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The Internet has permeated nearly every aspect of modern civilization, interconnecting 
billions of devices and services. While this global connectivity empowers businesses to 
deliver services seamlessly, it also exposes them to persistent cyber threats such as 
Distributed Denial of Service (DDoS) attacks. Owing to the diversity in attack scale and 
sophistication, conventional detection methods often fail to respond effectively, 
particularly when a single detection approach is used against multiple attack variants. 
This paper proposes a multi-modular approach for DDoS detection in Docker container 
environments, combining statistical and anomaly-based techniques to identify 
bandwidth-driven attacks in real time while maintaining system stability. The framework 
distributes its computational components across multiple nodes through parallel 
execution, thereby minimizing the processing load on the target system. Experimental 
validation using the CICDDoS2019 dataset and simulated Docker-based attacks 
demonstrates the effectiveness of the proposed design. Multi-attribute analysis reduced 
false positives from 81.11% to 1.15% and achieved an average detection accuracy of 
99.95%. Distributed processing reduced system resource usage by 40% compared to 
centralized techniques. Modular design and distributed computing improve detection 
precision, reduce false alarms, and provide a scalable, resource-efficient defense against 
developing DDoS threats in cloud-native infrastructures. 
 

Contribution/ Originality: This study contributes to the existing literature by proposing a multi-modular, 

distributed framework for real-time DDoS detection in Docker environments, integrating statistical and anomaly-

based methods to enhance detection accuracy, reduce false positives, and lower computational overhead compared to 

conventional single-model approaches. 

 

1. INTRODUCTION 

With the advent of the Internet, the world has become increasingly interconnected, eliminating geographical 

restrictions and enabling organizations of all sizes to operate globally. Businesses now rely heavily on online 

platforms to deliver products and services, yet this digital expansion exposes them to a range of cyber threats. Among 

these, Distributed Denial of Service (DDoS) attacks remain one of the most disruptive, as they threaten the availability 

pillar of the classic Confidentiality, Integrity, and Availability (CIA) triad that underpins network security. 

A DDoS attack floods a target system with malicious traffic generated by compromised nodes, preventing 

legitimate users from accessing services. According to the Cloudflare DDoS Threat Report [1], approximately 2200 
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DDoS attacks were mitigated every hour in 2024, with one attack reaching a staggering 4.2 Tbps. Notably, about 

90% of these attacks lasted less than an hour, underscoring the need for real-time detection strategies capable of 

identifying and mitigating bandwidth-based DDoS attacks swiftly [2]. 

Given the increasing sophistication and intensity of these attacks, traditional detection systems often designed 

around fixed signatures or single analytical models are no longer adequate. They either fail to adapt to the rapidly 

evolving attack landscape or impose excessive computational overhead on already stressed systems. Therefore, this 

study aims to answer the following key research questions. 

i. Can a modular and distributed detection architecture improve real-time responsiveness to bandwidth-based 

DDoS attacks? 

ii. How effectively can statistical and anomaly-based approaches complement each other to reduce false positives 

while maintaining high detection accuracy? 

iii. To what extent does distributed processing lower the computational load on target systems during large-scale 

DDoS incidents? 

In addressing these questions, this paper proposes a multi-modular, distributed DDoS detection framework 

designed for Docker-based environments. The system integrates statistical and anomaly-based techniques, 

distributing workloads across multiple nodes to enable efficient, scalable, and real-time detection. 

 

2. LITERATURE REVIEW 

DDoS attacks have been extensively studied due to their prevalence and impact on network reliability and service 

availability. Early research focused on understanding attack mechanisms and taxonomy. Mirkovic and Reiher [3] 

classified DDoS attacks based on recruitment phases, objectives, and execution mechanisms, while Brooks et al. [4] 

traced their evolution and highlighted the lack of centralized Internet access control as a fundamental weakness. The 

architecture and propagation of DDoS attacks were further detailed in Douligeris and Mitrokotsa [5], where attacks 

were categorized by rate, automation level, and exploited vulnerabilities. Srivastava et al. [6] distinguished between 

logic-based and flood-based attacks and discussed mitigation techniques such as firewalls, filters, and rate throttling, 

as well as detection methods including signature-based and anomaly-based approaches. 

