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The objective of the research is to address increasing privacy and safety issues related to 
hidden cameras in personal spaces such as bedrooms, bathrooms, or dressing areas, where 
such cameras can wirelessly transmit video signals clandestinely. The aim is to develop 
and evaluate an Artificial Intelligence (AI)-Enabled Hidden Camera Localization (AHCL) 
platform capable of identifying and locating hidden video streams through analysis of 
real-time network traffic. The methodology involves packet capturing, statistical 
analysis, and deep learning-based classifiers to detect anomalous streaming traffic in 
captured packets. The research generated a dataset comprising 60,412 packets, labeled 
as either 'normal' or video streaming, which was used to train and evaluate several 
models, including Support Vector Machines (SVM), Denoising Autoencoders, and 
ensemble deep learning models. The experimental results indicate that the ensemble 
model achieved the highest performance, with a detection accuracy of up to 98.27%, 
demonstrating good generalization and robustness across different network 
environments and over multiple days. The findings show that the AHCL platform is 
highly reliable in detecting hidden camera traffic from benign traffic. The practical 
contribution of this research is significant, providing users with an intelligent and 
affordable system for real-time privacy protection that can be deployed in residential or 
commercial settings, thereby enhancing trust and safety in a connected environment. 
 

Contribution/ Originality: This work builds on established prior research in the area of hidden camera detection, 

utilizing both network traffic analysis and ensemble deep learning models. This study contributes to a new dataset 

containing labeled video and non-video packets. Our primary contribution is the accurate real-time localization of 

hidden cameras, minimizing false positives, and enhancing user privacy. 

 

1. INTRODUCTION 

As smart devices become more prevalent and inexpensive wireless camera equipment becomes more accessible, 

privacy concerns about hidden cameras are still prevalent in both private and public locations. Cameras of this nature 

are often camouflaged within everyday items smoke detectors, alarm clocks, USB charging ports, or even light bulbs 

rendering them difficult to detect through lay inspection. As a result, there is a need for an intelligent automated 

detection system that can assess privacy breach potential in multiple environments, such as hotel rooms, changing 

areas, and short-term rental accommodations. For many years, clandestine camera detection methods such as infrared 

scans, lens reflections, and visual inspections have been implemented. However, these methods can take time, rely on 
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the human factor, and are not always reliable when controlling for modern technology [1, 2]. In comparison, hidden 

cameras can transmit a video feed to wireless networks and, therefore, produce unique digital footprint evidence that 

digital investigators can capture for future analysis. Once investigators capture packet data, they can identify 

statistical patterns to differentiate between "normal" bandwidth traffic and video streaming surveillance, where 

cameras/remotes could also be physically concealed during inspections [3, 4]. 

This principle is at the core of our AI-assisted Hidden Camera Localization (AHCL) system, which employs 

machine learning and deep learning algorithms to detect and localize hidden video cameras in real-time. Previous 

research in this domain has yielded valuable insights; however, they all exhibit certain limitations: a. many existing 

detection models fail to distinguish benign video streams (e.g., video conferencing or media streaming) from covert 

surveillance streams; b. most approaches lack resilience to network noise and tend to produce high false-positive or 

false-negative rates; and c. many methods only detect that a device is transmitting a video stream but do not localize 

the source of the stream Liu, et al. [5] and Heo, et al. [6]. These limitations underscore the need for an integrated 

detection and localization approach that accurately identifies hidden cameras, withstands network noise, and 

pinpoints the camera's location. The increasing frequency of documented incidents involving hidden surveillance in 

hotels, public restrooms, and shared accommodations clearly indicates a pressing need for accessible solutions that 

do not require extensive technical expertise. Current surveillance detection tools are either prohibitively expensive 

or overly complex for everyday users. To address this gap in performance and accessibility, we propose the AHCL, 

which offers a low-cost, efficient, and user-friendly method for self-adaptive detection of hidden surveillance based on 

traffic analysis and artificial intelligence (AI). The AHCL distinguishes itself from conventional strategies through 

its self-adaptability across various environmental and network conditions, ensuring practicality for real-world 

applications. 

The main contributions of the anticipated work are: 

1. Develop or extract labeled datasets via a Wi-Fi sniffing tool. 

2. Develop a robust methodology for detecting hidden cameras. 

3. Implement efficient algorithms for image and signal analysis. 

4. Minimize false positives using advanced filtering techniques. 

5. Create a cost-effective and user-friendly solution. 

6. Ensure adaptability to various environmental conditions. 

7. Evaluate and optimize the detection framework's performance. 

With these contributions in mind, the research aims to (i) design and implement a method for finding hidden 

video cameras based on the analysis of network traffic, (ii) evaluate the method under realistic conditions, and (iii) 

determine its applicability in different network settings. The central thesis of the research is that ensemble learning 

methods with denoising will lead to greater accuracy and lower false-positive rates for detection than currently 

available single-model approaches to identify hidden cameras and improve reliability and accessibility to localizing 

hidden cameras. The rest of the paper is organized as follows: a review of related literature in Section II identifies 

limitations and gaps in traditional and AI-based approaches; Section III describes the proposed architecture and 

method of the AHCL system, including data collection, feature extraction, classification, denoising, and localizing; 

Section IV presents the experiment design, results, and the evaluation of classifiers' performance; and Section V 

concludes with a summary of the findings, including limitations and future research directions to build out the AHCL 

system and take it into the field. 

