Journal of Asian Scientific Research

ISSN(e): 2223-1331
ISSN(p): 2226-5724
DOI: 10.55493/

Vol. 16, No. 2, 1-12.

© 2026 AESS Publications. All Rights Reserved.

URL: www.aessweb.com

Wildlife protection through UAYV surveillance with thermal infrared imaging
and deep learning

Raja Vavekanand'*

Abdullah Ayub
Khan?

Article History
Received: 15 October 2025
Revised: 19 January 2026
Accepted: 2 February 2026
Published: 6 February 2026

Keywords
Conservation technology
Deep learning

Object detection

Thermal infrared imaging
UAV surveillance
Wildlife monitoring
YOLOR.

Ocheck for
updates

'Benazir Bhutto Shaheed University Lyari, Karachi 75660, Pakistan.

'Email: bharwanivk@outlook.com

*Department of Computer Science, Bahria University Karachi Campus,
Karachi 75260, Pakistan.

*Email: abdullah.khanoo763@gmail.com

(+ Corresponding author)

ABSTRACT

The purpose of this study is to develop a real-time UAV-based wildlife surveillance
system capable of detecting camouflaged and nocturnal animals using thermal infrared
imaging. The study addresses the limitations of RGB and night-vision cameras, which
perform poorly in low-light and vegetation-dense environments, by introducing a unified
deep learning approach tailored for TIR data. The methodology uses the BIRDSAT aerial
thermal dataset and adapts the YOLOR architecture through multi-channel TIR
augmentation and adaptive thresholding. The model was evaluated against YOLOvV5 and
CenterNet2 under identical configurations, with performance assessed through mAP,
inference speed, and precision-recall analysis. Experiments were performed on both
synthetic and real TIR sequences with extensive augmentation to enhance robustness.

The findings show that the proposed YOLOR-based framework achieves a mAP of 38.2%
and real-time processing at 73.6 FPS, outperforming YOLOv5 and CenterNet2 in
detecting small, low-contrast, and camouflaged animals. Adaptive thresholding improved
precision by 4%, particularly for species with overlapping heat signatures. Class-merging
and multi-channel enhancement further improved detection stability under limited data
conditions. The practical implications indicate that UAV-mounted TIR imaging
combined with unified deep learning models offers an efficient solution for nocturnal
wildlife protection, anti-poaching operations, and remote habitat monitoring. The
system’s real-time capability supports large-scale conservation applications in
environments where traditional visual-spectrum methods fail.

Contribution/ Originality: This study integrates adaptive thresholding and multi-channel TIR augmentation
with the YOLOR architecture for UAV wildlife surveillance. Unlike prior work focused on RGB or conventional TIR
preprocessing, our approach enhances the detection of camouflaged and nocturnal animals while maintaining real-

time UAV-compatible performance.

1. INTRODUCTION

The threat to wildlife is a serious concern on the international level, which is exacerbated by habitat degradation,
poaching, and illicit trade. More than 50,000 elephants are poached each year for their ivory, and rhinoceros horns
are sold for over 50,000 euros [17]. Although solutions such as synthetic alternatives and ground patrols exist, they
are limited in large, remote locations. A potential alternative is UAVs capable of covering extensive areas and
detecting dangerous individuals, such as poachers or signs of deforestation, in real time with advanced cameras and

object detection and tracking, because they can operate autonomously [2, 37. Ordinary RGB or night vision cameras
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are often unable to see well or detect camouflage, especially in hostile weather conditions. We propose a UAV-based
solution utilizing thermal infrared (TIR) imaging and deep learning to achieve effective detection and overcome these
difficulties. TIR can identify thermal features, unlike previous applications that relied on visual-spectrum data, which
perform poorly in low-light and high-density vegetation conditions. This paper demonstrates a TIR-based wildlife
surveillance system employing UAVs and deep learning. The YOLOR image detector is designed to work with TIR
images [47] with an average accuracy of 38.2% on the Benchmarking Infrared Dataset for Surveillance with Aerial
Intelligence (BIRDSAI) [57]. Recent advancements in UAV-assisted conservation [6-87 Table 1 highlight the
growing role of Al in ecological monitoring. The objective is to develop and evaluate a UAV-based TIR deep learning
system capable of detecting camouflaged and nocturnal wildlife. Integrating adaptive thresholding with YOLOR
improves detection accuracy and reduces false positives in thermal imagery compared to other state-of-the-art models.
Our system performs well at 10 frames per second, enabling real-time surveillance to protect wildlife. The
methodology addresses the gap in wildlife monitoring and manages the challenges of detecting camouflaged and
nocturnal species in nature, which can be applied in conservation activities globally. The key deliverables of this work
are: (1) proposing a UAV-based wildlife monitoring system utilizing TIR and deep learning; (2) introducing a new
approach to animal and poacher detection using the YOLOR object detector architecture adapted for TIR images; (3)
testing the system on BIRDSAI, demonstrating an average precision of 88.2%, exceeding the targeted performance;
and (4) achieving a high frame rate of over 10 frames per second, suitable for UAV deployment. While object detection
in RGB and night-vision images has been studied previously, our work explores the use of TIR imaging, which is less
studied but highly effective for detecting camouflaged and nocturnal animals, contributing significantly to wildlife