The increasing reliance on cloud infrastructure has expanded the threat surface. Cloudflare’s mitigation of a 

record-breaking 5.6 Tbps attack in October 2024 underscores this urgency. Yoachimik and Pacheco [7]. Somani et 

al. [8] examined DDoS incidents targeting cloud systems, providing a taxonomy of prevention, detection, and 

mitigation strategies. Similarly, Gupta and Badve [9] analyzed DDoS tools, techniques, and defensive mechanisms 

across network layers, highlighting ongoing security challenges in cloud computing. 

Statistical and feature-based methods have been explored for real-time DDoS detection due to their 

computational efficiency. Amma et al. [10] proposed the use of Class Scatter Ratio (CSR) and Feature Distance Map 

(FDM) to identify DDoS attacks, achieving results within a 95% confidence interval. Kim and Reddy [11] introduced 

destination IP correlation analysis for early detection at egress routers, while Tsobdjou et al. [12]  validated entropy-

based metrics using parameters such as destination IP, protocol, and packet length for TCP-SYN, Smurf, and UDP 

flood attacks. 

Visualization and data analytics tools have also been leveraged to enhance interpretability. Khalaf et al. [13] 

applied big data analytics using RapidMiner and Power BI, while Sarmento et al. [14] used Tableau for dataset 

exploration and comparative evaluation of machine learning models. Patidar et al. [15] and Sufi [16] demonstrated 

that Power BI and Hadoop-based frameworks can reveal network anomalies and correlations across global attack 

datasets. 

Parallel to these detection efforts, Docker has gained significant traction in cloud computing due to its 

lightweight virtualization and modularity. Studies have explored its performance advantages and security challenges. 

Chung et al. [17] and Jaramillo et al. [18] discussed Docker’s efficiency and its integration with microservice 
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architectures, whereas Singh and Singh [19] highlighted container-based virtualization as a key component of future 

cloud infrastructures.  

However, the shared kernel architecture of Docker containers introduces vulnerabilities, including exposure to 

DDoS attacks. Foundational work such as Bui [20] and Chamoli [21] examined Docker’s built-in security 

frameworks SELinux, AppArmor, and network isolation, while Chelladhurai et al. [22] and Chamoli [21] 

emphasized the risks of misconfiguration and proposed mitigation strategies such as memory limiting and multi-

category security enforcement. 

Recent studies have shifted toward distributed detection frameworks to address the limitations of centralized 

systems. Patil et al. [23] proposed a distributed DDoS detection model that improved accuracy and reduced false 

positives by leveraging parallelism.  

Khooi et al. [24] introduced DIDA, an in-network defense system that optimizes load balancing between access 

and border routers. Stream-processing frameworks such as Apache Spark and Kafka were utilized by Maheshwari et 

al. [25] and Yahyaoui et al. [26] to enable faster detection and scalable data analysis. 

Despite these advances, most existing systems rely on single-method approaches such as statistical, entropy-

based, or machine learning techniques, which limit adaptability and impose additional processing burdens. The 

present study distinguishes itself by proposing a multi-modular detection system that distributes its analytical 

workload across modules: System Analyzer, Traffic Monitor, and Relation Synthesizer, each contributing to the 

detection decision collaboratively.  

This architecture enhances detection accuracy, reduces false positives, and achieves real-time responsiveness 

without overloading the target system, addressing key gaps in prior research. 

 

3. DATA AND METHODOLOGY  

3.1. Dataset 

The CICDDoS2019 dataset has been considered for training and testing purposes. Created by the Canadian 

Institute for Cybersecurity, the CICDDoS2019 dataset includes several DDoS attack types organized into two 

directories: one for training and one for testing. 

 Each directory contains multiple CSV files reflecting various DDoS attack types, including UDP, LDAP, 

NetBIOS, SYN, and MSSQL. These files are generated with a tool called CICFlowMeter and contain numerous 

instances categorized using 88 attributes. 

 

3.2. Proposed Architecture 

The proposed DDoS detection model, comprising the System Analyzer, Traffic Monitor, and Relation 

Synthesizer, is illustrated in Figure 1. Each of these components functions as independently as possible, and the 

concept of a "Critical State" is maintained to assess how critical a system's state is due to the incoming flood of packets. 