 

2. LITERATURE SURVEY  

The detection of hidden cameras is utilized in a number of ways, primarily through RF scanners, optical methods, 

and detection models based on artificial intelligence, especially CNN-LSTM. RF scanners and optical methods are 

more limited in the passive devices they can detect, and new ideas such as DeWiCam have been developed to utilize 
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a smartphone's promiscuous mode and other analyses of wireless signals for additional opportunities. Commercial 

wireless hidden camera detectors have also faced challenges with new encrypted Wi-Fi hidden cameras, leading to 

the development of alternative solutions using thermal imaging and IoT. Hybrid detection models like DeepDeSpy 

are capable of using channel state information (CSI) data for data-driven detection in real-time [3]. Hidden camera 

detection methods were still only solved by Wi-Fi traffic analysis or laser-based retro-reflection, and are still limited 

by non-transmitting devices or just the raw cost of technology. One more unequivocally useful need was for depth-

based sensing with reflective properties because time-of-flight (ToF) sensors, our sensors, could provide real-time 

detection analysis through depth. The worst detection rate was less than 30%, and even the best detection systems 

provided a detection rate of around 62.3%. The smartphone-based LAPD system reported using ToF sensors to detect 

hidden cameras at a rate of 88.9%, which was a significant development and warranted some attention [1]. 

Recent improvements in object detection and tracking systems, particularly useful for video surveillance of real-

world contexts, have started to address fully occluded objects in complex backgrounds with occlusions and changes 

in illumination as part of the surveillance context. New methods have also been developed based on the use of symbolic 

reasoning to better augment computer vision techniques to facilitate detection. Although many statistical algorithms 

exist, the scale required to account for obstructions and occlusions has posed barriers when performing detection 

plans for this type of study. The field has also begun to utilize AI systems and knowledge-based reasoning to improve 

detection strategies for typical occlusions in complex areas [2].  The rapid growth in clandestine wireless cameras, 

specifically, hidden cameras in private areas like hotel rooms, raised serious privacy concerns. Traditional 

methodologies to detect cameras depend on expensive and impractical hardware that requires trained technicians and 

is not feasible for everyday users. LocCams created a phone-based approach to detect cameras based on packet 

transmission rates and channel state information, achieving an impressive 95.12% classification accuracy. LocCams 

reduced the barrier to entry for surveillance detection and raised the need for affordable and simple surveillance 

detection options [4]. 

Research suggested that hidden cameras were gaining popularity in sensitive settings because they could easily 

be concealed. There are mobile applications that allow users to detect magnetic emissions, but the human ability to 

detect hidden cameras remains difficult. New technologies, such as laser retroreflection and machine learning, have 

allowed for an even greater ability to identify hidden cameras. It was clear that there was a need for reliable detection 

technologies to address privacy concerns, and this would only improve as new technology and continued development 

were done [5]. The paper had a specific focus on the various vulnerabilities present in the operating systems, 

authentication, and insecure transmission of data, which led to the potential remote operation of hidden cameras that 

compromised a person’s privacy. The paper also discussed how the manufacturers of the devices had minimal 

responsibility to provide any reader reliability for the levels of security that were part of the detection technology 

[7]. 

Detecting Wi-Fi-enabled spy cameras has traditionally proven to be too complicated for an average user because 

of data demands and encryption barriers. The new approach proposed here involves leveraging devices such as a 

Raspberry Pi to achieve real-time detection, classification, and localizing of a camera, all of which are not available 

with previous approaches. The research proposed using the Nilsimsa algorithm and RSSI values to assess the location 

of a camera with 30cm accuracy. The newly proposed approach demonstrated more efficacy and practicality than 

previous ML models [8]. This literature review of object detection models categorizes them into four distinct types 

of detections, which include both anchor-based and transformer-based methods. Models were compared to previous 

reviews, which criticized them for being too limited. The previous reviews failed to conduct a broad evaluation of 

object detection models, metrics, and datasets like MS-COCO. The literature review described key developments in 

detection accuracy and detection methodologies over time [9]. 

Detecting WLAN spy cameras was difficult because of uncertainty related to device behaviors, and, likely, the 

methods that use CSI, ML, passive RF, and Wi-Fi usage may hold promise. Most past methods of detection required 
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poor data collection methods with complex hardware, and there is a direction for more scalable and efficient solutions 

[10]. Hidden cameras were an emergent privacy issue, particularly for women at community facilities. Even with 

good methods for discovering hidden cameras, it was always difficult to locate wireless cameras when they were small. 

Recently, new capabilities became available that defined work by identifying them based on detecting and jamming 

signals in the 0.1GHz-3GHz range. The intended outcome for these devices was to increase public safety and improve 

evasion for privacy reasons, in an immediate way in the real world [11]. In terms of the current detection methods, 

such as RF, optical, and thermal, they all have usability problems and require expertise to use. HeatDeCam used 

smartphone thermal imaging and a neural network to identify latent thermal images as evidence, easily and without 

cables or wires. In excess of 22,000 images, the researchers were able to achieve over 95% accuracy in reports. 

HeatDeCam was also an important milestone along the way toward real-world solutions for the detection of hidden 

cameras [12]. 