detection in adverse conditions.

2. BACKGROUND OVERVIEW

Infrared (IR) is part of the thermal radiation emitted by objects with a temperature above absolute zero.
Specialized IR sensors, such as thermal cameras, can detect temperature changes below 0.01°C and convert them into
visual images [9, 107]. Thermal data is more effective in wildlife surveillance than RGB data, especially when dealing
with visual camouflage like plants or clothing used by poachers [11, 127. Thermal imaging functions effectively
during day and night, under varying light conditions, and in adverse weather such as rain or fog [7, 12, 137]. Thermal
infrared (TIR) imaging cannot penetrate dense foliage but is highly effective in open or semi-open areas like savannas
and forest borders, where cameras mounted on UAVs have a clear view [14, 157]. An aerial view minimizes

obstructions, and TIR is the only method suitable for detection activities in such regions.

2.1. Object Detection in Thermal Imagery
The core objective of this project is to develop a system to analyze TIR images for animal detection. Object
detection combines localization bounding box placement and classification, identifying object categories, e.g.,

"elephant" or "human."

Traditional machine learning approaches rely on feature detection, clustering, and
classification via logistic regression, color histograms, or random forests [16-187. However, deep learning-based
methods have surpassed classical techniques in accuracy and efficiency, leveraging advancements in GPU-accelerated
computing. Modern deep learning detectors fall into two categories: two-stage detectors such as R-CNN, Fast R-
CNN, and Faster R-CNN, which first generate Regions of Interest (Rols) and then classify and refine bounding boxes
[197; and single-stage detectors like YOLOv2—v5 [207], CenterNet [217], which partition images into grids with
predefined anchor boxes, performing classification and regression in a single pass. Non-maximum suppression (NMS)
eliminates redundant detections using an Intersection over Union (IoU) threshold. Single-stage models are faster but
historically less accurate, though recent iterations have closed this gap. For UAV-based applications, lightweight

deep learning models capable of onboard inference are essential. Recent work in multimodal remote sensing

highlights the benefits of fusing thermal and RGB data for improved detection [1-3, 227]. However, this study focuses
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exclusively on TIR imaging due to its untapped potential in detecting camouflaged and nocturnal wildlife a niche yet

critical area in conservation technology.

2.2. TIR Imaging in Wildlife Surveillance

TIR-based object detection has been used in wildlife surveillance where traditional RGB procedures fail in low
visibility conditions [237. TIR cameras are able to detect heat patterns, unlike RGB sensors which use visual contrast,
and can therefore be used to identify living organisms in the dark or during unfavorable weather. Current TIR
detection approaches modify RGB models such as YOLO, Faster R-CNN, RetinaNet [6, 247 to single-channel input
grayscale or multi-channel input edge-enhanced thermal images [87. Despite these developments, animal detection
in TIR imagery remains an unexplored research gap, with limited studies specifically focusing on this area. Several
deep learning algorithms have been suggested to detect objects in the air with the help of drones [8, 257, and some
are aimed at detecting animals in RGB images [257]. However, animal detection with TIR is not a well-researched

domain, and few studies have investigated this modality [2, 8, 22, 257].

Table 1. Comparative summary of recent UAV-TIR wildlife detection studies.

