 = 1151.1 mJ and 𝜇𝐿 = 34.5 ms. 

QoS boundary constraints are also included in the figure, where the latencies are limited to 20 ms and energy 

budgets are restricted to 800 mJ. Compliance with real-time service requirements and energy efficiency policies is 

ensured by EATS-MEC as the only model that lies within both constraints. It is observed that DQN violates the 

energy limit, while GA overcomes both the latency and energy bounds, which indicates that GA’s optimization path 

is less efficient. 

In addition, statistically significant markers (𝑝 < 0.001) mark the high confidence regions where EATS-MEC 

significantly outperforms its counterparts. The correlation coefficients—𝜌EATS = −0.82∗∗∗, 𝜌DQN = −0.65∗∗, and 

𝜌GA = −0.48∗—demonstrate that EATS-MEC exhibits the strongest negative correlation between energy and 

latency, implying that as latency decreases, energy usage also becomes more efficient. 

The visualization generally shows that EATS-MEC trades off performance closer to the Pareto optimal boundary 

and operates in performance-safe zones. As it is highly suitable for delay-sensitive and energy-constrained 

applications in Mobile Edge Computing (MEC) environments. 

 

 
Figure 3. Joint energy-latency distribution: The probability density estimation of energy-latency relationships shows the efficiency of EATS-
MEC compared to other approaches. 

 

4.3. Task Completion Rate Under Deadlines 

For the varying deadline constraint ranging from 20 ms to 100 ms, the real-time task completion rates among 

three offloading strategies EATS-MEC, DQN, and GA are displayed in Figure 4. It is the plotted regression lines 

and shaded confidence intervals that make it clear, and clear on the side of EATS-MEC, that it excels at maintaining 

high task success rates, especially in tight time windows. For all the models, it is a negative slope, with only 

complexities observed in the magnitude of the decline in task completion as the deadline becomes tighter. 

EATS-MEC has a strong linear consistency of a regression slope 𝛽 = −0.80 ± 0.05, resulting in 𝑅2 = 0.98, 

showing a very stable and predictable performance. With 20 ms as the tightest deadline, EATS-MEC outperforms 

DQN by 13% (88.3% vs. 75.4%) and GA by 21.1% (88.3% vs. 67.2%). With increasing deadline to 40  ms and 60 ms, 
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EATS-MEC still has a success rate of 78.1% and 71.6%, while DQN and GA gradually drop to 65.2%, 65.2%, 55.8%, 

and 55.8%, respectively, 57.3%, and 48.2%. 

In real-time applications, the differences in these aspects can impact task failure or poor service, leading to missed 

deadlines. The QoS threshold (at 95%) and Service Level Objective (at 80%) of the figure are notably important 

reference lines. However, until 80 ms, EATS-MEC stays above the SLO line and never drops below 58.4% at 100 ms. 

In comparison, DQN and GA dip below both the QoS and SLO thresholds much earlier. 

The comparative data provided are given in Table 2 to supplement the visual regression analysis. The 

performance degradation under strict deadlines can be characterized by a steep regression slope of 𝛽 = −1.50 ± 0.12, 

and 𝑅2 = 0.94 using the GA based approach. While DQN is better than GA, it is still unstable at 𝛽 = −1.20 ± 0.08, 

𝑅2 = 0.96. Shown in the plot and the confidence intervals of each regression are the error bars that indicate the 

variability of EATS-MEC is still tightly controlled, thus making it more suitable for deadline-driven MEC scenarios. 

 

 
Figure 4. Real-time task completion under temporal constraints. EATS-MEC consistently outperforms other methods in meeting deadline 
constraints. 

 
Table 2. Real-time task completion under temporal constraints. EATS-MEC consistently outperforms other methods in meeting deadline 
constraints. 

Task deadline (ms) EATS-MEC (%) DQN (%) GA (%) 

20 88.3 75.4 67.2 
40 78.1 65.2 55.8 
60 71.6 57.3 48.2 
80 65.2 50.5 41.1 
100 58.4 44.3 35.7 

 

Overall, it is shown that the EATS-MEC strategy is robust to time-sensitive operational demands. The flatter 

regression curve and higher baseline completion rates indicate that it is able to adapt well to different workloads and 

thus is a preferable option for time-sensitive edge computing tasks. 

 

4.4. Scalability and Energy Consumption in Dense Networks 

Figure 5 shows log-log performance characterization of the energy consumption across the number of MEC 

devices in ultra-dense MEC environments, where EATS-MEC, DQN, and GA are presented. On a logarithmic x-axis 
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from 100 to 2000 devices, the corresponding system energy consumption is represented on a logarithmic y-axis in 

kilowatts (kW). 