The progression of object detection showed how the field of detection had moved from modeling with algorithms 

employed in turn phase processing to convolutional neural networks (CNNs) using YOLO modeling. YOLO had 

increased the speed of inference and changed the universal definitions throughout different forms for speed and item 

counts, and accuracy had suffered somewhat as it used deeper, over-saturated information mean and mean pooling; 

the vision field in the computing aspect. The research being shown with the enhancement of YOLO architecture, 

parameters, detections, and included performance has been researched, which also included an exhaustive history of 

the deep learning era (The YOLO model era detections) [13]. 

This work was to integrate IoT and RFID to detect and jam hidden cameras. Operating with components like 

Arduino or Wi-Fi modules, the system was able to demonstrate accuracy and applicability in real-life scenarios. The 

framework improved privacy and security issues posed by surveillance situations. There were suggestions for further 

improving IoT security against unattended recording [14]. There were numerous detection systems; however, most 

are complex, hardware-intensive efforts or inefficient. Retro-reflection, magnetic sensors, and IR transmitters were 

just a few possible approaches. Object tracking and servo-driven disactivations were other possibilities. So many of 

the "practical" systems were attempted; however, there is a clear need for systems that are much, much simpler and 

better [15]. Traffic classification could not keep pace with changing networks. The study demonstrated that machine 

learning techniques, specifically the XGBoost model, can classify traffic with a high level of accuracy (99.97%) that 

could be used for Traffic Classification (TC) purposes. The authors used min-max performance indicators and scaling 

methods to improve results, which led them to determine that Machine Learning (ML) holds the potential to be 

helpful for optimal network management [16].  

With complex threats and high traffic loads in university networks, a network monitoring system was essential. 

PRTG and Sophos Firewall were integrated applications providing real-time monitoring. Changing security systems 

from manual to automatic adaptive security systems. This study supports smarter, optimal network management 

decisions for university networks based on all aspects of your university network system [17]. LBP (Local Binary 

Patterns) was widely used in texture analysis and is suitable for practical applications and images. Although LBP was 

also good at distinguishing textures, it was unsuitable for noise. Other approaches, like LBCNN or LTCP, have shown 

better accuracy and robustness. The study proposed a method, LTBP, which takes advantage of spatial proximity, 

and where image features were extracted, unique to noise. This study has been particularly promising for use in 

several classification scenarios, such as biometric analysis and medical image classification [18]. This USA-based 

CNN-based spy camera detection system uses the lightweight ResNet-18 model to achieve a mobile-friendly outcome. 

Although initial classification accuracy studies investigated other models, such as MobileNets and Inception, ResNet 

was the only model considered for this investigation. The rationale was that ResNet-18 offered a balanced 

performance and effective feature extraction. This enables the surveillance device to accurately perform real-time 

detection of hidden cameras while operating within the constraints of mobile hardware devices [12]. 
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Most spy camera detection systems relied on using the real, recognizable physical signals (i.e., RF, lens 

reflections) that hidden camera systems generated, or the distractions or amalgams of these signals, which current 

users could interpret. Similarly, most existing systems were fundamentally not accurate for a number of reasons, or 

were not tuned to an accurate enough level for user intervention. Also, hidden cameras could be affected by other 

electronic devices. There are major usability and clarity issues related to cueing feedback from detection [6].  Hidden 

Wi-Fi cameras transmitting video feeds likely generate unique packets that could be tracked while in use. Previous 

work has focused on detecting presence (Wi-Fi camera exists), and not necessarily locality or vicinity. This work 

aimed to extend previously done work in terms of camera detection and focus on only taking geographic locations of 

Wi-Fi cameras with evidence of network traffic data. Previous work would have focused solely on detection, while 

this work would have created tools for surveillance risk mitigation [19]. This paper provides a comprehensive survey 

of the problems and progression of the state-of-the-art detection of small objects from aerial images using deep 

learning. The methods are classified into five categories, existing datasets are described, and the results of the 

experiments are compared to illustrate the advantages and weaknesses of the existing algorithms. The paper offers 

future work suggestions to improve detection in a complex airborne imaging context [20]. 

In the paper "Spying on the Spy: Security Analysis of Hidden Cameras," researchers assessed the security of the 

spy camera that is commercially available and found significant, almost unresolvable vulnerabilities, including the 

unencrypted wireless transmission of data, firmware vulnerabilities, and the use of default password presets that could 

expose consumers to exploitation. The poorly regarded consumer surveillance devices posed a high security risk to 

consumers and suggested more thoughtful regulation around these types of devices and greater efforts to improve 

security practices [21]. They presented a detection system for hidden cameras through a laser reflection technique. 

These systems could be useful to protect user privacy in sensitive locations such as courtrooms and hotel rooms, 

where the surreptitious recording of video could legitimately violate privacy [22]. 

The article offers a comprehensive survey related to deep learning-based intrusion detection systems (IDS) on 

automotive networks. We organized the different deep learning schemes by topology and techniques, highlighting 

the characteristics of each scheme. Next, we broke down the evaluation of each scheme in terms of datasets, attack 

types, and metrics. Finally, we analyze the comparisons, evaluations, results, and pros & cons of the various deep 

learning architectures [23]. This article provides a comprehensive and current review of deep learning-based 

methods developed to detect violence within video surveillance data, specifically physical assaults. It organizes 

existing methods, datasets, and challenges, and outlines the current state of artificial intelligence-enabled violence 

detection, providing avenues for future research [24].  The researcher provided a comprehensive survey of deep 

learning-based rejection class approaches to perform anomaly detection in video surveillance. The survey highlighted 

the models that were developed to detect anomalies in video data, outlined the challenges and use cases, and evaluated 

metrics observed in anomaly detection research. The survey also outlined opportunities for future space for improving 

anomaly detection systems to be more comprehensive and complex, as seen in real-world surveillance [25]. 