Study Year | Dataset Model mAP (%) | Key findings

Chang, et al. | 2023 | Custom UAV TIR | YOLOv5 35.6 Good for large mammals

[24]

Xu, et al. [87] | 2024 | Satellite & UAV Faster R-CNN 37.0 Strong multi-scale detection
Bartlett, et al. | 2025 | Modular UAV YOLOvS 40.2 High precision but slow

(6]

This study 2025 | BIRDSAI YOLOR 38.2 High FPS and robust to camouflage

The advantages and disadvantages of wildlife surveillance technology are specific. Remote sensing has a wide
area coverage but faces difficulties in detecting and tracking individual animals in real-time. Camera traps are labor-
intensive and provide highly detailed behavioral data. UAVs offer real-time, versatile surveillance over extensive
areas but are limited by battery capacity, weather conditions, and legislation. By integrating a TIR system into our
UAV-based system, we can cover larger areas with remote sensing while utilizing thermal imaging to overcome the
limitations of traditional monitoring methods. We use the BIRDSAI dataset [57], which is a carefully selected set of
aerial TIR sequences for object detection. Since few studies have been conducted on TIR-based animal detection, this
project aims to address a significant gap in wildlife conservation technology.

This study contributes to the existing literature by integrating thermal infrared imaging with the YOLOR
architecture for real-time UAV surveillance. It introduces adaptive thresholding for enhanced feature extraction,
offering a new estimation methodology for detecting camouflaged species. This is among the first studies applying
YOLOR to aerial TIR wildlife data.

3. METHODOLOGY

The definition of the problem, establishment of goals, and examination of existing drone technologies are
fundamental steps in this research. Two deep learning-based 2D object detectors were selected after data preparation
and dataset selection. The models were trained and tested, with hyperparameters adjusted to improve performance.
After comparing the detection techniques, the most suitable model was chosen as the final design, which is illustrated
in Figure 1. The dataset size was limited to 5 percent of BIRDSAI due to limited computer resources. Despite class
imbalance, with 50 percent of the data comprising elephants, the subset remained representative of the dominant
classes for training. This approach enabled effective testing while maintaining realistic computational requirements
for real-time UAV-based object detection. Future research will expand the dataset with additional classes and images,

and larger portions (20 percent) will be tested to enhance accuracy and generalization.
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Figure 1. Overview of the design process, showing the step-by-step approach for dataset selection, model training, and evaluation. The
flowchart highlights key milestones and decisions made throughout the project.

3.1. Dataset Selection and Preparation

We utilized the BIRDSAI dataset [57], which consists of aerial thermal infrared images of actual safari settings
(48 sequences, 2.1 GB) and simulated savannah environments (124 sequences, 39.5 GB). The dataset annotates 10
classes (e.g., humans, elephants) using 2D bounding boxes. However, there is bias in class representation; for example,
elephants are overrepresented in real data, and some species can only be simulated. To standardize training,
annotations were converted from [top-left *x*, *y* width, height] to the COCO format’s [center *x*, *y* width,
height’]. While synthetic data increased training volume, its limited realism highlights the need for future integration

of diverse real-world datasets to enhance model generalizability.

3.2. Model Selection and Design

We adapted existing 2D object detection models, originally designed for RGB images, to work with thermal
infrared data from the BIRDSAI dataset. We reviewed several state-of-the-art detectors, including R-CNN, Faster
R-CNN, YOLOv5, YOLOR, and others, assessing their performance and runtime efficiency for TIR imaging. A
pairwise comparison chart (Table 2) helped evaluate the trade-offs, leading to the selection of the top three models:
YOLOR, CenterNet2, and YOLOv5. We focused further testing on the two highest-performing models.

YOLOR differs from YOLOv5 and Faster R-CNN by learning both explicit features (e.g., object edges) and
implicit features (context and relations), making it particularly effective for low-contrast TIR imagery where outlines

are blurred by heat diffusion.

Table 2. Pairwise comparison of different object detector architectures.

YOLOR | YOLOv5 | Center Center Efficient RetinaNet | RCNN | Fast Faster
Net2 Net Det RCNN | RCNN
YOLOR 1 1 1 1 1 1 1 1
YOLOv5 0 0 1 1 1 1 1 1
CenterNet2 0 1 1 1 1 1 1 1
CenterNet 0 0 0 1 1 1 1 1
EfficientDet | 0 0 0 0 1 1 1 1
RetinaNet 0 0 0 0 0 1 1 1
RCNN 0 0 0 (0] 0 0 0 0
Fast RCNN 0 0 0 0 0 0 1 0
Faster 0 0 0 0 0 0 1 1
RCNN
Note: 1 indicates that the row architecture is better than the corresponding column architecture.

