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A SEASONAL ARIMA MODEL FOR DAILY NIGERIAN NAIRA-US DOLLAR
EXCHANGE RATES
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ABSTRACT

Time series analysis of daily Nigerian Naira-US Dollar Exchange Rates (DNDER) data is
conducted. The time plot reveals a positive trend. Seasonality of order 7 is observed; troughs tend
to appear on Mondays and peaks on Fridays. Seasonal differencing once produced a series
SDDNDER with a slightly overall negative trend. A non-seasonal differencing of SDDNDER
yielded a series DSDDNDER with no trend but with a correlogram revealing seasonality of order
7. Moreover, the correlogram reveals the involvement of a seasonal moving average component of
order 1 and a nonseasonal autoregressive component of order 2. An adequate multiplicative
seasonal autoregressive integrated moving average (ARIMA) model, (2, 1, 0)x(0, 1, 1), is therefore
fitted to the series.
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INTRODUCTION

A time series is defined as a set of data collected sequentially in time. It has the property that
neighboring values are correlated. This tendency is called autocorrelation. A time series is said to
be stationary if it has a constant mean and variance. Moreover the autocorrelation is a function of

the lag separating the correlated values and called the autocorrelation function (ACF).

A stationary time series {X} is said to follow an autoregressive moving average model of orders p
and q (designated ARMA(p, q)) if it satisfies the following difference equation

Xt - OL1Xt_1 - GZXt—Z =T apXt_p =&t Blgt—l + BZSt—Z + ...+ qut (1)

A(L)X; = B(L)e (2

! Department of Mathematics/Computer Science, Rivers State University of Science and Technology, Nigeria

E-mail:ettetuk @yahoo.com

219



Asian Journal of Empirical Research 2(6): 219-227

where {g}is a sequence of uncorrelated random variables with zero mean and constant variance,
called a white noise process, and the a;’s and f;’s constants; A(L) = 1- a4l - apl?- ... - apL? and
B(L)=1+p,L+ [32L2 + ... + BgL% and L the backward shift operator defined by L% = Xk

If p = 0, the model (1) becomes a moving average model of order g (designated MA (q)). If,
however, g = 0 it becomes an autoregressive process of order p (designated AR (p)). An AR (p)
model may be defined as a model whereby a current value of the time series X; depends on the
immediate past p values: X.1, X, ... , X¢p. On the other hand an MA(g) model is such that the
current value X; is a linear combination of immediate past values of the white noise process: &1, &.
2 ... ,Erq. Apart from stationarity, invertibility is another important requirement for a time series. It
refers to the property whereby the covariance structure of the series is unique (Priestley, 1981).
Moreover it allows for meaningful association of current events with past history of the series (Box
and Jenkins, 1976).

An AR (p) model may be more specifically written as X; + op X1 + 0ppXez + ... + 0ppXip = &1
Then the sequence of the last coefficients {a;;} is called the partial autocorrelation function
(PACF) of {Xt}. The ACF of an MA (g) model cuts off after lag q whereas that of an AR(p) model
is a combination of sinusoidals dying off slowly. On the other hand the PACF of an MA(q) model
dies off slowly whereas that of an AR (p) model cuts off after lag p. AR and MA models are known
to exhibit some duality relationships. These include:

A finite order AR model is equivalent to an infinite order MA model.

A finite order MA model is equivalent to an infinite order AR model.

The ACF of an AR model exhibits the same behaviour as the PACF of an MA model.

The PACF of an AR model exhibits the same behaviour as the ACF of an MA model.

An AR model is always invertible but is stationary if A(L) = 0 has zeros outside the unit circle.

o gk~ w PR

An MA model is always stationary but is invertible if B(L) = 0 has zeros outside the unit
circle.

Parametric parsimony consideration in model building entails preference for the mixed ARMA fit
to either the pure AR or the pure MA fit. Stationarity and invertibility conditions for model (1) or
(2) are that the equations A(L) = 0 and B(L) = 0 should have roots outside the unit circle
respectively. Often, in practice, a time series is non-stationary. Box and Jenkins, (1976) proposed
that differencing of appropriate order could render a non-stationary series {Xt} stationary. Let
degree of differencing necessary for stationarity be d. Such a series {Xt} may be modelled as

A(L)VEX, = B(L) (3)
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whereV = 1 - L and in which case A(L)V® = 0 shall have unit roots d times. Then differencing to
degree d renders the series stationary. The model (3) is said to be an autoregressive integrated
moving average model of orders p, d and q and designated ARIMA (p, d, q).