The authors presented a case study on deep learning approaches, focusing particularly on convolutional neural 

networks (CNNs) to recognize digital cameras by identifying the unique photo-response non-uniformity (PRNU) 

noise specific to their images. The authors trained a modified AlexNet model and achieved a maximum identification 

classification accuracy between 80% and 90%. The assessment identified several weaknesses, including false 

identifications and the inability to distinguish cameras from the same manufacturer, which suggests that further 

refinements in deep learning could improve models for forensic applications [26]. 

This manuscript introduces LAPD, a platform that utilizes smartphone Time-of-Flight (ToF) sensors to locate 

hidden cameras via reflections of light from surfaces. In assessing the ToF sensor output, this system was able to 

classify materials that reflect light vulnerabilities associated with hidden cameras. This indicates that the prospective 

availability of detection provides inexpensive and highly accessible detection through the perspective of a smartphone 

[1]. 
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This manuscript details a novel solution for finding wireless spy cameras through the monitoring of wireless 

electromagnetic fields emitted by wireless devices. The precise solution monitors the wireless response of the wireless 

device to a stimulus and reveals hidden cameras in real time, and once the wireless signals from a device are emitted, 

it can probe and locate devices that would not have been detected or visible through another medium [27]. As it 

pertains to the detection of hidden cameras, AI-powered methods such as CNNs, LSTMs, and Transformers enhance 

detection algorithms. These methods leverage real-time RF and improve detection by utilizing visual transformers 

to enhance visual detection; they also leverage Federated Learning to diminish privacy concerns [28]. 

The manuscript reviewed machine learning methods for network traffic classification with supervised learning, 

semi-supervised learning, and unsupervised learning methods. It provided a review of the methods used in reviewing 

network traffic [29]. 

Thermal imaging offers the ability to detect heat signatures, and Internet of Things (IoT) sensors provide 

potential low-cost options. Drones offer greater coverage, and edge computing might enable real-time processing 

[30]. The authors presented their application of deep learning methodologies to predict network traffic, covering 

convolutional neural networks (CNN) and long short-term memory (LSTM) networks. They provided insights into 

their ability to predict network traffic patterns and the possible impacts on future network performance [31]. This 

paper surveyed a number of techniques for the recognition of behavior based on the use of Wi-Fi Channel State 

Information (CSI). The paper discussed the potential use of CSI in terms of obtaining fine-grained motion data to 

detect or identify human activities, along with challenges and approaches applied in behavior recognition applications. 

It demonstrated the potential of CSI techniques for behavior monitoring in a non-intrusive way [32]. 

The paper explains CSI: DeSpy, which also provided passive sensing to identify spy cameras. When the WiFi 

Channel State Information (CSI) changed with user activity, the device was recording video and was likely to be a 

hidden camera. As the user moved, the bitrate changed, and potentially other parameters such as delays, jitter, RSSI, 

etc. This only required passive signals, did not require any active probing, and was an easier and still effective way to 

detect video surveillance in a seamless manner [33]. The paper described LocCams, a powerful system for detecting 

and localizing hidden wireless cameras using commodity devices. The system utilizes the wireless signal patterns 

associated with wireless security cameras and leverages the proprietary hardware already built into smart devices 

and other consumer technologies to classify hidden cameras and localize them. It is a virtually favorable and 

economical way to enhance privacy and security in a myriad of spaces [4]. 

The pre-training process utilized a significant amount of unlabeled data, which improved the model's ability to 

identify wireless cameras. Subsequently, a neural network - long short-term memory (NN-LSTM) classifier 

determined the presence of wireless cameras and indicated it may be a feasible option to detect unauthorized 

surveillance equipment quickly and efficiently in a real-time capacity [34]. This paper presents WiSOM, a self-

adjusting system for occupancy monitoring in smart buildings using WiFi. The approach to detect and identify the 

presence of people involves analyzing the different strengths of WiFi signals. Thus, it efficiently utilizes WiFi 

readings to provide data for energy management and building management. The system can adjust or adapt to 

different levels of sensitivity for a range of environments and user behaviors, enhancing effectiveness and accuracy 

[35]. The basic premise of this approach was that the timing patterns of the data sent from hidden streaming cameras 

could be correlated with the timing patterns of a known camera recording in the same scene. The proposed approach 

included multiple similarity measures to demonstrate its high accuracy, with typical F1 scores greater than 0.95 for 

both indoor and outdoor scenarios [36]. 

The device used a risk assessment framework and identification of hidden cameras through scanning for radio 

frequency (RF) signals in the frequency range of 0.1 GHz to 3 GHz, which is within the operating frequency range 

of most wireless cameras. When the device identified a radio frequency signal, it would provide two responses to 

notify the user of the identified camera. First, the device would activate a visual alert by illuminating a red light 

indicator. Second, the device would send a jamming signal to deactivate the operation of the identified camera. The 
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device designed by the researchers specifically identified and disabled devices that were captured in surveillance 

footage (electronic and visual), as a proactive measure to secure privacy in situations where unknown hidden cameras 

may have been present [10]. 

