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The Internet has permeated nearly every aspect of modern civilization, interconnecting
billions of devices and services. While this global connectivity empowers businesses to
deliver services seamlessly, it also exposes them to persistent cyber threats such as
Distributed Denial of Service (DDoS) attacks. Owing to the diversity in attack scale and
sophistication, conventional detection methods often fail to respond effectively,
particularly when a single detection approach is used against multiple attack variants.
This paper proposes a multi-modular approach for DDoS detection in Docker container
environments, combining statistical and anomaly-based techniques to identify
bandwidth-driven attacks in real time while maintaining system stability. The framework
distributes its computational components across multiple nodes through parallel
execution, thereby minimizing the processing load on the target system. Experimental
validation using the CICDDoS2019 dataset and simulated Docker-based attacks

demonstrates the effectiveness of the proposed design. Multi-attribute analysis reduced
false positives from 81.11% to 1.15% and achieved an average detection accuracy of
99.95%. Distributed processing reduced system resource usage by 40% compared to
centralized techniques. Modular design and distributed computing improve detection
precision, reduce false alarms, and provide a scalable, resource-efficient defense against
developing DDoS threats in cloud-native infrastructures.

Contribution/ Originality: This study contributes to the existing literature by proposing a multi-modular,
distributed framework for real-time DDoS detection in Docker environments, integrating statistical and anomaly-
based methods to enhance detection accuracy, reduce false positives, and lower computational overhead compared to

conventional single-model approaches.

1. INTRODUCTION

With the advent of the Internet, the world has become increasingly interconnected, eliminating geographical
restrictions and enabling organizations of all sizes to operate globally. Businesses now rely heavily on online
platforms to deliver products and services, yet this digital expansion exposes them to a range of cyber threats. Among
these, Distributed Denial of Service (DDoS) attacks remain one of the most disruptive, as they threaten the availability
pillar of the classic Confidentiality, Integrity, and Availability (CIA) triad that underpins network security.

A DDoS attack floods a target system with malicious traffic generated by compromised nodes, preventing

legitimate users from accessing services. According to the Cloudflare DDoS Threat Report (17, approximately 2200
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DDosS attacks were mitigated every hour in 2024, with one attack reaching a staggering 4.2 Tbps. Notably, about
90% of these attacks lasted less than an hour, underscoring the need for real-time detection strategies capable of
identifying and mitigating bandwidth-based DDoS attacks swiftly [27].

Given the increasing sophistication and intensity of these attacks, traditional detection systems often designed
around fixed signatures or single analytical models are no longer adequate. They either fail to adapt to the rapidly
evolving attack landscape or impose excessive computational overhead on already stressed systems. Therefore, this

study aims to answer the following key research questions.

i Can a modular and distributed detection architecture improve real-time responsiveness to bandwidth-based
DDosS attacks?
ii. How effectively can statistical and anomaly-based approaches complement each other to reduce false positives

while maintaining high detection accuracy?
iii. To what extent does distributed processing lower the computational load on target systems during large-scale
DDoS incidents?
In addressing these questions, this paper proposes a multi-modular, distributed DDoS detection framework
designed for Docker-based environments. The system integrates statistical and anomaly-based techniques,

distributing workloads across multiple nodes to enable efficient, scalable, and real-time detection.

2. LITERATURE REVIEW

DDoS attacks have been extensively studied due to their prevalence and impact on network reliability and service
availability. Early research focused on understanding attack mechanisms and taxonomy. Mirkovic and Reiher [37]
classified DDoS attacks based on recruitment phases, objectives, and execution mechanisms, while Brooks et al. [4]
traced their evolution and highlighted the lack of centralized Internet access control as a fundamental weakness. The
architecture and propagation of DDoS attacks were further detailed in Douligeris and Mitrokotsa [57, where attacks
were categorized by rate, automation level, and exploited vulnerabilities. Srivastava et al. [6] distinguished between
logic-based and flood-based attacks and discussed mitigation techniques such as firewalls, filters, and rate throttling,
as well as detection methods including signature-based and anomaly-based approaches.

The increasing reliance on cloud infrastructure has expanded the threat surface. Cloudflare’s mitigation of a
record-breaking 5.6 Tbps attack in October 2024 underscores this urgency. Yoachimik and Pacheco [77]. Somani et
al. [87] examined DDoS incidents targeting cloud systems, providing a taxonomy of prevention, detection, and
mitigation strategies. Similarly, Gupta and Badve [97] analyzed DDoS tools, techniques, and defensive mechanisms
across network layers, highlighting ongoing security challenges in cloud computing.