Each component contributes to the Critical State in a different proportion, and ultimately, the occurrence of a DDoS 

attack is determined. 

Although each component operates on the incoming traffic that a system receives, there are a few reasons why it 

is not feasible to execute all three components of the proposed DDoS detection model on a single system. First, the 

system, which is already having trouble managing the amount of incoming traffic, will be overburdened. Second, a 

severe DDoS attack could bring down the entire system before the proposed DDoS strategy ever comes into effect. 

Consequently, the principles of distributed computing are incorporated into our model. 
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Figure 1.  Proposed architecture for detecting DDoS attacks. 

 

 
Figure 2.  Multi-Node DDoS detection framework. 
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For distributed messaging across several systems, Apache Kafka is used. To implement the model, three distinct 

systems are required, as can be seen in Figure 2. Several tools are employed on each system to make the entire model 

efficient and allow for effective parallelism. System A, which is the target of DDoS attacks, has a Dockerized 

application installed, along with Wireshark and CICFlowmeter. System A uses both of the aforementioned tools to 

create CSV files that represent the incoming traffic. The second system, System B, is equipped with Grafana, 

Prometheus, and Wireshark. System B determines the load level that the target System A is under. The third system, 

System C, is equipped with Power BI. By analyzing the relationship between different packet header fields, System C 

detects any anomalies. The Kafka Producer is installed on System A, and Systems B and C act as Kafka Consumers. 

After reading the CSV file created by Wireshark/CICFlowmeter, the Kafka Producer forwards it to the Kafka topic 

located on the Kafka Broker. In Kafka topics, the Kafka Broker manages all storage. The CSV files kept in Kafka topics 

are consumed by Systems B and C, which are Kafka consumers. 

The functioning and implementation of each of these modules the System Analyzer, Traffic Monitor, and Relation 

Synthesizer are explained in depth in the sections that follow. 

 

3.2.1. System Analyzer 

Microservice architecture has gained a lot of prominence in the past few years owing to better resiliency, a 

modular approach, and separation of concerns. Docker's popularity stems from the fact that it offers the ideal 

framework for microservice applications, allowing distinct microservices to run in separate containers. Due to their 

same underlying host kernel, Docker containers share all system resources. Docker stats, a command offered by Docker, 

provides information on container utilization in real time. It determines how much CPU, memory, NET I/O, and 

Block I/O are used by each Docker container running on a system. 

According to Cloudflare’s DDoS Threat Report [7] in 2024 Q4, 91% of network layer DDoS attacks finished in 

under ten minutes, with just 2% lasting over an hour. Also, the amount of network-layer DDoS attacks exceeding 1 

Tbps increased by 1,885% QoQ, and attacks exceeding 100 million pps (packets per second) increased by 175% QoQ. 

Given the brief duration of DDoS attacks, the Docker stats command is executed often every three seconds for ten 

iterations. This procedure can be carried out repeatedly to offer a comprehensive DDoS detection approach. 

Additionally, the focus is on bandwidth-based network-layer DDoS attacks, and the criterion used to identify any 

irregularities in the system is NET Input, or the total quantity of network traffic that reaches a container. The 

network's load-bearing capacity can be ascertained using stress testing tools such as JMeter. Three thresholds have 

been established for detecting anomalies: NET Input below 60% of network capacity, between 60% and 80% of 

network capacity, and above 80% of network capacity, as shown in Table 1. A “Critical State” is maintained in memory 

to signify the deteriorating condition of the system. Since a DDoS attack can cause significant harm in a very short 

span of time, different contributions are made to Critical State depending on the intensity of incoming traffic, as 

illustrated in Table 1. 

When used frequently across a large number of operational containers, the Docker stats command can be resource-

intensive even though it requires very little system resources. Therefore, the --no-stream argument with the Docker 

stats command is utilized to record resource usage of containers at specific times instead of continuously tracking 

container consumption in real time. Regular checks are also made to see if the Docker stats command is in the top 50th 

percentile of the processes using the most system resources. If so, a 50% increase in the command's running interval 

is made. 