EATS-MEC exhibits a nearly sublinear scalability trend with a growth complexity of 𝑂(𝑛1.02). This is inferred 

from its regression equation 𝑦̂EATS = 0.5 + 2 × 10−4𝑥, indicating that the energy cost increases very slightly with 

additional devices. In contrast, DQN scales with a higher computational burden of 𝑂(𝑛1.12) based on 𝑦̂DQN = 0.8 +

5 × 10−4𝑥, and GA demonstrates the steepest increase in energy demand, following 𝑂(𝑛1.25) with 𝑦̂GA = 1.2 +

8 × 10−4𝑥. These models were derived via curve-fitting of empirical energy measurements across the selected range 

of mobile nodes. 

Shaded regions of sublinear and superlinear scaling zones are also included in the visualization. Although EATS-

MEC handles device population growth in its profile within the scaling window, it remains within the sublinear zone. 

On the other hand, the DQN and GA models enter the superlinear region beyond 1000 connected nodes and generate 

exponential energy spikes that are unsustainable and will cause system instability. 

From a system-level perspective, this behavior demonstrates EATS-MEC’s ability to conserve energy in high 

load and high-density scenarios typical in smart city deployments or IoT-intensive edge environments. At the same 

scale, DQN reached approximately 1.3 kW, GA exceeded 2.0 kW, while EATS-MEC’s observed energy footprint is 

around 0.9 kW. EATS-MEC remains below 1.5 kW at 𝑁 = 2000, whereas DQN exceeds 2.1 kW and GA reaches 

3.0 kW. 

In addition, the right of Figure 5 shows a color-coded energy intensity bar that serves as a spectral reference for 

the estimation of the per-device energy usage. The gradient further indicates the lower per-device consumption of 

EATS-MEC in the system’s scaling. 

 

 
Figure 5. Energy scalability analysis in ultra-dense MEC networks. EATS-MEC demonstrates a near-sublinear scaling behavior. 

 

Finally, EATS-MEC is shown to possess superior scalability properties with small energy overhead, 

guaranteeing the long-term and energy-efficient feasibility and operation in future ultra-dense MEC infrastructure. 

Taking these findings into consideration, EATS-MEC is an excellent candidate for deployment into energy-sensitive 

scenarios such as disaster recovery, remote surveillance, and real-time edge analytics in a dense device environment. 

4.5. Battery Lifetime Optimization 

Table 3 provides a comprehensive comparison of both battery drain rates and battery lifetime predictions 

between three task offloading strategies employed in this work: EATS-MEC, DQN, and GA. It is assumed that the 

battery capacity of each mobile device is 5000 mAh. 
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Figure 6 and the dataset indicate that the most optimal energy profile is achieved by EATS-MEC, consuming 

only 0.5 mAh per task. This efficient usage translates to a 3000 mAh battery replacement threshold, providing 

approximately 80 hours of device uptime (Clause 1) at about 10,000 tasks. 

However, DQN has a higher energy demand of 0.8 mAh per task, which limits the number of tasks we can execute 

to only 6,250 (Clause 2), leading to a total battery life of only 60 hours. With a consumption rate of 1.2 mAh per task, 

GA is the least efficient (Clause 3), which limits the number of tasks to 4,166, resulting in a battery life of roughly 45 

hours. 

The figure further corroborates this result by showing the downward trend of battery levels with respect to task 

volume. For a longer span, the EATS-MEC curve stays above the warning zone (3000–4500 mAh) and critical zone 

(below 3000 mAh) boundaries more consistently than other strategies. The fact that EATS-MEC manages to 

conserve energy more efficiently (Clause 4) also means that it extends operational sustainability under identical 

workloads. 

Figure 6 is annotated with a +20 hours lifespan extension for EATS-MEC with respect to the baseline of GA. In 

mobile edge computing environments with low power supply, e.g., in remote sensors, disaster response drones, or 

battery-powered surveillance nodes, this benefit is significant (Clause 5). 

In addition, the use of confidence intervals in the figure indicates that EATS-MEC’s energy profile has high 

stability even under variable workload conditions, and that the broader uncertainty bounds of GA and DQN indicate 

inconsistent energy behavior arising from poor task scheduling or suboptimal resource allocation (Clause 6). 

We validate EATS-MEC both quantitatively and visually as the most practicable model to extend the battery 

life in MEC-enabled mobile systems and to ensure energy sustainability and reduce the frequency of device recharges 

or battery swaps in the field. 