Statistical and feature-based methods have been explored for real-time DDoS detection due to their
computational efficiency. Amma et al. [107] proposed the use of Class Scatter Ratio (CSR) and Feature Distance Map
(FDM) to identify DDoS attacks, achieving results within a 95% confidence interval. Kim and Reddy [117 introduced
destination IP correlation analysis for early detection at egress routers, while Tsobdjou et al. (127 validated entropy-
based metrics using parameters such as destination IP, protocol, and packet length for TCP-SYN, Smurf, and UDP
flood attacks.

Visualization and data analytics tools have also been leveraged to enhance interpretability. Khalaf et al. [13]
applied big data analytics using RapidMiner and Power BI, while Sarmento et al. (147 used Tableau for dataset
exploration and comparative evaluation of machine learning models. Patidar et al. [157] and Sufi [16] demonstrated
that Power BI and Hadoop-based frameworks can reveal network anomalies and correlations across global attack
datasets.

Parallel to these detection efforts, Docker has gained significant traction in cloud computing due to its
lightweight virtualization and modularity. Studies have explored its performance advantages and security challenges.

Chung et al. [17] and Jaramillo et al. (18] discussed Docker’s efficiency and its integration with microservice
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architectures, whereas Singh and Singh [197 highlighted container-based virtualization as a key component of future
cloud infrastructures.

However, the shared kernel architecture of Docker containers introduces vulnerabilities, including exposure to
DDoS attacks. Foundational work such as Bui [207] and Chamoli [217] examined Docker’s built-in security
frameworks SELinux, AppArmor, and network isolation, while Chelladhurai et al. [227] and Chamoli [21]
emphasized the risks of misconfiguration and proposed mitigation strategies such as memory limiting and multi-
category security enforcement.

Recent studies have shifted toward distributed detection frameworks to address the limitations of centralized
systems. Patil et al. [237] proposed a distributed DDoS detection model that improved accuracy and reduced false
positives by leveraging parallelism.

Khooi et al. [247] introduced DIDA, an in-network defense system that optimizes load balancing between access
and border routers. Stream-processing frameworks such as Apache Spark and Kafka were utilized by Maheshwari et
al. [257 and Yahyaoui et al. [267] to enable faster detection and scalable data analysis.

Despite these advances, most existing systems rely on single-method approaches such as statistical, entropy-
based, or machine learning techniques, which limit adaptability and impose additional processing burdens. The
present study distinguishes itself by proposing a multi-modular detection system that distributes its analytical
workload across modules: System Analyzer, Traffic Monitor, and Relation Synthesizer, each contributing to the
detection decision collaboratively.

This architecture enhances detection accuracy, reduces false positives, and achieves real-time responsiveness

without overloading the target system, addressing key gaps in prior research.

3. DATA AND METHODOLOGY
8.1. Dataset

The CICDDo0S2019 dataset has been considered for training and testing purposes. Created by the Canadian
Institute for Cybersecurity, the CICDDo0S2019 dataset includes several DDoS attack types organized into two
directories: one for training and one for testing.

Each directory contains multiple CSV files reflecting various DDoS attack types, including UDP, LDAP,
NetBIOS, SYN, and MSSQL. These files are generated with a tool called CICFlowMeter and contain numerous

instances categorized using 88 attributes.

3.2. Proposed Architecture

The proposed DDoS detection model, comprising the System Analyzer, Traffic Monitor, and Relation
Synthesizer, is illustrated in Figure 1. Each of these components functions as independently as possible, and the
concept of'a "Critical State" is maintained to assess how critical a system's state is due to the incoming flood of packets.
Each component contributes to the Critical State in a different proportion, and ultimately, the occurrence of a DDoS
attack is determined.

Although each component operates on the incoming traffic that a system receives, there are a few reasons why it
is not feasible to execute all three components of the proposed DDoS detection model on a single system. First, the
system, which is already having trouble managing the amount of incoming traffic, will be overburdened. Second, a
severe DDoS attack could bring down the entire system before the proposed DDoS strategy ever comes into effect.

Consequently, the principles of distributed computing are incorporated into our model.
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Figure 1. Proposed architecture for detecting DDoS attacks.
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Figure 2. Multi-Node DDoS detection framework.
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For distributed messaging across several systems, Apache Kafka is used. To implement the model, three distinct
systems are required, as can be seen in Figure 2. Several tools are employed on each system to make the entire model
efficient and allow for effective parallelism. System A, which is the target of DDoS attacks, has a Dockerized
application installed, along with Wireshark and CICFlowmeter. System A uses both of the aforementioned tools to
create CSV files that represent the incoming traffic. The second system, System B, is equipped with Grafana,
Prometheus, and Wireshark. System B determines the load level that the target System A is under. The third system,
System C, is equipped with Power Bl. By analyzing the relationship between different packet header fields, System C
detects any anomalies. The Kafka Producer is installed on System A, and Systems B and C act as Katka Consumers.
After reading the CSV file created by Wireshark/CICFlowmeter, the Katka Producer forwards it to the Katka topic
located on the Kafka Broker. In Kafka topics, the Kafka Broker manages all storage. The CSV files kept in Kafka topics
are consumed by Systems B and C, which are Kafka consumers.