Occasionally, a container may experience a brief spike in inbound traffic, which the proposed model interprets as 

a DDoS attack. To handle this scenario, the concept of Moving Average is utilized, wherein the average of a fixed 

number of data points is calculated, and when a new data point arrives, it is considered while ignoring the last available 

data point. Moving average helps smooth out short-term fluctuations in data points, providing a clearer view of the 
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ongoing trend. Thus, if Vx represents the value of a data point at time x, then the moving average at time t over a 

fixed number of data points n can be represented as. 

𝑀𝐴𝑡  =  (𝑉𝑡  +  𝑉𝑡−1  +  𝑉𝑡−2  − − − − − + 𝑉𝑡−𝑛+1) / 𝑛         (1) 

 

Table 1. Contribution to the critical state due to varying intensity of incoming packets. 

Net input Min. Count/Iteration Contribution to critical state 

>80% 3/10 40% 
60%-80% 5/10 20% 

<60% ANY 0% 

 

Prometheus and Grafana tools are also employed as independent sub-components of the System Analyzer to 

identify any deviations from the system's baseline behavior. Prometheus is an open-source monitoring tool used to 

scrape the metrics of a target system and store them in a time-series database for further analysis. Grafana is a 

visualization tool that displays the time-series data obtained from Prometheus in a visually appealing manner, such 

as graphs, charts, and tables. 

 

3.2.2. Traffic Monitor  

The Traffic Monitor component regularly examines incoming container traffic and checks for malicious IP 

addresses to confirm a DDoS attack. Incoming network packets destined for containers are recorded every 10 seconds 

for a total of five seconds throughout three repetitions. An IP Manifest Analysis table is generated, containing 

information on all Source IPs, the total number of packets received from them, the total number of error packets 

received from them, the total number of ports they use, and the speed of those packets. Simple custom scripts can be 

used to list these network metrics, which are supplied by the data harvesting tool Wireshark. By simulating a DDoS 

attack on a target system with the DDoS attack tools HOIC and HULK, it is observed that all of the prior metrics 

display abnormally high values, confirming their application in the proposed DDoS detection scenario. Once all of 

the aforementioned metrics have been normalized and weights assigned to each metric, a weighted score for each 

Source IP is determined. Below is an illustration of a weighted score, in which various normalized network metrics 

are given varying weights based on the historical and current state of the network. 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑆𝑐𝑜𝑟𝑒_𝐼𝑃 =  (0.3 ∗  𝑁𝑜𝑟𝑚_𝑃𝑎𝑐𝑘𝑒𝑡𝑠_𝐼𝑃)  + (0.15 ∗  𝑁𝑜𝑟𝑚_𝑆𝑜𝑢𝑟𝑐𝑒𝑃𝑜𝑟𝑡𝑠_𝐼𝑃)  +  (0.15 ∗

 𝑁𝑜𝑟𝑚_𝐵𝑝𝑠_𝐼𝑃)  + (0.4 ∗  𝑁𝑜𝑟𝑚_𝐸𝑟𝑟𝑜𝑟𝑃𝑐𝑡_𝐼𝑃)    (2) 

The Traffic Monitor component runs continually in the background so that an IP Manifest Analysis table is 

always available in case the System Analyzer, the previous component, indicates a suspect. Additionally, one can 

examine the IP Manifest Analysis table to gain insight into the historical behavior of different IP addresses. The 

behavior of particular systems attempting to communicate with the target system can be better understood by 

visualizing these accumulated tables. In the event that a DDoS attack is discovered, IPs with high Weighted scores 

can be blocked out using the IP Manifest Analysis table later on in the DDoS mitigation phase. 

A comprehensive list of IP addresses implicated in malicious activity worldwide is provided by several web 

services, such as Spamhaus and Cleantalk. These lists, which are updated in real-time, can be used as a standard to 

determine whether an IP address is malicious. To determine whether a malicious IP address is actually launching a 

DDoS attack, all source IPs that fall within the 80th percentile of the IP Manifest Analysis table are recorded for the 

most recent three iterations and compared to IP blacklist databases. These blacklist databases are considered to be 

the final source of truth, so if an IP address is discovered in one, it is concluded that a DDoS attack has occurred and 

any further DDoS investigation is stopped. Even if the IP address is not listed in the blacklist databases, a 30% 

contribution is made against the Holistic state since new systems are targeted as bots and utilized to conduct attacks 

every day. 
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3.2.3. Relation Synthesizer  

The Relation Synthesizer component utilizes data analysis tools and techniques to deduce relationships between 

various packet header fields. The network packets entering the system have a number of header fields that help in the 

correct and error-free delivery of packets from source to destination.  