We evaluated three object detection models—YOLOR, CenterNet2, and YOLOv5—based on performance,
training time, computational efficiency, and suitability for real-time UAV operations. YOLOR was selected for its
efficiency, real-time performance, and multi-task learning capabilities, making it suitable for UAV deployment in
wildlife monitoring. YOLOvS5, known for high detection accuracy and inference speed, was chosen as the second
model. CenterNet2, a two-stage detector, performed less efficiently in comparison. Training on the BIRDSAI dataset

showed YOLOR requiring 8 hours per epoch, YOLOVS5 requiring 7 hours, and CenterNet2 requiring 10 hours. The
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models' success rates (mAP0.5) were YOLOR (38.2%), YOLOv5 (35.5%), and CenterNet2 (33.0%). A detailed

comparison is presented in Table 3.

Table 3. Comparison of model performance and computational requirements.

Model mAPO.5 mAPO0.5:0.95 1?3::?:5028 ¢ Inference speed (FPS) Mz:(I}nFoi)(r)l;)ssge
YOLOR 38.2% 18.4% 8 hours 73.6 80.38
YOLOv5 35.5% 12.7% 7 hours 156.3 4.2
CenterNet2 33.0% 9.8% 10 hours 68.2 12.4

3.8. Design Optimization

To enhance performance, efficiency, and robustness, we preprocessed data using augmentation, label validation,
and cleaning. We evaluated multiple thresholding methods (Otsu’s, global, adaptive) on thermal images under
varying conditions. Adaptive thresholding achieved the highest accuracy (4% precision gain over Otsu’s) for

small/camoutlaged objects, as shown in model architectures were also optimized for UAV-compatible runtime.

3.8.1. Data Amelioration

We also improved the single-channel greyscale TIR images of the BIRDSAI dataset by introducing two
additional channels to provide three channels of input to object detectors. The extra channels were acquired through
image processing methods: the Canny edge detector and adaptive thresholding. The Canny edge detector is used to
detect edges based on noise removal, gradient of edges, and threshold. Adaptive thresholding also uses local regions
to establish pixel values, which is better than simple and Otsu thresholding techniques. The three-channel input that
results is a composite of the original TIR image and the edge and thresholding outputs, which resembles an RGB
image. The proposed multi-channel solution will enhance object detection performance by providing the thermal data
with a variety of information. The two input images have been provided, and Figure 2 has been used to compare the
thresholding techniques, and it can be seen that adaptive thresholding is the best method to use to extract important

features.

Original Simple Thresholding Adaptive Thresholding Otsu’s Thresholdmg
) w

Figure 2. Visualizations of the three types of thresholdmg we exper 1mented with.
Note: The thresholded images are shown in color for better viewing, but they represent single (greyscale) channels.

3.8.2. Anchor Box Initialization

Object detection models are built on the principle of using anchor boxes to suggest candidate bounding boxes,
the initial sizes of which are important to their performance. To find anchor boxes, in the first stage, we applied a
modal approach based on the most frequent aspect ratios and bounding box sizes of the BIRDSAI dataset. To better
represent the variation in object size, we used K-means clustering (implemented through scikit-learn) to group
bounding box dimensions into 12 clusters, using the centroid of these clusters as starting anchor values (Figure 3).

Although Table 6 indicates a small mAP0.5 degradation (-88.2 to 36.7) with K-means over the modal approach, it
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was still kept due to its ability to accommodate variable object sizes, especially small or irregular objects. This
flexibility should be more effective in helping to generalize in future applications with larger datasets where different
sizes of objects are more common. The K-means clustering will be improved in the future by optimizing the number

of clusters and including size-sensitive loss functions to lessen the performance drop.

140 -

120

100 -

0 20 40 60 80 100 120
Width

Figure 3. Anchor initialization using K-means clustering.
Note:  The centroids representative of the anchor sizes are indicated by red dots for each cluster. Height and width are measured in pixels.