The functioning and implementation of each of these modules the System Analyzer, Traffic Monitor, and Relation

Synthesizer are explained in depth in the sections that follow.

3.2.1. System Analyzer

Microservice architecture has gained a lot of prominence in the past few years owing to better resiliency, a
modular approach, and separation of concerns. Docker's popularity stems from the fact that it offers the ideal
framework for microservice applications, allowing distinct microservices to run in separate containers. Due to their
same underlying host kernel, Docker containers share all system resources. Docker stats, a command offered by Docker,
provides information on container utilization in real time. It determines how much CPU, memory, NET [/0, and
Block I/0 are used by each Docker container running on a system.

According to Cloudflare’s DDoS Threat Report [77] in 2024 Q4, 91% of network layer DDoS attacks finished in
under ten minutes, with just 2% lasting over an hour. Also, the amount of network-layer DDoS attacks exceeding 1
Thbps increased by 1,885% QoQ, and attacks exceeding 100 million pps (packets per second) increased by 175% QoQ.
Given the brief duration of DDoS attacks, the Docker stats command is executed often every three seconds for ten
iterations. This procedure can be carried out repeatedly to offer a comprehensive DDoS detection approach.
Additionally, the focus is on bandwidth-based network-layer DDoS attacks, and the criterion used to identify any
irregularities in the system is NET Input, or the total quantity of network traffic that reaches a container. The
network's load-bearing capacity can be ascertained using stress testing tools such as JMeter. Three thresholds have
been established for detecting anomalies: NET Input below 60% of network capacity, between 60% and 80% of
network capacity, and above 80% of network capacity, as shown in Table 1. A “Critical State” is maintained in memory
to signify the deteriorating condition of the system. Since a DDoS attack can cause significant harm in a very short
span of time, different contributions are made to Critical State depending on the intensity of incoming traffic, as
illustrated in Table 1.

When used frequently across a large number of operational containers, the Docker stats command can be resource-
intensive even though it requires very little system resources. Therefore, the --no-stream argument with the Docker
stats command is utilized to record resource usage of containers at specific times instead of continuously tracking
container consumption in real time. Regular checks are also made to see if the Docker stats command is in the top 50th
percentile of the processes using the most system resources. If so, a 50% increase in the command's running interval
is made.

Occasionally, a container may experience a brief spike in inbound traffic, which the proposed model interprets as
a DDoS attack. To handle this scenario, the concept of Moving Average is utilized, wherein the average of a fixed
number of data points is calculated, and when a new data point arrives, it is considered while ignoring the last available

data point. Moving average helps smooth out short-term fluctuations in data points, providing a clearer view of the
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ongoing trend. Thus, if Vi represents the value of a data point at time x, then the moving average at time t over a
fixed number of data points n can be represented as.

MA, = Vi + Veeg + Vg ————— +Vins) /1 (1)

Table 1. Contribution to the critical state due to varying intensity of incoming packets.

Net input Min. Count/Iteration Contribution to critical state
>80% 3/10 40%

60%-80% 5/10 20%
<60% ANY 0%

Prometheus and Grafana tools are also employed as independent sub-components of the System Analyzer to
identify any deviations from the system's baseline behavior. Prometheus is an open-source monitoring tool used to
scrape the metrics of a target system and store them in a time-series database for further analysis. Grafana is a
visualization tool that displays the time-series data obtained from Prometheus in a visually appealing manner, such

as graphs, charts, and tables.

3.2.2. Traffic Monitor

The Traffic Monitor component regularly examines incoming container traffic and checks for malicious IP
addresses to confirm a DDoS attack. Incoming network packets destined for containers are recorded every 10 seconds
for a total of five seconds throughout three repetitions. An IP Manifest Analysis table is generated, containing
information on all Source IPs, the total number of packets received from them, the total number of error packets
received from them, the total number of ports they use, and the speed of those packets. Simple custom scripts can be
used to list these network metrics, which are supplied by the data harvesting tool Wireshark. By simulating a DDoS
attack on a target system with the DDoS attack tools HOIC and HULK, it is observed that all of the prior metrics
display abnormally high values, confirming their application in the proposed DDoS detection scenario. Once all of
the aforementioned metrics have been normalized and weights assigned to each metric, a weighted score for each
Source IP is determined. Below is an illustration of a weighted score, in which various normalized network metrics
are given varying weights based on the historical and current state of the network.