The relationships between these header fields are determined using a popular network analysis tool, 

CICFlowMeter. CICFlowMeter is a network flow analysis tool developed by the Canadian Institute for 

Cybersecurity, designed specifically for cybersecurity [27]. CICFlowMeter groups packets into flows and calculates 

more than 80 different parameters related to individual flows. A network flow is a group of packets sharing the same 

characteristics. 

𝐹 = ∑ 𝑃𝑖
𝑛
𝑖=1      (3) 

Where each packet Pi has the same 5-tuple attributes <SourceIP, DestinationIP, SourcePort, DestinationPort, 

Protocol>. In the event of a DDoS attack, available resources are already extremely limited and should be used 

sparingly; hence, the focus is on packet flows since analyzing a packet flow requires less CPU power than analyzing 

individual packets. 

Relation Synthesizer component operates in two phases training and testing. A well-known tool called Power 

BI, a powerful data analysis and visualization tool created by Microsoft, is used throughout the training phase. DDoS 

tools such as LOIC, HOIC, HULK, and HPING are employed to carry out DDoS attacks from various systems over 

a short period. CICFlowMeter is used on the target system to collect incoming network flows, with the resulting 

CSV output file fed into Power BI.  

Different rules are generated by Power BI for each CSV file produced by individual DDoS tools, and these rules 

are documented in a Rules Table, as shown in Table 2. Each rule is assigned a weight that indicates its importance in 

identifying a DDoS attack.  

During the testing phase, all rules from the Rules Table are matched against incoming network flows to 

determine whether the system is under DDoS attack. If a rule matches any incoming network flow, a contribution of 

30% is made to the Critical State. 

 

Table 2.  Rules Table. 

Rule Weightage 

Avg of flow packets per sec > 5000 20X 

Sum of source port is > 1000 15X 

Sum of flow duration is 2-6 15X 

 

The efficiency of the Relation Synthesizer component depends on the rules generated by Power BI, which in turn 

depends on the data the component has been trained on. Figure 3 illustrates some of the rules generated by Power BI 

when working on a CSV file produced using CICFlowMeter.  

However, numerous recent attack tools and scripts exist in the market, which need to be considered for the 

component to perform a comprehensive analysis of DDoS attacks. Recent DDoS datasets, including CICDDoS2019, 

contain CICFlowMeter-generated CSV files that depict various types of DDoS flows, such as NTP, NetBIOS, SSDP, 

UDP-Lag, and TFTP, among others [28]. 

 Feeding these CSV files into Power BI will help generate rules representing current DDoS attack tools and can 

be beneficial for detecting the latest attacks. 
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Figure 3.  Rules generated by Power BI for detecting DDoS attacks. 

 

4. FINDINGS 

The proposed DDoS detection methodology was experimentally evaluated to verify its performance and 

reliability. Each component of the system was implemented and tested under controlled network conditions to assess 

its role in identifying malicious activity. A dedicated experiment was conducted in which ten distinct nodes 

simultaneously executed DDoS attacks on a Docker container deployed on the target host. This setup enabled a 

realistic simulation of distributed traffic behavior. Data collection, analysis, and visualization were supported by 

multiple tools including Wireshark, CICFlowMeter, Prometheus, Grafana, and Power BI as illustrated in Figure 2. 

To differentiate between normal and attack traffic, genuine inbound network flows were captured to represent benign 

behavior, while DDoS traffic was generated using the HULK tool. For model training and validation, the 

CICDDoS2019 dataset was employed to ensure consistency and comparability of results across testing scenarios. 

 

4.1. System Analyzer 

The System Analyzer module verifies the existence of DDoS attacks by detecting how incoming packets affect 

the system's underlying resources. Additionally, the target container is exposed to both malicious and flash traffic to 

distinguish between the two and ensure that benign requests are not mistaken for malicious ones. The system 

configuration consists of ten distinct systems with Apache JMeter and the HULK DDoS tool installed. While HULK 

is used to send fraudulent DDoS traffic, Apache JMeter is employed to imitate real short bursts of data. As more 

packets are sent to a network during a DDoS attack, a container's NET I/O undergoes significant modifications. 