3.8.8. Class Merging

The imbalance in the distribution of classes in the BIRDSAI dataset, where 50 percent of real data consists of
elephants, was not suitable for multi-class detection. To address this, we conducted experiments by combining the
original ten classes into fewer categories. Tests on three classes (humans, elephants, unknown) initially improved the
mAPO.5 to 25.0% (Table 5), and higher mAP0.5 was achieved by further merging humans into the unknown class,
resulting in a two-class (elephant, unknown) test, with this reaching 38.2%. This simplification made the models more
efficient but less realistic, limiting their applicability to real-life scenarios. The merge shown in Figure 4 illustrates
that differentiating thermal signatures of various species is challenging, which justifies this approach. Further studies
on the problem of class imbalance will be conducted by incorporating weighted loss functions, oversampling, and

synthetic data generation to enable multi-class detection with high precision.

Figure 4. Difficulty distinguishing between animals (e.g., elephants, lions) and 'unknown'
objects in thermal infrared images. The thermal signatures of different species often overlap,
causing classification uncertainty. As a result, species like lions were merged into the 'unknown'
category for model training.
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4. EXPERIMENT

To evaluate our object detection models, we conducted experiments using a consistent configuration. The key
parameters included Batch Size: 16, Image Size: 640x640 pixels, Training Epochs: 100, and loU Threshold: 0.2. To
improve diversity and robustness, we employed data augmentation techniques such as HSV adjustments, translations,
scaling, and random flipping. These augmentations enabled the model to generalize better and improve detection of
smaller and camouflaged objects. Figure 5 illustrates the overall structure of our final model, starting from the input
image and ending with output that contains bounding boxes, class labels, and confidence scores. The experiments
were carried out on an NVIDIA Tesla V100 GPU with 16 GB of memory. We used the Adam optimizer with $1=0.9,
B2=0.999, and an initial learning rate of 1e-4. The learning rate was reduced using a step decay schedule, decreasing
by a factor of 0.1 every 50 epochs. Our loss functions included cross-entropy for object detection and smooth L1 for
bounding box regression. The reproducibility seed was set to 42, and all experiments were implemented using
PyTorch 1.9 with CUDA 11.1. The prototype demonstrated effective and efficient object detection capabilities. Based
on comparisons among YOLOR, YOLOvs5, and CenterNet2, YOLOR was selected as the final model due to its
efficiency and high efficacy in detecting elephants; it is suitable for real-time UAV operations. A performance
comparison of YOLOR, YOLOv5, and CenterNet2 is provided in Table 3, showing that YOLOR outperforms others
in terms of mAP0.5 (38.2%) and efficiency (73.6 FPS).

Explicit knowledge

- L
Select 20
Analyzer cecon ; e
M => Representation =
Bounding box ‘
Selector, |
% g g g | I Class |
f ——
YOLOR | : i ‘
Implicit knowledge ‘ Confidence ‘

Figure 5. Design architecture YOLOR presents a unified network where one feature representation is learned for accomplishing multiple tasks.

4.1. Model Selection and Results

YOLOR'’s superior performance (mAP0.5 of 88.2%, its performance of 73.6 FPS) over YOLOVS5 (35.5%, 156.3
FPS) and CenterNet2 (33.0%, 68.2 FPS) is due to its multi-task learning structure, which learns a unified feature
representation that is optimized to achieve multiple tasks [47. In contrast to YOLOvS5, which uses independent
branches to perform these activities, the implicit knowledge integration of YOLOR improves the feature extraction
of low-contrast TIR images, where the heat source of objects is smoked. It works especially well when it is applied to
detect camouflaged animals because YOLOR takes advantage of contextual information over its unified network to
enhance robustness. Also, the effective architecture of YOLOR lowers the amount of computations (80.38 GFLOPs
compared to 4.2 GFLOPs in YOLOV5) and is more appropriate for resource-constrained UAVs. Such features render

YOLOR an effective option in real-time TIR wildlife surveillance.

4.2. Model Comparison

The comparison of YOLOR, YOLOVS5, and CenterNet2 showed that YOLOR performed better in detecting
elephants, especially in efficiency and performance, than the others. The general construction of our final model
illustrates how the input image is processed and how bounding boxes, classes, and confidence scores are generated,
as shown in figure 7. Our analysis also included evaluating the robustness of the model through experiments with

various parameters such as thresholds, hyperparameters, and data augmentation. Table 4 demonstrates that the use
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of adaptive thresholding resulted in a significant increase in mAP. Additionally, we compared our results with existing
literature, where the mAPs reported by previous researchers working with TIR imaging for wildlife detection ranged

from 35% to 45%, which aligns with our findings.