Weighted_Score_IP = (0.3 * Norm_Packets_IP) + (0.15 * Norm_SourcePorts_IP) + (0.15 *
Norm_Bps_IP) + (0.4 * Norm_ErrorPct_IP) (2)

The Trattic Monitor component runs continually in the background so that an IP Manifest Analysis table is
always available in case the System Analyzer, the previous component, indicates a suspect. Additionally, one can
examine the IP Manifest Analysis table to gain insight into the historical behavior of different IP addresses. The
behavior of particular systems attempting to communicate with the target system can be better understood by
visualizing these accumulated tables. In the event that a DDoS attack is discovered, IPs with high Weighted scores
can be blocked out using the IP Manifest Analysis table later on in the DDoS mitigation phase.

A comprehensive list of IP addresses implicated in malicious activity worldwide is provided by several web
services, such as Spamhaus and Cleantalk. These lists, which are updated in real-time, can be used as a standard to
determine whether an IP address is malicious. To determine whether a malicious IP address is actually launching a
DDosS attack, all source IPs that fall within the 80th percentile of the IP Manifest Analysis table are recorded for the
most recent three iterations and compared to IP blacklist databases. These blacklist databases are considered to be
the final source of truth, so if an IP address is discovered in one, it is concluded that a DDoS attack has occurred and
any further DDoS investigation is stopped. Even if the IP address is not listed in the blacklist databases, a 30%
contribution is made against the Holistic state since new systems are targeted as bots and utilized to conduct attacks

every day.
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3.2.8. Relation Synthesizer

The Relation Synthesizer component utilizes data analysis tools and techniques to deduce relationships between
various packet header fields. The network packets entering the system have a number of header fields that help in the
correct and error-free delivery of packets from source to destination.

The relationships between these header fields are determined using a popular network analysis tool,
CICFlowMeter. CICFlowMeter is a network flow analysis tool developed by the Canadian Institute for
Cybersecurity, designed specifically for cybersecurity [277]. CICFlowMeter groups packets into flows and calculates
more than 80 different parameters related to individual flows. A network flow is a group of packets sharing the same
characteristics.

F=Y1P (3)

Where each packet P; has the same 5-tuple attributes <SourcelP, DestinationIP, SourcePort, DestinationPort,
Protocol>. In the event of a DDoS attack, available resources are already extremely limited and should be used
sparingly; hence, the focus is on packet flows since analyzing a packet flow requires less CPU power than analyzing
individual packets.

Relation Synthesizer component operates in two phases training and testing. A well-known tool called Power
BI, a powerful data analysis and visualization tool created by Microsoft, is used throughout the training phase. DDoS
tools such as LOIC, HOIC, HULK, and HPING are employed to carry out DDoS attacks from various systems over
a short period. CICFlowMeter is used on the target system to collect incoming network flows, with the resulting
CSV output file fed into Power BI.

Different rules are generated by Power BI for each CSV file produced by individual DDoS tools, and these rules
are documented in a Rules Table, as shown in Table 2. Each rule is assigned a weight that indicates its importance in
identifying a DDoS attack.

During the testing phase, all rules from the Rules Table are matched against incoming network flows to
determine whether the system is under DDoS attack. If a rule matches any incoming network flow, a contribution of

30% 1s made to the Critical State.

Table 2. Rules Table.

Rule Weightage
Avg of flow packets per sec > 5000 20X
Sum of source port is > 1000 15X
Sum of flow duration is 2-6 15X

The efficiency of the Relation Synthesizer component depends on the rules generated by Power BI, which in turn
depends on the data the component has been trained on. Figure 3 illustrates some of the rules generated by Power Bl
when working on a CSV file produced using CICFlowMeter.

However, numerous recent attack tools and scripts exist in the market, which need to be considered for the
component to perform a comprehensive analysis of DDoS attacks. Recent DDoS datasets, including CICDD0S2019,
contain CICFlowMeter-generated CSV files that depict various types of DDoS flows, such as NTP, NetBIOS, SSDP,
UDP-Lag, and TFTP, among others [287.

Feeding these CSV files into Power BI will help generate rules representing current DDoS attack tools and can

be beneficial for detecting the latest attacks.
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Figure 3. Rules generated by Power BI for detecting DDoS attacks.