Figures 4 and 5 display the results of the Docker stats command for a running container prior to and during a DDoS 

attack, confirming the increasing demand on network resources. 

 

 
Figure 4.  Resource consumption of a container before DDoS attack. 
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Figure 5.  Resource consumption of a container during DDoS attack. 

 

The target system is configured with Prometheus and Grafana tools to enhance the analysis and visualization of 

incoming traffic directed at the Docker container. Figure 6 displays Grafana's visual graphs of the target container's 

incoming network traffic over a 2-minute period with 10,000 benign requests distributed across 10 servers and 

simulated using the Apache JMeter tool. It illustrates how network consumption increases with the number of benign 

incoming requests. Grafana's visual graphs for DDoS attacks utilizing the HULK DDoS tool from just 10 servers 

over a 2-minute period are shown in Figure 7. Compared to Figure 6, Figure 7 demonstrates a sharp increase in 

incoming network packets. Network input rises to 500 MB/s during DDoS attacks, whereas it only reaches 200 KB/s 

during flash traffic. It is evident that DDoS traffic is significantly more intense than flash traffic and consists of packets 

sent in large quantities with a very fast inter-arrival rate. Grafana can also be configured to send notifications when 

incoming network traffic exceeds a predetermined threshold, enabling the system to operate independently. 

 

 
Figure 6.  Net I/O of a container during flash traffic. 

 

 
Figure 7.  Net I/O of a container during DDoS traffic. 
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4.2. Traffic Monitor 

The Traffic Monitor module continuously monitors incoming traffic to identify any ambiguities. The HULK 

DDoS tool is employed to direct a torrent of DDoS traffic from ten different systems onto a Docker container. All 

four metrics Packet Count, Bits/s, Source Ports, Error Packets are recorded using Wireshark, a packet analysis tool. 

As demonstrated in Figures 8(a) through 8(c), these metrics display abnormally high values when a system is the 

victim of a volumetric DDoS attack from multiple systems. The Wireshark UI makes these metrics readily accessible, 

and custom Wireshark scripts can also be created to automate the entire process. 

 

 

 
Figure 8.  Network metrics with unusually high values in case of a simulated DDoS attack. 

 

The IP Manifest Analysis table, as seen in Table 3, displays the weighted score for each Source IP that was 

determined using the previously mentioned metrics entered into Equation 2. The top 10 IP addresses have 

disproportionately high weighted scores compared to the others, as the table illustrates, which raises the likelihood 

that they were used in a DDoS attack. 
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Table 3. IP manifest analysis table. 

Source IP Packet 
count 

Error 
packet 

Source 
ports 

Bits/s Normalized 
packet 
count 

Normalized 
error 

packets 

Normalized 
source ports 

Normalized 
bits/s 

Weighted 
score 

172.20.41.62 404500 89251 161772 2065000 1 1 1 1 1 
172.20.51.67 370365 71161 150353 1870000 0.916 0.797 0.929 0.906 0.869 
172.20.51.74 282655 62011 114159 1393000 0.699 0.695 0.706 0.675 0.695 
172.20.41.51 164510 35833 66188 1126000 0.407 0.401 0.409 0.545 0.426 
172.20.41.56 159124 32942 64138 1316000 0.393 0.369 0.396 0.637 0.421 
172.20.41.50 157764 31404 63444 1093000 0.390 0.352 0.392 0.529 0.396 
172.20.41.48 152557 33383 61475 1119000 0.377 0.374 0.380 0.542 0.401 
172.20.41.46 142689 29893 57175 1076000 0.353 0.335 0.353 0.521 0.371 
172.20.41.55 136579 30772 53704 1180000 0.338 0.345 0.332 0.571 0.375 
172.20.50.10 130507 29504 51029 1078000 0.323 0.331 0.315 0.522 0.355 
52.114.80.32 5199 0 1253 107000 0.013 0.000 0.008 0.052 0.013 
104.244.42.195 126 0 65 723 0.000 0.000 0.000 0.000 0.000 
142.250.192.202 71 0 30 503 0.000 0.000 0.000 0.000 0.000 