 

 
Figure 6. Mobile device battery lifetime analysis showing the impact of MEC task offloading. 

 

The results of different models on battery drainage are shown in Table [Tab: Battery_Lifetime]. Compared to 

DQN and GA, EATS-MEC provides a +20-hour lifespan extension, and the battery health remains optimal for longer. 
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Table 3. Battery lifetime analysis (Total capacity = 5000 mAh). 

Model Drain rate (mAh/task) Tasks until replacement Battery lifespan (Hours) 

EATS-MEC 0.5 10000 80 
DQN 0.8 6250 60 
GA 1.2 4166 45 

 

4.6. Workload Distribution and Computational Efficiency 

Together Figure 7 and Table 4 show the efficiency of workload distribution among different computational 

layers (i.e., Edge, Fog, Cloud) under the three evaluated frameworks: EATS-MEC, DQN, and GA. Edge computing 

processes only 72% of EATS-MEC’s total workload and employs a more optimized hierarchical task distribution 

strategy. In comparison, DQN and GA utilize Edge resources for just 45% and 30% of their workloads, respectively, 

which is significantly better than their counterparts. EATS-MEC achieves a 27% improvement over DQN and a 42% 

improvement over GA, demonstrating that EATS-MEC’s ability to process in real-time is superior to DQN and GA 

due to its adaptive offloading mechanism and proximity-aware task scheduler. 

GA and DQN are less than EATS-MEC and have moderately higher Fog computing utilization (40% and 35%). 

The reason behind this is due to the fact that there is no intelligent prioritization of intermediate layer processing in 

the absence of intelligent prioritization. EATS-MEC efficiently utilizes the availability of resources and the sensitivity 

to latency to reduce dependence on the Fog layer. 

In particular, EATS-MEC reduces the computational burden on Cloud servers to 7% compared to 20% for DQN 

and 30% for GA. Cloud offloading is decreased by 13% to 23%, resulting in a significant reduction in data transmission 

overhead and round-trip latency, which in turn leads to higher responsiveness and lower energy costs. EATS-MEC 

achieves both energy savings and improvements in task turnaround time and bandwidth utilization by keeping 

computation closer to the user. 

 

 
Figure 7. Hierarchical workload allocation across edge, fog, and cloud layers. 

 

The workload allocation percentages across different computational layers are shown in Table 4. EATS-MEC 

improves edge performance (+23%) with a reduction of up to 13% in cloud usage. 

 

Table 4. Workload distribution comparison (%). 

Computational layer EATS-MEC DQN GA 

Edge 72 45 30 
Fog 25 35 40 
Cloud 7 20 30 



Journal of Asian Scientific Research, 2025, 15(3): 550-570 

 

 
564 

© 2025 AESS Publications. All Rights Reserved. 

All in all, the hierarchical offloading strategy based on EATS-MEC demonstrates the ability to fairly orchestrate 

resources, enable energy-aware computation at the edge, and minimize reliance on facilities with high-latency cloud 

infrastructures. It is consistent with modern MEC goals for distributed, decentralized computing in such constrained 

scenarios. 

 

4.7. Network-Aware Energy Efficiency 

Figure 8 shows the dynamic energy efficiency landscape of MEC systems with respect to two important network 

parameters: latency (𝐿) and bandwidth (𝐵). The composite energy efficiency index 𝜂 =
0.5𝐵+0.5(100−𝐿)

100
, balances 

throughput and delay characteristics to capture real-time performance (Clause 1). 

Visually, the network is divided into three zones: from red (low efficiency) to green (high efficiency). These are 

the Critical Zone (low bandwidth, high latency), the Warning Zone (moderate performance), and the High Efficiency 

Zone in the lower latency and higher bandwidth quadrant (Clause 2). 

Then, a white dashed line Optimal Efficiency Frontier draws the line to which energy efficiency peaks as the 

constraints of the system are taken into account. This line indicates the ideal balance in terms of bandwidth and 

latency, large enough such that the MEC system would be responsive and throughput would be high at the same time 

(Clause 3). 

The map is overlaid with the vector field that shows the direction in which systems should change their network 

conditions to head toward greater energy efficiency. As shown, the arrows always point to the high-efficiency zone; 

minimizing latency and maximizing bandwidth availability are critical (Clause 4). 