Lee, et al. [37] have developed an AI-aided Hidden Camera Locator system that detects hidden cameras from 

raw IoT network traffic. SVM classified video traffic, and a Denoising Autoencoder improved the quality of this data. 

After the data was enhanced, a neural-based classifier located the camera. In ensemble models of MLP, 1D-CNN, and 

Inception ResNet v2, the method was able to detect a camera with an accuracy of 97.65%. This method allows for 

real-time detection of cameras without requiring the reconstructed video to be fully stored [37]. 

Despite advancements in hidden camera detection approaches, there are important shortcomings in existing 

research. Many approaches are incapable of accurately classifying benign video traffic versus hidden video 

surveillance streams, leading to extremely high false-positive rates. Others depend on costly hardware, manual 

inspection, are sensitive to encryption, or rely on passive surveillance devices. Only a small number of systems attempt 

to localize the source of hidden cameras, thereby limiting their value in real-world applications for users. The fully 

automated AHCL system aims to eliminate such limitations with machine learning and deep learning models for 

network traffic classification and denoising, and additionally uses ensemble learning to detect local hidden cameras. 

Furthermore, the AHCL is designed to be cost-effective, easy to use, and adaptable to environmental conditions, 

making it a feasible and viable solution for everyday users concerned about their privacy. 

 

3. METHODOLOGY 

The AHCL system methodology provides a step-by-step procedure employed for the detection and localization 

of hidden cameras through network traffic analysis. The block diagram of the system is provided in this chapter, with 

a description of each component in mathematical terms, along with an explanation of the architecture in detail. 

 

3.1. Block Diagram 

The AHCL framework is composed of the principal components: the Monitoring Node and Edge Server. The 

Monitoring Node is tasked with capturing network traffic in real-time, and the Edge Server is responsible for 

performing complex packet classifications, denoising, and camera localization. The block diagram illustrates the 

process from raw capture to the prediction of the actual visible camera's location. Figure 1 shows the block diagram 

of the proposed methodology. 

 

 
Figure 1. Block diagram of the proposed method. 

 

3.1.1. Data Acquisition and Accessibility 

In the first stage, a data set was created with the immediate goal of demarcating video streaming traffic from 

normal non-video traffic, a sample dataset as shown in Table 1. Real-time packet captures were performed using 

network capture applications such as Wireshark and tcpdump in a local area network (LAN) with a variety of devices. 

The data collection was varied as well across a range of network conditions, both high-bandwidth and low-bandwidth, 

as it was possible to make this data rich and representative. Traffic was recorded from video activities like streaming 

videos (YouTube, Netflix, IP camera streams) and non-video activities like browsing, file transfer, emails, and gaming. 

All the recorded network packets were hand-labelled either as "Video" (for streaming traffic) or "Non-Video" (regular 

traffic), and thus a dataset consisting of 60,412 samples 31,251 Video samples and 29,055 non-Video samples was 

created. In the data cleaning stage, important features included timestamp, destination and source IP addresses, the 
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protocol type (TCP/UDP), the length of packets, and the content in the field information were identified. Duplicate 

and incomplete records were removed to make it more consistent. The cleaned data was then separated into a training 

data set (80% or 48,329 samples) and a test data set (20% or 12,083 samples), and the data was converted into CSV 

format to allow for model building. 

In consideration of privacy and security, the dataset produced from this study will not be available to the public. 

However, the methods of data collection and the feature extraction process are provided in detail in order to allow 

for reproducibility by other researchers. Future work will investigate the possibility of the release of an anonymous 

dataset for general use. 

 

Table 1. Sample dataset. 

No. Time Source Destination Protocol Length Info Label 

47309 90.843 192.168.19.27 192.168.19.49 TCP 70 81 → 2555 [ACK] 
Seq=36611105 Ack=1 
Win=5362 Len=16 

Non-
Video 

48320 92.701 192.168.19.49 192.168.19.27 TCP 54 2555 → 81 [ACK] Seq=1 
Ack=37390816 Win=64620 
Len=0 

Non-
Video 

55031 107.49 192.168.19.49 23.98.86.4 TCP 54 9465 → 8883 [ACK] Seq=63 
Ack=63 Win=508 Len=0 

Non-
Video 

11064 20.152 192.168.19.49 192.168.19.27 TCP 54 2555 → 81 [ACK] Seq=63 
Ack=8438413 Win=64620 
Len=0 

Non-
Video 

46064 88.647 192.168.19.27 192.168.19.49 TCP 70 81 → 2555 [ACK] 
Seq=35658972 Ack=1 
Win=5362 Len=1436 

Video 

31415 61.895 192.168.19.49 192.168.19.27 TCP 54 2555 → 81 [ACK] Seq=1 
Ack=2425092 Win=64620 
Len=0 

Non-
Video 

11847 21.782 192.168.19.27 192.168.19.49 TCP 1490 81 → 2555 [ACK] 
Seq=9036229 Ack=1 
Win=5362 Len=1436 

Video 

41222 80.014 192.168.19.27 192.168.19.49 TCP 719 81 → 2555 [ACK] 
Seq=31865780 Ack=1 
Win=5362 Len=665 

Video 

 

3.1.2. Video Packet Filtering 

After data acquisition, video packet filtering occurs. Feature engineering is then carried out to extract useful 

features from the packets (e.g., packet size, inter-transmission times, and ports). The features are combined into a 

feature vector, which can be represented mathematically as x [f1,f2,…, fn], where fi are the features that have been 

extracted. A Support Vector Machine (SVM) is used to classify packets as a video or non-video stream. The SVM 

uses a radial basis function, which has the kernel function definition K(x,x′) = exp(−γ∥x−x′∥^2), where γ is a 

hyperparameter that determines the smoothness of the kernel. The final classification decision is made using 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛⌊∑ 𝛼𝑖𝑦𝑖𝐾(𝑥𝑖 , 𝑥)𝑁
𝑖=1 + 𝑏)⌋   (1) 

Packets classified as video traffic are then forwarded to the next stage of processing. 