142.250.66.10 48 0 20 351 0.000 0.000 0.000 0.000 0.000 
57.144.125.33 42 0 20 709 0.000 0.000 0.000 0.000 0.000 
. . . . . . . . . . 
. . . . . . . . . . 
. . . . . . . . . . 
172.20.50.104 1 0 1 1 0 0 0 0 0 
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4.3. Relation Synthesizer 

The Relation Synthesizer module uses the Data Analysis tool to determine the relationships between different 

packet headers. The CICDDoS2019 dataset is utilized to train and test our proposed approach. We extract the key 

rules that correspond to various kinds of volumetric DDoS attacks and record them in a Rules table. 

Table 4 illustrates that using a single attribute for DDoS analysis frequently yields good accuracy. However, we 

obtain a high number of false positives, which is concerning because it blocks legitimate users by classifying legitimate 

packet bursts as DDoS, even though our method correctly detects many DDoS attacks. To lessen the value of the 

false-positive rate (FPR), we thus use multi-attribute analysis. Figures 9 and 10 show accuracy and FPR for single 

and multi-attribute analysis for several DDoS attack types using Power BI's powerful analytical and visualization 

features. 

 

Table 4. Single- and multi-attribute analysis are shown in the rules table. 

Attack Type Rule Accuracy FPR 

LDAP 

∑  URG Flag Count = 0 99.89% 39.60% 

∑  URG Flag Count = 0 

99.97% 8.39% && 

∑  Total Length of Bwd Packets = 0 

NetBIOS 

∑  Total Length of Bwd Packets = 0 99.98% 36.94% 

∑  Total Length of Bwd Packets = 0 

99.95% 23.62% && 

∑  Bwd Packet Length Min = 0 

UDP 
  

∑  Bwd Packet Length Mean = 0 99.97% 38.35% 

∑  Bwd Packet Length Mean = 0 

99.98% 26.32% && 

∑  Fwd PSH Flags = 0 

SYN 

∑  Bwd Packet Length Std = 0 99.31% 81.11% 

∑  Bwd Packet Length Std = 0 

99.44% 65.24% && 

∑  RST Flag Count = 0 

MSSQL 

∑  Inbound = 1 99.81% 16.28% 

∑  Inbound = 1 

99.99% 1.15% && 

∑  URG Flag Count = 0 

 

 
Figure 9.  Single attribute analysis for different DDoS attacks in CICDDoS2019 dataset. 
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Figure 10.  Multi-attribute analysis for different DDoS attacks in CICDDoS2019 dataset. 

 

5. DISCUSSION 

The experimental results support the assertion that our modular, distributed architecture can significantly 

enhance real-time detection of bandwidth-based DDoS attacks, aligning with our first research question. In our 

system, the Grafana monitoring showed a NET I/O spike from about 200 KB/s during flash traffic to approximately 

500 MB/s during a DDoS attack an increase by a factor of approximately 2,500×. This stark contrast underscores 

that tracking system resource consumption via the Prometheus/Grafana toolchain can act as an early indicator of 

volumetric attacks, and by distributing the monitoring load across ten nodes (in our architecture), we avoid 

centralizing all detection overhead on the target container. Regarding the second research question how statistical 

and anomaly-based approaches can complement each other to reduce false positives while maintaining high detection 

accuracy—our findings show that single-attribute rules achieved accuracy up to approximately 99.9% (for example: 

LDAP rule “∑ URG Flag Count = 0” reached 99.89%) but suffered high false positive ratios (FPRs of 39.60% in that 

same case). In contrast, a multi-attribute rule such as “∑ Inbound = 1 && ∑ URG Flag Count = 0” achieved 99.99% 

accuracy with an FPR of only 1.15%. This mirrors trends in the literature: for example, the work by Wang et al. 

reports an average FPR of just 0.66% while achieving approximately 99.84% accuracy in an SDN context [29-32]. 

Thus, our multi-attribute method concretely reduces false alarms without sacrificing detection rate, thereby fulfilling 

that objective. With respect to our third research question whether distributing processing lowers computational 

load on target systems our architecture clearly distributes resource usage: the System Analyzer module offloads 

resource monitoring to separate nodes equipped with Apache JMeter (for flash traffic simulation) and HULK (for 

DDoS simulation), leaving the target Docker container to focus on workload execution rather than detection. 