Additionally, the annotation of the Optimal Operating Region is close to 65 Mbps bandwidth and 25 ms latency, at 

which EATS-MEC showed the lowest energy consumption per computation unit. As this case is especially important 

for latency-sensitive applications such as real-time video analytics, AR/VR, and autonomous navigation (Clause 5), 

there is a need to prioritize low-priority flows. The performance isolines are shown as contour lines, whose smooth 

gradient in the EATS-MEC region confirms the stability and robustness of energy performance under slight 

variations of network parameters. Instead, the GA and DQN regions have steeper gradients due to network instability 

and inefficient offloading behavior (Clause 6), respectively. 

 

 
Figure 8. Network-aware energy efficiency topography. The high-efficiency zone corresponds to optimal bandwidth-latency conditions. 
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4.8. Energy Component Decomposition Analysis 

Figure 9 decomposes energy consumption across EATS-MEC, DQN, and GA-based offloading frameworks into 

three primary categories: computation, transmission, and idle energy. EATS-MEC uses only 45% of the energy 

budget for computation and suppresses idle energy consumption to less than 25%, which is significantly less than 

DQN (10%) and GA (15%). AI-optimized computation reduces resource wastage and enables effective task scheduling, 

contributing to this efficiency gain. For all methods, the transmission energy remains nearly constant, and the 

distribution of the total reflects that EATS-MEC adheres to industry standards for computation load (45%) and idle 

state minimization (25%). Additionally, we demonstrate that EATS-MEC is superior to GA in terms of idle energy 

efficiency by more than 150% and is more adaptable to dynamic workload environments. 

 

 
Figure 9. Energy component decomposition across MEC systems: Comparing computation, transmission, and Idle energy proportions 
for EATS-MEC, DQN, and GA strategies. 

 

4.9. Mobility-Aware Energy Consumption Analysis 

The energy consumption patterns of mobile edge computing models as a function of device mobility speed (km/h) 

are presented in Figure 10. This is done by segmentation of analysis into low (0–30 km/h), medium (30–80 km/h), 

and high mobility (80–120 km/h) regimes. DQN and GA show a higher energy increase with mobility of 0.005 and 

0.008 W/kmh, respectively, while EATS-MEC has an energy gradient (𝛽) of only 0.002 W/kmh, which is minimal 

considering mobility. And each of the models is robust to varying mobility; there are shaded confidence bands around 

each curve to illustrate this. Furthermore, EATS-MEC is able to keep energy consumption well below the QoS energy 

threshold and critical power limit in all speed intervals while maintaining energy consumption below these thresholds 

with DQN and GA. The behavior confirms that EATS-MEC yields good performance for mobile users in dynamic 

conditions and is most suitable for the extension of operational sustainability with limited performance degradation. 

The annotation "Optimal Mobility Range" indicates the area where EATS-MEC has the most balanced energy 

behavior and is especially suitable for real-time MEC applications. 
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Figure 10. Mobility-Aware energy consumption: Analysis of energy consumption versus mobility speed across different models with QoS and 
power thresholds. 

 

This network-aware energy efficiency model finally demonstrates, through visualization, that EATS-MEC can 

always operate within or very close to the optimal region and holds advantages over its counterparts that are stuck 

in suboptimal zones unless finely tuned.  

The superior performance of EATS-MEC is consistent with prior findings (e.g., [17, 29]) but significantly 

improves on scalability and mobility adaptability. However, some recent studies, such as Kim et al. [37], argue that 

DRL models may struggle in real-world deployment due to overfitting to synthetic environments. Our results address 

this by incorporating diverse mobility scenarios and hybrid optimization. Furthermore, unlike energy-aware models 

lacking security [33], our integration of blockchain ensures robust authorization and auditing, closing a vital gap in 

current MEC research. 

 

5. CONCLUSION 

A comprehensive evaluation of the proposed EATS-MEC framework for Mobile Edge Computing (MEC) 

systems was also presented in this study by comparing it in terms of performance to conventional Deep Q-Network 

(DQN) and Genetic Algorithm (GA) based task offloading strategies. We validate the empirical results through 

multiple simulation metrics and visual analytics, demonstrating that EATS-MEC is significantly superior across 

different dimensions of network performance. In terms of energy efficiency, EATS-MEC reduced real-time energy 

consumption under various network conditions and workloads. Regarding resource allocation adaptability and 

potential real-time contraction, it showed an average of 32% energy savings compared to DQN and GA during 

network congestion and peak load scenarios. Moreover, the temporal agility of EATS-MEC was demonstrated 

through task completion rates under strict deadlines. At lower deadlines, the system achieved a task success rate 

above 88% and outperformed DQN and GA, which experienced performance degradation caused by latency. This 

indicates the robustness of EATS-MEC in deadline-sensitive and mission-critical scenarios. Third, the energy 

consumption of EATS-MEC was near-sublinear in the device density, corresponding to a complexity of 𝑂(𝑛1.02), as 

compared to DQN and GA both having complexities of 𝑂(𝑛1.12) and 𝑂(𝑛1.25), respectively, in the context of 

scalability. This validates that the framework is viable to deploy in ultra dense 5G and 6G Network environments. 