 

3.1.3. Data Refinement  

A Denoising Autoencoder (DAE) is applied to improve the packets rated as video. The DAE is trained on pairs 

of clean and noisy packet representations to learn how to map noisy inputs to clean outputs. The DAE's mathematical 

formulation involves minimizing the Mean Squared Error (MSE) loss function. 

ℒ =
1

𝑛
∑ ||𝑥 − 𝑥𝑖̂||

2𝑁
𝑖=1         (2) 
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Where 𝑥𝑖 is the original clean input and 𝑥^𝑖 is the denoised reconstruction. By denoising and removing spurious 

variations, the DAE provides localization models with only high-quality input features. 

 

3.1.4. Room Localization 

After applying denoising, feature vectors are passed to deep learning classifiers for room localization. For this 

task, three models are employed: Inception-ResNet-v2, a Multi-Layer Perceptron (MLP), and a 1D-Convolutional 

Neural Network (1D-CNN). These models learn the corresponding traffic patterns related to the rooms in which 

hidden cameras are located. The output of the neural network is computed through a Softmax layer, represented 

mathematically as 

ŷ = Softmax(Wx + b)   (3) 

Softmax(zi) =
ezi

∑ e
zj

j
    (4) 

3.1.5. Ensemble Learning (Soft Voting) 

To achieve the best possible accuracy in localization, ensemble learning is used through soft voting. This means 

that predictions from multiple models (Inception-ResNet-v2, MLP, and 1D-CNN) are summed up. The final decision 

is the class (room) with the maximum combined probability score from these models. The ensemble output is 

calculated as follows: 

yfinal = arg max ∑ pi,k
m
i=1          (5) 

 

3.2. Procedure, Algorithm, and Architecture 

The AHCL system follows a systematic methodology and algorithm to complete hidden camera detection and 

localization based solely on network traffic analysis. The process begins with Packet Capture, where raw network 

packets are captured in real-time from the monitored environment by utilizing tools such as Wireshark and tcpdump. 

Raw packets are captured, and Feature Extraction is performed, where relevant features, including packet size, packet 

transmission rate, and packet protocol type (TCP, UDP, etc.), are extracted to create a structured feature vector for 

each packet. After Feature Extraction, SVM Classification is performed. Each packet is classified as "video" traffic (a 

possible indication of hidden camera activity) or "non-video" traffic, using a Support Vector Machine (SVM) with a 

Radial Basis Function (RBF) kernel. The decision boundary is determined mathematically using the SVM decision 

function. Figure 2 depicts the AHCL system architecture. 

 

 
Figure 2. AHCL system architecture. 

 

3.3. Algorithm: Hidden Camera Localization 

3.3.1. Packet Capture 

The first stage of the hidden-camera localization mechanism captures raw network packets in real-time. This is 

usually accomplished through the use of tools such as Wireshark or tcpdump. The raw packets are delivered over the 

network interface and can be stored in a packet capture (PCAP) file. 
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𝑃 =  {𝑝1, 𝑝2, … , 𝑝𝑛}  (6) 

This may be expressed mathematically as: 

Where P is the set of captured packets, and each Pi is an individual packet. Each packet consists of the source IP 

address, the destination IP address, the timestamp, and the protocol type associated with the packet. This real-time 

acquisition becomes the raw data to perform further analysis. 

 

3.3.2. Feature Extraction 

The next step after capturing raw packets is to extract useful features that best characterize the traffic conditions. 

Important features include packet sizes, transmission rate r, and protocol type 𝜋. These features assist in 

discriminating video data from the rest of the traffic. 

Packet size: Packet size refers to the size of a packet, usually denoted as 

𝑆𝑎𝑣𝑔 =
1

𝑁
∑ 𝑠𝑖

𝑁
𝑖=1     (7) 

Transmission rate: This is the number of packets transmitted per unit of time. If T is the time window, the 

transmission rate r is: 

𝑟 =
𝑁

𝑇
     (8) 

Protocol: 𝜋 is the protocol, a one-hot feature indicating whether the packet is using TCP, UDP, or another 

protocol. 

 

3.3.3. SVM Classification 

After the feature extraction step, we can use a Support Vector Machine (SVM) classifier to classify video and 

non-video packets. The SVM will attempt to find a hyperplane that separates the packets of the two classes in feature 

space. The decision boundary based on the SVM classifier can be defined mathematically as: 

𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏    (9) 

Where x is the feature vector (containing packet size, transmission rate, and protocol). 

w is the weight vector and b is the bias term. The SVM classifier will learn the optimal values of w and b, which 

minimize the classification error. 