4. FINDINGS

The proposed DDoS detection methodology was experimentally evaluated to verify its performance and
reliability. Each component of the system was implemented and tested under controlled network conditions to assess
its role in identifying malicious activity. A dedicated experiment was conducted in which ten distinct nodes
simultaneously executed DDoS attacks on a Docker container deployed on the target host. This setup enabled a
realistic simulation of distributed traffic behavior. Data collection, analysis, and visualization were supported by
multiple tools including Wireshark, CICFlowMeter, Prometheus, Grafana, and Power BI as illustrated in Figure 2.
To differentiate between normal and attack traffic, genuine inbound network flows were captured to represent benign
behavior, while DDoS traffic was generated using the HULK tool. For model training and validation, the

CICDDoS2019 dataset was employed to ensure consistency and comparability of results across testing scenarios.

4.1. System Analyzer

The System Analyzer module verifies the existence of DDoS attacks by detecting how incoming packets affect
the system's underlying resources. Additionally, the target container is exposed to both malicious and flash traffic to
distinguish between the two and ensure that benign requests are not mistaken for malicious ones. The system
configuration consists of ten distinct systems with Apache JMeter and the HULK DDoS tool installed. While HULK
is used to send fraudulent DDoS traffic, Apache JMeter is employed to imitate real short bursts of data. As more
packets are sent to a network during a DDoS attack, a container's NET I/0 undergoes significant modifications.
Figures 4 and 5 display the results of the Docker stats command for a running container prior to and during a DDoS

attack, confirming the increasing demand on network resources.

C:\Users\Sushant Chamolirdocker stats --no-stream
CONTAINER ID  NAME CPU % MEM USAGE / LIMIT MEM % NET I/0 BLOCK I/0 PIDS

b6b8914fc3af  Apache-Server 0.01% 24.21MiB / 7.595GiB  ©.31% 123kB / 71.7kB @B / @B 82

Figure 4. Resource consumption of a container before DDoS attack.
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C:\Users\Sushant Chamolirdocker stats --no-stream
CONTAINER ID  NAME CPU % MEM USAGE LIMIT MEM % NET BLOCK I/O0 PIDS

b6b8914fc3af  Apache-Server  0.00% 34.95MiB / 7.595GiB  ©.45% 1e3MB / 156MB ©B / @B 109

Figure 5. Resource consumption of a container during DDoS attack.

The target system is configured with Prometheus and Grafana tools to enhance the analysis and visualization of
incoming traffic directed at the Docker container. Figure 6 displays Grafana's visual graphs of the target container's
incoming network traffic over a 2-minute period with 10,000 benign requests distributed across 10 servers and
simulated using the Apache JMeter tool. It illustrates how network consumption increases with the number of benign
incoming requests. Grafana's visual graphs for DDoS attacks utilizing the HULK DDoS tool from just 10 servers
over a 2-minute period are shown in Figure 7. Compared to Figure 6, Figure 7 demonstrates a sharp increase in
incoming network packets. Network input rises to 500 MB/s during DDoS attacks, whereas it only reaches 200 KB/s
during flash traffic. It is evident that DDoS traffic is significantly more intense than flash traffic and consists of packets
sent in large quantities with a very fast inter-arrival rate. Grafana can also be configured to send notifications when

incoming network traffic exceeds a predetermined threshold, enabling the system to operate independently.

eived Network Traffic

250 kB/s

Figure 6. Net I/O of a container during flash traffic.

Received Network Traffic

Figure 7. Net I/O of a container during DDoS traffic.
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4.2. Traffic Monitor

The Traftfic Monitor module continuously monitors incoming traffic to identify any ambiguities. The HULK
DDosS tool is employed to direct a torrent of DDoS traffic from ten different systems onto a Docker container. All
four metrics Packet Count, Bits/s, Source Ports, Error Packets are recorded using Wireshark, a packet analysis tool.
As demonstrated in Figures 8(a) through 8(c), these metrics display abnormally high values when a system is the
victim of a volumetric DDoS attack from multiple systems. The Wireshark UI makes these metrics readily accessible,

and custom Wireshark scripts can also be created to automate the entire process.