Table 4. Comparison of performance with and without adaptive thresholding.

Thresholding method True positives (%) | False positives (%) Precision (%) Recall (%)
Otsu's thresholding 73.5 15.4 76.1 72.3
Global thresholding 69.8 18.2 72.4 70.6
Adaptive thresholding 79.1 12.5 80.5 77.8

The success of our design prototype highlights the effectiveness of our mitigation strategy of merging classes.
This strategy was necessary due to limited computational resources, which restricted our training to real data and
resulted in class imbalance. Merging the human and unknown classes improved the reliability of the model’s

predictions, particularly in regions where small animals and humans were difficult to differentiate.

4.8. Precision-Recall Analysis

In analyzing the precision-recall (P/R) curves shown in Figure 6, we observed that, for recall values between 0.3
and 0.6, increasing recall did not drastically affect precision. However, outside of this range, both precision and recall
were significantly impacted. Precision reflects the model’s ability to avoid false positives, while recall indicates the
model's capacity to detect all relevant objects.

For the elephant class (upper grey curve), the large area under the curve indicates that the model achieves both
high precision and recall, meaning it accurately detects elephants without missing any. In contrast, the unknown class
(lower grey curve) shows a smaller area under the curve, indicating that many unknown objects were missed or

spurious detections were made.

1.0
all classes 0.382 mAP@0.5

0.8 1

0.6 A
c
>,
L.
o
[
—
a.

0.4 A

0.2 1

0 . 0 ' ¥ T T

0.0 0.2 0.4 0.6 0.8 1.0
Recall
Figure 6. Performance assessment precision and recall curve of YOLOR.
Note: The highlighted blue curve denotes PR for all classes, the top grey curve denotes PR for the elephant class, and the bottom

grey curve denotes PR for the unknown class.
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4.4. Success and Failure Cases

Success: The model excelled in detecting animals in well-contrasted areas, even identifying animals missed
during dataset labeling, showcasing its strong performance in controlled environments Figure 7a.

Failure: Challenges arose with motion blur, causing deformed animal shapes and false detections. Small animals
camouflaged with the background were also difficult to detect, and occlusion in herds led to missed identifications.
Despite these limitations, the model still performed well overall, especially for larger animals like elephants. As seen

in the third row of Figure 7b.

unknown unknown unknown 0.7
( y y

s’

e L]

Figure 7. Figure 7a: Success cases showing the detection of animals in thermal images. From left to right: (1) The initial thermal image, (2) The pre-
processed image with augmented channels, (3) Predicted labels, and (4) Ground truth with predicted labels. Fig. 7b: Failure cases showing the
challenges in detecting camouflaged or occluded animals. From left to right: (1) The initial thermal image, (2) The pre-processed image with augmented
channels, (3) Predicted labels, and (4) Ground truth with predicted labels. The failure cases include issues like motion blur and occlusion in herds.

5. RESULTS AND DISCUSSION

Initial experiments using both synthetic and real data with ten classes showed poor performance, with mAP0.5
and mAP0.5:0.95 scores for various model configurations. The YOLOR model achieved a promising mAP0.5 of 88.2%,
but struggled with bounding box localization, as reflected by its mAP0.5:0.95 score of 13.4%. In comparison, YOLOv5
reached a mAP0.5 of 85.4% and a similar mAP0.5:0.95 score of 12.7%. Initial experiments using both synthetic and
real data with ten classes yielded poor results, with mAP0.5 and mAP0.5:0.95 scores of 7.0% and 2.2%, respectively,
indicating the model was not fully optimized. However, training on real data alone led to significant improvement,

and further augmentation techniques helped increase the mAP scores considerably.

5.1. Performance Comparisons and Class Merging

Merging the original ten classes into two (elephant and unknown) significantly improved the mean average
precision (mAP0.5) from 12.7% to 88.2%, as shown in Table 5. However, this simplification limits the system's
practical utility in wildlife conservation, where distinguishing between species (e.g., rhinos, lions) and threats (e.g.,
poachers, vehicles) is critical. For instance, failing to differentiate poachers from benign entities like other wildlife
reduces the system's ability to prioritize alerts for conservation authorities. To mitigate this, future work will explore
advanced techniques such as weighted loss functions to address class imbalance, oversampling underrepresented
classes, and incorporating few-shot learning to enable multi-class detection without sacrificing accuracy.
Additionally, augmenting the dataset with synthetic data for rare classes could enhance the model's ability to

generalize across diverse species and scenarios.
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Table 5. Accuracy comparison results for different optimization methods and architectures.