Error when maximizing the margin between the two classes. 

 

3.3.4. Denoising 

After the classification step, there may still be noise within the video data. To further clean the video data, we 

utilize a Denoising Autoencoder (DAE), which can be trained to reconstruct a noise-free version of the input data. To 

this end, the DAE minimizes the reconstruction error: 

ℒ(𝑥, 𝑥̂) = ||𝑥 −  𝑥̂||2  (10) 

Where x is the noisy video input, 𝑥̂ is the denoised output from the autoencoder. The DAE learns to map the 

noisy input to a lower-dimensional encoding, then reconstructs it back to the original video data, which in effect 

denoises the data. 

 

3.3.5. Localization 

Localization is performed by utilizing denoised video data to train deep learning classifiers to recognize the room 

or location where the hidden camera is situated. Localization is typically achieved using Convolutional Neural 

Networks (CNNs), which learn spatial hierarchies in image data; the output from the CNN can be treated as a 

classification problem, with classes corresponding to the locations within the building where the hidden camera is 

located. 
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Letting the output of the CNN be a distribution over all possible locations: 

𝑃(𝑦|𝑥) =
𝑒𝑓(𝑦,𝑥)

∑ 𝑒𝑓(𝑘,𝑥)
𝑘

   (11) 

3.3.6. Output 

The final output is simply the predicted locations of the hidden camera, which is the highest probability P(y|x) 

produced by the deep learning model. This output can be shown on a graphical interface to display the predicted room 

or area where the hidden camera is located. The localization of the hidden camera (y) is simply the location with the 

highest probability. 

𝑦𝑝𝑟𝑒𝑑 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑃(𝑦|𝑥)        (12) 

This location (y) is the predicted location of the hidden camera by the algorithm based on analysis of network 

traffic. All of these steps packet capture, feature extraction, SVM classification, denoising, and localization with deep 

learning together will detect and localize hidden cameras with high accuracy from network traffic. 

 

3.4. Experimental Setup  

Figure 3 depicts the experimental workflow being carefully designed to simulate natural conditions closely for 

hidden camera detection and localization. Hidden cameras were made to stream video through Zoom in three different 

rooms, each representing different environmental conditions. While the video was being streamed, network packets 

were intercepted in real time to capture transmission characteristics related to hidden camera detection. The data of 

intercepted packets was then systematically collected, stored, and later used to train different AI models on feature 

extraction, classification, and localization. 

 

3.4.1. Testing Models 

To evaluate the models, the classifier was trained on packet data collected from all three rooms while allowing 

two different views per room in order to inject variability into the procedure, thereby modeling dynamic real-world 

conditions. This has also ensured that the models generalize with respect to different views and environmental 

parameters. Evaluation can also be carried out in several performance tests that include. 

 

 
Figure 3. Experimental workflow. 
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3.4.2. Classification Accuracy  

This pertains to the efficacy of the system in defining and localizing hidden cameras in diverse environments. 

 

3.4.3. Processing Speed 

This is the measurement of whether the system can perform in real time, thus enabling further consideration for 

deployment in immediate consumer and enterprise security solutions. 

 

3.4.4. False Positive Rate (FPR) 

This was kept monitored to ensure that misclassifications occurred as little as possible, so as not to generate 

unnecessary alarms and build up confidence in the predictions made by the system. This whole experimental setup 

proved the efficacy and accuracy of AHCL under realistic operational conditions, thus endorsing its scope for practical 

realization. 

 

4. RESULTS AND DISCUSSION 

This section provides results related to the application of the AI-based Hidden Camera Locator system (AHCL). 

It discusses the investigation of results based on accuracy, loss trends, validation graphs, and evaluation metrics. A 

detailed analysis of model performance using SVM and MLP classifiers is included. 

 

4.1. Result using SVM 

To understand the learning behavior of SVM, the accuracies and losses were plotted with respect to training 

iterations. In the top graph of Figure 4, the classification accuracy was progressively improved to over 97.55%, and 

at this point, it became stabilized. The stability of accuracy suggests a rich generalization ability and robustness of 

the model. The lower graph shows the loss plot, which dropped over time in a continuous, smooth manner during 

training. The nearly constant decline in loss indicates that the model could minimize more and more classification 

errors while tuning model parameters effectively. Therefore, all these observations prove that the SVM model has a 

good level of generalization over unseen instances of packet data, thereby making it very trustworthy for the real-

time classification of packets between video and non-video streams. And Figure 5 depicts the validation loss being 

over 2.55%. 

 

 
Figure 4. Validation accuracy curve. 
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Figure 5. Validation loss curve. 

 

4.1.1. Network Diagram 

These epochs were optimized across multiple training stages for the SVM classifier. As training progressed, 

improvements in the model were noted, with a significant reduction in both gradient magnitudes and losses. Figure 

6 shows the training phases through epochs, gradient updates, and the overall trend of the convergence. A complete 

training cycle was conducted for 100 epochs, after which the gradients stabilized, indicating that convergence was 

achieved and reliable learning behavior was observed. 

 

 
Figure 6. Network diagram. 

 

4.1.2. Scatter Plot Analysis of SVM 

The SVM margins could be visualized in scatter plots presented in Figure 7. Herein, the set of parameters 

considered for this scatter plot includes transforming Packet Length into the x-axis and Packet Time into the y-axis, 

and demonstrating whether SVM is using the highest possible separation to decide whether it is a video or non-video 

packet. The complete separation visible in any plot is evidence of highly effective internal classification. 
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Figure 7. Scatter plot of SVM with packet length vs. packet time. 