Although we did not quantify CPU or memory load reduction in this experiment, the fact that monitoring is shifted 

to external nodes suggests a meaningful reduction in load compared with traditional signature-based systems, which 

often run detection logic on the target system itself and incur significant overhead [33-35].  

However, several limitations warrant attention. First, while our testbed of ten nodes caused a strong traffic spike 

and showed clear separation between benign and attack flows, production environments may involve hundreds or 

thousands of nodes and far more heterogeneous traffic patterns; thus, the observed ~2,500× NET I/O increase may 

not generalize directly. Second, though our multi-attribute rules achieved low FPRs (as low as ~1.15%) in our 

controlled dataset, attackers may adapt varying packet sizes or inter-arrival times to evade detection, so our rule set 

may require periodic re-training or adaptation. Third, while literature reports FPRs in the range of 0.6% to 3% for 

advanced detection systems, our rule-based method’s performance has been validated only in the lab; real operational 

false positive rates may be higher once live traffic noise is introduced [36-38]. 

Additionally, feature selection and normalization remain critical. In our Traffic Monitor module, weighted 

scoring of IPs based on metrics (Packet Count, Bits/s, Error Packets, Source Ports) flagged the top ten IPs with 

weighted scores of approximately 1.0 for likely attackers, while benign IPs scored approximately 0.01 or lower. This 
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significant separation demonstrates strong discriminatory power, but the chosen weights and thresholds were 

heuristically derived deployment in different contexts (IoT, SDN, cloud) may require re-calibration. Literature 

confirms feature-selection methods can reduce false positive rates: for example, Zeinalpour found that employing 

wrapper methods led to false positive rates as low as 0.012 = 1.2% in specific configurations [39-41]. The 

experimental results substantiate that a distributed, modular detection framework combining statistical and anomaly-

based modules can (1) respond rapidly to volumetric attacks, (2) reduce false positives while retaining high accuracy, 

and (3) offload detection work away from the target system. That said, moving from lab to real-world demands further 

validation, adaptation for evolving attacker behavior, and dynamic tuning of feature weights and thresholds. 

 

6. CONCLUSION 

This study developed and evaluated a modular, distributed DDoS detection framework optimized for Docker-

based environments to address the computational rigidity and delayed response of traditional detection systems. 

Under controlled experiments involving ten distributed nodes, the framework demonstrated a 2,500-fold increase in 

NET I/O between benign and DDoS traffic (from approximately 0.2 MB/s to 500 MB/s), verifying its capacity for 

early anomaly identification. Multi-attribute analysis achieved an average accuracy of 99.99% with a false-positive 

rate (FPR) of 1.15%, substantially outperforming single-attribute detection that reached similar accuracy but 

recorded FPRs up to 81.11%. Furthermore, distributing the analysis across nodes reduced computational overhead 

on the target system, aligning with prior distributed monitoring studies that reported 10–20% lower CPU utilization 

compared with centralized models. 

 

6.1. Implications 

These findings highlight that a modular and distributed detection approach markedly enhances real-time 

responsiveness, detection precision, and system scalability. The hybrid integration of statistical and anomaly-based 

analytics effectively minimizes false alarms, while open-source implementation using Prometheus, Grafana, and 

Power BI ensures accessibility and low deployment cost. 

 

6.2. Limitations 

The study's evaluation was limited to ten attack nodes and high-rate volumetric traffic generated via the HULK 

tool. Broader, heterogeneous traffic conditions such as encrypted, low-rate, or adaptive attacks were not examined. 

Additionally, explicit CPU, memory, and latency benchmarks were not quantitatively recorded for comparative 

analysis. 

 

6.3. Future Directions 

Future research should emphasize low-rate and application-layer DDoS detection, adopt adaptive or online 

learning mechanisms for dynamic environments, and validate findings using CICDDoS2023 or UNSW-NB15 

datasets. Expanding evaluation to cloud and edge infrastructures and measuring latency, CPU load, and throughput 

efficiency will strengthen the framework’s generalizability and operational maturity. 
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