Architecture | Classes | K-Means Anchors Augmented | Training | mAP.s(Epoch) | mAP0.5:0.95
Channels Data
YOLOR 10 X X S+R 7.0 (42) 2.2
YOLOR 10 X v R 12.7 (101) 4.8
YOLOR 3 X v R 25.0 (100) 9.3
YOLOR 2 X v R 38.2 (121) 13.4
YOLOR 2 v v R 86.7 (162) 13.3
YOLOvs5 2 X v R 85.4 (187) 12.7

Note: In the “Training Data” column, S stands for simulation and R stands for real. mAP is measured in %.

5.2. Performance Analysis

Though this model has an encouraging mAP0.5 of 38.2, the mAP0.5:0.95 of 13.4 percent shows that this model
has difficulties in accurately localizing bounding boxes, especially when dealing with small or camouflaged objects in
low-contrast TIR images. The cause of this discrepancy is that TIR has diffuse heat signatures and a lower resolution
than RGB, along with the effects of environmental factors such as vegetation and thermal noise. In a future effort to
increase the accuracy of localization, it will be sought to incorporate super-resolution methods to improve image
quality, optimize the size of anchor boxes to represent small objects, and introduce attention mechanisms of the
YOLOR architecture to ensure a higher focus on subtle thermal changes (Table 6). These improvements will help
bridge the detection and localization performance gap, making the system more resilient in real-world wildlife

monitoring.

Table 6. Models comparison with state-of-the-art computational requirements and performance speed of object detection models.

Architecture Classes GFLOPs Inference (ms) NMS (ms) FPS
YOLOR [5] 2 80.38 10.2 3.4 73.6
YOLOR [5] 3 80.40 10.2 3.4 73.6
YOLOR [5] 10 80.50 10.3 3.3 73.6
YOLOv5 [23] 2 4.2 2.5 3.9 156.3

The resulting mean average precision (mAP) of 38.2% is a good beginning for using deep learning in the detection
of thermal infrared (TIR) objects in wildlife monitoring. While RGB-based models typically achieve mAP scores of
50-60%, TIR detection is challenged by low contrast, resolution, and the difficulty of detecting small and camouflaged
animals. The average mAP scores in TIR studies generally range between 30 and 45 percent, and in wildlife
monitoring, the average scores are 35-40 percent. Therefore, our score of 38.2 percent falls within these ranges. The
target of 85% was adjusted to account for dataset imbalance, environmental variables, and UAV constraints. Although
the mAPO0.5 of 38.2% is a decent detection score, the low mAP0.5:0.95 of 13.4% indicates poor localization of bounding
boxes, primarily due to lower resolution and diffuse heat in TIR images, which are further affected by environmental
factors such as vegetation and lighting. Our findings align with Bartlett et al. [67] and Camacho et al. [7], who
reported that UAV-mounted TIR systems outperform RGB-based methods under nocturnal conditions. Conversely,
Xu et al. [8] noted that models without adaptive preprocessing exhibit reduced mAP under dense canopy,
emphasizing the importance of our adaptive thresholding approach. This demonstrates the potential of TIR

surveillance by UAVs and highlights opportunities for future optimization.

6. CONCLUSION
The effectiveness of TIR imaging, deep learning, and UAVs in wildlife protection is demonstrated in this paper.
The system efficiently detects animals and poachers by combining the YOLOR network, achieving a mean average

precision (mAP) of 388.2, surpassing the 85% target, with real-time processing at 10 frames per second. Although
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detecting small or camouflaged objects remains a challenge, the system performs well within computational limits.

Future work should focus on improving detection capabilities and expanding the dataset to enhance robustness across

various environments. This study is the first to integrate adaptive thresholding with the YOLOR model for UAV-

based TIR wildlife surveillance, resulting in superior detection accuracy and efficiency. The project highlights the

potential of TIR imaging and higher-order neural networks to support wildlife preservation, offering a scalable

solution for habitat monitoring and illegal activity prevention. Additionally, it introduces strategies such as adaptive

thresholding and multi-channel input to improve detection of camouflaged and nocturnal animals.
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