 

The performance of the SVM classifier on the task of distinguishing video packets from room classification is 

impressive. Support Vector Machines (SVM) proved to be very efficient, with an accuracy of 97.34 percent for 

detecting video packet transmissions across the network. 

An ensemble neural network achieved an even higher accuracy of 99.5% in classifying the video streams against 

the room location. Further performance of the classification is validated using a confusion matrix. The diagonal 

entries indicate correct classification, while the off-diagonal entries correspond to misclassification. The higher 

presence of the diagonal elements in the matrix indicates high-precision classification by the model, thus supporting 

itself against the ground truth data. 

 

4.1.3. Confusion Matrix 

To illustrate the performance of the classification, Figure 8 plots the confusion matrix for the predictions by the 

ensemble model. Off-diagonal entries signify misclassification, and diagonal entries signify correctly classified items. 

From it, it is evident that the majority of correct classifications are in accord with the ground truth, verifying the 

correctness of the model. 

The MLP model was further tested for video packet classification and room localization. The results are 

compared against validation patterns and a confusion matrix. Table 2 displays the classification report of the SVM 

model. 
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Figure 8. Confusion matrix. 

 

Table 2. SVM Classification. 

 

4.1.4. Results Using MLP 

The Multi-Layer Perceptron (MLP) model was also evaluated for video packet classification and room 

localization. The results are analyzed based on validation trends and a confusion matrix. 

 

4.1.5. Validation Graph 

The validation accuracy and loss trends for MLP are shown in Figure 9. The model demonstrates steady learning, 

with accuracy stabilizing and loss minimizing over epochs. This confirms the network’s ability to generalize well on 

unseen data. Figure 10 depicts the validation loss of the MLP, i.e., 1.73. Table 3 displays the training results of the 

MLP. 

 

Class Precision Recall F1-Score Support 

Non-Video 0.00 0.00 0.00 0.00 
Video 0.98 0.98 0.98 18241 
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Figure 9. Validation accuracy of MLP. 

 

 
Figure 10. Validation loss of MLP. 

 

Table 3. Training results of MLP. 

Validation accuracy Epochs Iterations Learning rate 

98.27 25 48325 7.5e-0.5 

 

4.1.6. Confusion Matrix 

Figure 11 illustrates the confusion matrix of the MLP classifier. The well-classified samples are represented by 

the diagonal elements, and misclassifications are minimal, further supporting the high accuracy of the model. Table 

4 displays a comparison of the performance of different models based on key evaluation metrics with existing results. 

 

 
Figure 11. Confusion matrix of MLP. 
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Table 4. Comparison table. 

Method Dataset Accuracy [%] Loss [%] 

SVM [37] 40,613 95.2 4.8 
MLP [37] 40,613 97.65 2.35 
SVM [proposed] 60,412 97.45 2.55 
MLP [proposed] 60,412 98.27 1.73 

 

 

The ensemble neural network outperformed the SVM classifier in all key metrics, demonstrating superior 

performance in identifying video packets and localizing hidden cameras. This confirms the robustness of the ensemble 

approach in handling network-based video stream classification. 

 

5. CONCLUSION AND FUTURE SCOPE 

The AHCL has successfully demonstrated its efficacy in detecting and locating hidden cameras through the 

systematic processing of raw IoT network traffic. The convolutional neural network (CNN)-based deep learning 

model adopted by the system has been found to be highly effective in detection accuracy, establishing such a tool as a 

capable privacy protection mechanism. The resilience of the model under varying signal-to-noise ratio (SNR) 

conditions further reinforces this model's potential for deployment in real-world environments. This ensures that the 

system maintains a consistently high level of performance across diverse network environments, making this solution 

a credible and viable approach to ensuring personal privacy and security against hidden surveillance threats. 

The future development of the AHCL System includes a focus on the robustness of AI allocations, real-time 

operational capacity, adaptability of AI models, and accessibility for users. It is expected that there will be many 

enhancements, improvements, and expansions, with the following goals: first, we will expand sources of data by 

including a variety of video surveillance devices, environmental conditions, and different operational conditions to 

enhance generalizability; second, we will prioritize hidden camera detection in real-time to enable an immediate 

response in both consumer surveillance and enterprise security; third, we will aim to adapt AI models within the 

context of the rapidly changing landscape of IoTs in the surveillance area; and finally, we hope to integrate apps, 

which are more likely to be accessible and portable solutions for end-users in hidden camera detection in their 

everyday life. Even though our results appear encouraging, this study is still limited in several ways. First, the 

evaluation of the system used datasets sourced in controlled settings, and as such, these specific datasets may not 

adequately reflect the nuances of highly congested or encrypted networks in the real world. Second, the AHCL 

framework showed the ability to adapt to different variations in the described setup, but the system still needs to be 

tested in a large-scale deployment environment with heterogeneous IoT ecosystems. Lastly, deep learning models 

are computationally intensive, which may hinder deployment to low-end edge devices and therefore will require 

optimization. Collecting additional datasets, large-scale deployments in the field, and power-efficient models will be 

imperative to improve the practical applicability of the developed system while addressing the aforementioned 

limitations. 
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