Moreover, battery lifespan optimization of device uptime was achieved at +20 hours above traditional algorithms. 
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Consequently, this enhancement directly aids in prolonging the operational continuity for energy-constrained edge 

devices, which is a key consideration in IoT and mobile computing applications. Additionally, network-aware energy 

topography analysis on EATS-MEC showed that it operates either within or close to the optimum energy efficiency 

zone for different network latency and bandwidth conditions. It can adjust dynamically to satisfy the link conditions 

in real time to save as much energy as possible without sacrificing performance. Workload allocation analysis finally 

showed that EATS-MEC was able to intelligently balance the tasks across the edge, fog, and cloud layers. As 

compared to GA and DQN, it reduced the central cloud dependency and was able to achieve 23% higher edge workload 

distribution. We conclude that the combined intelligence of intelligent offloading decisions, adaptive network 

awareness, and hierarchical resource optimization breaks the per-front record of EATS-MEC on all tested fronts. 

This demonstrates that EATS-MEC is a suitable, scalable, energy-efficient, and latency-aware framework for next-

generation MEC infrastructure to be deployed in smart cities, industrial automation, and mobile IoT deployments. 

From a policy standpoint, EATS-MEC provides a flexible blueprint for deploying smart infrastructure in next-

generation networks. Regulatory bodies and smart city planners can integrate such energy-aware and secure 

offloading strategies in national 6G rollouts. Ensuring interoperability of blockchain-secured task delegation in MEC 

platforms can drastically reduce downtime, energy use, and system vulnerabilities. 

 

5.1. Policy Implications 

The EATS-MEC framework has the potential to significantly influence national and regional digital 

infrastructure strategies, particularly within the context of 5G and 6G rollouts. According to the GSMA [40], 

global mobile edge computing deployment is projected to support over 75 billion connected IoT devices by 2030, 

requiring scalable, secure, and energy-efficient computation. EATS-MEC’s integration of blockchain and DRL aligns 

with these targets by reducing peak power usage by 32%, improving deadline compliance by up to 88.3%, and 

supporting over 100,000 simultaneous task executions without performance degradation. These features make it ideal 

for inclusion in smart city governance, disaster response infrastructure, and mission-critical industrial automation. 

Policymakers can adopt EATS-MEC principles to define guidelines for secure edge analytics, energy-aware IoT 

operations, and real-time task orchestration. 

 

5.2. Limitations 

While EATS-MEC demonstrates robust performance in simulated ultra-dense MEC environments, the 

framework has yet to be tested in real-world deployments. All evaluations were performed using synthetic workloads 

and mobility models. Actual deployment in environments with unpredictable user mobility, intermittent connectivity, 

and heterogeneous hardware configurations may lead to performance variability. Furthermore, the blockchain 

implementation, though lightweight, may introduce latency or transaction bottlenecks in high-throughput scenarios, 

which were not fully profiled in this study. Energy measurements were derived from simulation-based power models 

rather than physical device consumption logs, which may introduce estimation error. These limitations call for 

empirical trials using hardware testbeds and live networks to fully validate system resilience and real-time 

performance. 

 

5.3. Future Work 

Future research will focus on extending EATS-MEC by incorporating federated learning for collaborative 

offloading decision-making across distributed nodes while preserving privacy. Additionally, we will replace synthetic 

datasets with real-world MEC traces, such as those from the EdgeDroid or AIoTBench repositories. The 

reinforcement learning component will be enhanced through multi-agent deep RL (e.g., MADDPG) to enable 

coordinated offloading among edge nodes. The reward function will also be redesigned using adaptive Pareto-based 

optimization, allowing finer-grained trade-offs between latency, energy, and security. Lastly, the blockchain module 
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will be transitioned to lightweight DAG-based consensus (e.g., IOTA or Nano) to improve scalability under high task 

throughput. These developments will enhance EATS-MEC’s suitability for future edge-intelligent 6G systems in 

smart grids, AR/VR, and mobile health monitoring. 
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