Ethemet-57  IPv4-75  IPv6-17  TCP-203359  UDP-44 Topic /Item Count  Average MinVal MaxVal Rate(ms) Percent BurstRate BurstStart
- ~ v |Pv4 Statistics/Destinations and Ports 2108266 260925 100% 384700  42.885
Address A Address B Packets Bits/sA ~ B > 172204150 1262811 156289 5950% 238100 42885
172.20.41.62 172.2041.60 404,500 2065 kbps > 172204162 161772 20021 767% 8O0 11625
172.20.51.67 172.2041.60 370,365 1870 kbps > 172205167 150353 18608  T.13% 53500 20370
172.20.51.74 172.20.41.60 282,655 1393 kbps > 172205174 114159 14129 S41% 40900 9945
172.20.41.51 172.20.41.60 164,510 1126 kbps > 172204151 66188 08192 3.14% 25500 20.601
172.20.41.56 172.20.41.60 159,124 1316 kbps > 172204156 64138 07938 304% 21100 52786
172.20.41.50 172.20.41.60 157,764 1093 kbps ) 172204150 344 07852 301% 28600 31.605
172.20.41.48 172.20.41.60 152,557 1119 kbps > :;;jg:ﬁ g;:;: g;z‘;ﬁ ;:?: ‘:;;gg :;‘I’:;
172.20.41.46 17220.41.60 142,689 1076 kbps L aanense e Gk asse ey esont
172.20.41.55 172.2041.60 136,579 1180 kbps > 1722050.10 51029 06316 242%  1.8400 37731
172.20.50.10 172.20.41.60 130,507 1078 kbps > 521148032 1253 00155 006% 01200 42956
52.114.80.32 172.20.41.60 5,199 107 kbps ) 22400251 o 00011 000% 00400 2314
172.20.41.60 3.7.27.57 a7 31 kbps. > 163.70.14460 65 0.0008 000% 01000 333
172.20.41.60 163.70.144.60 133 2140 bits/s > 10428442195 6 00008  000% 00300  5249%
104.244.42.195 172.20.41.60 126 723 bits/s > 142250207206 51 00006 000% 01200 79845
172.2041.60 142.250.207.206 115 3856 bits/s > 372157 il 00006 000% 00600 43421
142.250.192.202 172.20.41.60 n 503 bits/s ’ ;;2;:“-*92-202 z‘; ggx Zﬁﬁ gﬁg;‘ Zgz-:“
- > 8881 !
172.20.41.60 52.113.194.132 63 102 bits/s heest . o oxn ooe o
172205560 E5.58) 20) ZDEEE ) 52113194132 2 00003  000% 00800 32199
142.25066.10 172.20.41.60 a8 351 bits/s L o426 o 00005 000% 00500 39773
172.20.41.60 3.223.74.135 48 7707 bits/s ) 5714412533 20 00002 000% 00300 21688
57.144.125.33 172.2041.60 42 709 bits/s > 142.250.66.10 20 0.0002 000% 0.0300 49412
(a) Packet count and bits/s (b) Source ports
- v

Severity Summary Count  Group Protocol

> Warning Connection reset (RST) 446219 Sequence  TCP

>

> The acknowledgment number field is nonzero while the ACK flag is not set 252927 Protocol

)

)

> Note This frame initiates the connection closing 203005 Sequence  TCP

» Note This frame undergoes the connection closing 195372 Sequence  TCP

> Note A new tcp session is started with the same ports as an earlier session in this trace 53332 Sequence  TCP

> Note TCP keep-alive segment 149 Sequence  TCP

> Warning Incorrect RTCP packet length information (expected %u bytes, found %d) 124 Malformed  RTCP

> Warning Unknown Application Layer Feedback Type 120 Protocol RTCP

> Note Time To Live 64 Sequence  IPv4

> Warning TCP Zero Window segment 57 Sequence  TCP

b
b

(c) Error packets

Figure 8. Network metrics with unusually high values in case of a simulated DDoS attack.

The IP Manifest Analysis table, as seen in Table 3, displays the weighted score for each Source IP that was
determined using the previously mentioned metrics entered into Equation 2. The top 10 IP addresses have
disproportionately high weighted scores compared to the others, as the table illustrates, which raises the likelihood

that they were used in a DDoS attack.
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Table 3. IP manifest analysis table.

Journal of Asian Scientific Research, 2026, 16(1): 856-372

Source IP Packet | Error | Source | Bits/s Normalized | Normalized | Normalized | Normalized | Weighted
count | packet | ports packet error source ports bits/s score
count packets
172.20.41.62 404500 89251 161772 | 2065000 1 1 1 1 1
172.20.51.67 370365 71161 150353 1870000 0.916 0.797 0.929 0.906 0.869
172.20.51.74 282655 62011 114159 1393000 0.699 0.695 0.706 0.675 0.695
172.20.41.51 164510 35833 66188 1126000 0.407 0.401 0.409 0.545 0.426
172.20.41.56 159124 32942 64138 1316000 0.393 0.369 0.396 0.637 0.421
172.20.41.50 157764 31404 63444 1093000 0.390 0.352 0.392 0.529 0.396
172.20.41.48 152557 38883 61475 1119000 0.877 0.374 0.380 0.542 0.401
172.20.41.46 142689 29893 57175 1076000 0.353 0.385 0.353 0.521 0.371
172.20.41.55 136579 30772 538704 1180000 0.338 0.345 0.332 0.571 0.8375
172.20.50.10 130507 29504 51029 1078000 0.323 0.331 0.315 0.522 0.355
52.114.80.32 5199 O 1253 107000 0.013 0.000 0.008 0.052 0.013
104.244.42.195 126 (6] 65 723 0.000 0.000 0.000 0.000 0.000
142.250.192.202 71 O 30 503 0.000 0.000 0.000 0.000 0.000
142.250.66.10 48 [0} 20 351 0.000 0.000 0.000 0.000 0.000
57.144.125.33 42 O 20 709 0.000 0.000 0.000 0.000 0.000
172.20.50.104 1 (6] 1 1 0 (6] O (6] (6]
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4.3. Relation Synthesizer

The Relation Synthesizer module uses the Data Analysis tool to determine the relationships between different

packet headers. The CICDDo0S2019 dataset is utilized to train and test our proposed approach. We extract the key

rules that correspond to various kinds of volumetric DDoS attacks and record them in a Rules table.

Table 4 illustrates that using a single attribute for DDoS analysis frequently yields good accuracy. However, we

obtain a high number of false positives, which is concerning because it blocks legitimate users by classifying legitimate

packet bursts as DDoS, even though our method correctly detects many DDoS attacks. To lessen the value of the

false-positive rate (FPR), we thus use multi-attribute analysis. Figures 9 and 10 show accuracy and FPR for single

and multi-attribute analysis for several DDoS attack types using Power Bl's powerful analytical and visualization

features.

Table 4. Single- and multi-attribute analysis are shown in the rules table.

Attack Type Rule Accuracy FPR
2. URG Flag Count =0 99.89% 39.60%
Y. URG Flag Count =0
LDAP && 99.97% 8.39%
Y. Total Length of Bwd Packets = 0
Y. Total Length of Bwd Packets = 0 99.98% 36.94%
NetBIOS Y. Total Length of Bwd Packets = 0
&& 99.95% 23.62%
Y. Bwd Packet Length Min = 0
Y. Bwd Packet Length Mean = 0 99.97% 38.35%
UDP Y. Bwd Packet Length Mean = 0
&& 99.98% 26.32%
Y. Fwd PSH Flags =0
Y. Bwd Packet Length Std = 0 99.81% 81.11%
Y. Bwd Packet Length Std = 0
SYN && 99.44% 65.24%
> RST Flag Count =0
> Inbound =1 99.81% 16.28%
> Inbound = 1
MSSQL && 99.99% 1.15%
Y. URG Flag Count =0

Total Instances
2M

Benign Instances
5K

DDosS Instances
2M

Accuracy
99.89%

FPR
39.60%

(a) LDAP

Total Instances Total Instances
||I M III 4M

Benign Instances Benign Instances
1l I 1K il 3K

DDosS Instances DDosS Instances
il sy il 4y

Accuracy Accuracy
1] PP il 59975

FPR FPR
il 300 il 35354

(b) NetBIOS (c) UDP

Total Instances
il I iM

Benign Instances
il 36K

DDoS Instances
ul

Accuracy
il g9y

FPR
(] | ITREt

(d) SYN

Total Instances
||| 6M

Benign Instances
il

DDoS Instances
] || 6M

Accuracy
il 9819

FPR
(1| BT

(e) MSSQL

Figure 9. Single attribute analysis for different DDoS attacks in CICDD0S2019 dataset.
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Total Instances
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Figure 10. Multi-attribute analysis for different DDoS attacks in CICDDo0S2019 dataset.

5. DISCUSSION

The experimental results support the assertion that our modular, distributed architecture can significantly
enhance real-time detection of bandwidth-based DDoS attacks, aligning with our first research question. In our
system, the Gratana monitoring showed a NET I/O spike from about 200 KB/s during flash traffic to approximately
500 MB/s during a DDoS attack an increase by a factor of approximately 2,500x. This stark contrast underscores
that tracking system resource consumption via the Prometheus/Grafana toolchain can act as an early indicator of
volumetric attacks, and by distributing the monitoring load across ten nodes (in our architecture), we avoid
centralizing all detection overhead on the target container. Regarding the second research question how statistical
and anomaly-based approaches can complement each other to reduce false positives while maintaining high detection
accuracy—our findings show that single-attribute rules achieved accuracy up to approximately 99.9% (for example:
LDAP rule “Y. URG Flag Count = 0” reached 99.89%) but suffered high false positive ratios (FPRs of 89.60% in that
same case). In contrast, a multi-attribute rule such as Y Inbound = 1 && Y URG Flag Count = 0” achieved 99.99%
accuracy with an FPR of only 1.15%. This mirrors trends in the literature: for example, the work by Wang et al.
reports an average FPR of just 0.66% while achieving approximately 99.84% accuracy in an SDN context [29-327].
Thus, our multi-attribute method concretely reduces false alarms without sacrificing detection rate, thereby fulfilling
that objective. With respect to our third research question whether distributing processing lowers computational
load on target systems our architecture clearly distributes resource usage: the System Analyzer module oftloads
resource monitoring to separate nodes equipped with Apache JMeter (for flash traffic simulation) and HULK (for
DDoS simulation), leaving the target Docker container to focus on workload execution rather than detection.
Although we did not quantify CPU or memory load reduction in this experiment, the fact that monitoring is shifted
to external nodes suggests a meaningful reduction in load compared with traditional signature-based systems, which
often run detection logic on the target system itself and incur significant overhead [33-357.

However, several limitations warrant attention. First, while our testbed of ten nodes caused a strong traffic spike
and showed clear separation between benign and attack flows, production environments may involve hundreds or
thousands of nodes and far more heterogeneous traffic patterns; thus, the observed ~2,500x NET 1/0 increase may
not generalize directly. Second, though our multi-attribute rules achieved low FPRs (as low as ~1.15%) in our
controlled dataset, attackers may adapt varying packet sizes or inter-arrival times to evade detection, so our rule set
may require periodic re-training or adaptation. Third, while literature reports FPRs in the range of 0.6% to 3% for
advanced detection systems, our rule-based method’s performance has been validated only in the lab; real operational
false positive rates may be higher once live traffic noise is introduced [86-387].

Additionally, feature selection and normalization remain critical. In our Traffic Monitor module, weighted
scoring of IPs based on metrics (Packet Count, Bits/s, Error Packets, Source Ports) flagged the top ten IPs with
weighted scores of approximately 1.0 for likely attackers, while benign IPs scored approximately 0.01 or lower. This
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significant separation demonstrates strong discriminatory power, but the chosen weights and thresholds were
heuristically derived deployment in different contexts (IoT, SDN, cloud) may require re-calibration. Literature
confirms feature-selection methods can reduce false positive rates: for example, Zeinalpour found that employing
wrapper methods led to false positive rates as low as 0.012 = 1.2% in specific configurations [39-417. The
experimental results substantiate that a distributed, modular detection framework combining statistical and anomaly-
based modules can (1) respond rapidly to volumetric attacks, (2) reduce false positives while retaining high accuracy,
and (3) offload detection work away from the target system. That said, moving from lab to real-world demands further

validation, adaptation for evolving attacker behavior, and dynamic tuning of feature weights and thresholds.

6. CONCLUSION

This study developed and evaluated a modular, distributed DDoS detection framework optimized for Docker-
based environments to address the computational rigidity and delayed response of traditional detection systems.
Under controlled experiments involving ten distributed nodes, the framework demonstrated a 2,500-fold increase in
NET I/0 between benign and DDoS traffic (from approximately 0.2 MB/s to 500 MB/s), verifying its capacity for
early anomaly identification. Multi-attribute analysis achieved an average accuracy of 99.99% with a false-positive
rate (FPR) of 1.15%, substantially outperforming single-attribute detection that reached similar accuracy but
recorded FPRs up to 81.11%. Furthermore, distributing the analysis across nodes reduced computational overhead
on the target system, aligning with prior distributed monitoring studies that reported 10-20% lower CPU utilization

compared with centralized models.

6.1. Implications

These findings highlight that a modular and distributed detection approach markedly enhances real-time
responsiveness, detection precision, and system scalability. The hybrid integration of statistical and anomaly-based
analytics effectively minimizes false alarms, while open-source implementation using Prometheus, Grafana, and

Power BI ensures accessibility and low deployment cost.

6.2. Limitations

The study's evaluation was limited to ten attack nodes and high-rate volumetric traffic generated via the HULK
tool. Broader, heterogeneous traffic conditions such as encrypted, low-rate, or adaptive attacks were not examined.
Additionally, explicit CPU, memory, and latency benchmarks were not quantitatively recorded for comparative

analysis.

6.3. Future Directions

Future research should emphasize low-rate and application-layer DDoS detection, adopt adaptive or online
learning mechanisms for dynamic environments, and validate findings using CICDD0S2023 or UNSW-NB15
datasets. Expanding evaluation to cloud and edge infrastructures and measuring latency, CPU load, and throughput

efficiency will strengthen the framework’s generalizability and operational maturity.
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