SEASONAL ARIMA MODELS

A time series is said to be seasonal of order d if there exists a tendency for the series to exhibit
periodic behaviour after every time interval d. Traditional time series methods involve the
identification, unscrambling and estimation of the traditional components: secular trend, seasonal
component, cyclical component and the irregular movement. For forecasting purpose, they are
reintegrated. Such techniques could be quite misleading. The time series {X;} is said to follow a
multiplicative (p, d, q)x(P, D, Q)sseasonal ARIMA model if

A(L)D(LY)VVEX, = B(L)O(B%)s: 4)

where® and © are polynomials of order P and Q respectively. That is,
OLY) =1+ ¢ L5+ ...+ ppL™ (5)
OL)=1+0,L°+ ... +9,L° (6)

where the ¢; and the 6; are constants such that the zeros of the equations (5) and (6) are all outside
the unit circle for stationarity or invertibility respectively. Equation (5) represents the
autoregressive operator whereas (6) represents the moving average operator. Existence of a
seasonal nature is often evident from the time plot. Moreover for a seasonal series the ACF or
correlogram exhibits a spike at the seasonal lag. Box and Jenkins, (1976) and Madsen, (2008) have
written extensively on such models. Knowledge of the theoretical properties of the models provides
basis for their identification and estimation. The purpose of this paper is to fit a seasonal ARIMA
model to the daily Naira-Dollar exchange rates (DNDER). Etuk, (2012) fitted a (0, 1, 1)x(1, 1, 1)1,
model to the monthly exchange rates and on its basis obtained 2012 forecasts.

MATERIALS AND METHODS

The data for this work are eighty two daily Nigerian Naira-US Dollar exchange rates from 26 April
to 16 July, 2012 obtainable from the daily publications of the Nation newspaper.

Determination of the orders d, D, P, g and Q:

Seasonal differencing is necessary to remove the seasonal trend. If there is secular trend non-
seasonal differencing will be necessary. To avoid undue model complexity it has been advised that
orders of differencing d and D should add up to at most 2 (i.e. d + D < 3). If the ACF of the
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differenced series has a positive spike at the seasonal lag then a seasonal AR component is
suggestive; if it has a negative spike then a seasonal MA term is suggestive. As already mentioned
above, an AR (p) model has a PACF that truncates at lag p and an MA (q) has an ACF that
truncates at lag g. In practice +2/\n where n is the sample size are the non-significance limits for
both functions.

Model Estimation

The involvement of the white noise process in an ARIMA model entails a nonlinear iterative
process in the estimation of the parameters. An optimization criterion like least error sum of
squares, maximum likelihood or maximum entropy is used. An initial estimate is usually used.
Each iteration is expected to be an improvement of the last one until the estimate converges to an
optimal one. However, for pure AR and pure MA models linear optimization techniques exist (Box
and Jenkins, 1976; Oyetunji, 1985). There are attempts to adopt linear methods to estimate ARMA
models (Etuk, 1987, 1998).

Diagnostic Checking

The model that is fitted to the data should be tested for goodness-of-fit. We shall do some analysis
of the residuals of the model. If the model is correct, the residuals would be uncorrelated and would
follow a normal distribution with mean zero and constant variance. The autocorrelations of the
residuals should not be significantly different from zero.

RESULTS AND DISCUSSION

The analysis of the series shows a seasonal pattern, with troughs tending to appear on Mondays and
peaks on Fridays. The time plot of the original series DNDER in Figure-1 shows an overall positive
trend. Seasonal (7-day) differencing of the series produces a series SDDNDER with a slightly
positive trend (Figure-2). Non-seasonal differencing of SDDNDER vyields a series DSDDNDER
with no trend. Its ACF in Figure-4 has a negative spike at lag 7 revealing a seasonality of lag 7 and
a seasonal MA component of order one to the model. The PACF shows a spike at lag 2 suggesting
a seasonal AR component of order two. We therefore propose the seasonal model

DSDDNDER; = 0,;DSDDNDER; + 0,DSDDNDER;, +B156t.10+&; (7
The estimation of the model is summarized in Table-1. The fitted model is given by

DSDDNDER, + 0.2331DSDDNDER,; + 0.3352DSDDNDER, , + 0.9018¢, ; (8)
(+0.1141) (+0.1152) (+0.0409)

The fitted model is a (2, 1, 0)x(0, 1, 1) ; model. The estimation involved 8 iterations.
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All coefficients are significantly different from zero, each being larger than twice its standard error.
There is close agreement between the actual and the fitted models as evident from Figure-5. The
correlogram of the residuals in Figure-6 depicts the adequacy of the model. All the residual
autocorrelations are not significantly different from zero. Moreover from the histogram of the
residuals shown in Figure-7, they are normally distributed with zero mean indicating model
adequacy.

CONCLUSION

A (2, 1, 0)x(0, 1, 1) ; model has been fitted to the series NDER. It is found that the series
DSDDNDER follows an ARMA (2, 7) model given by equation (8). By a variety of approaches the
model has been found adequate for DNDER.
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Table-1. Model Estimation

Dependent Variable: DSDDNDER
Method: Least Squares

Date: 08/15/12 Time: 17:26
Sample(adjusted): 11 82

Included observations: 72 after adjusting endpoints
Convergence achieved after 8 iterations

Backcast: 4 10

Varniable Coefficient

Std. Error

t-Statistic

Prob.

AR(1) -0.233100
AR(2) -0.335249
MA(7) -0.901807

0.114092
0.115150
0.040903

-2.043096
-2.911399
-22.04740

0.0449
0.0048
0.0000

R-squared 0.518012
Adjusted R-squared 0.504041
S.E. of regression 0.848894
Sum squared resid 4972283
Log likelihood -88.83630
Durbin-Watson stat 2.082386

Mean dependent var
S.D. dependent var

Akaike info criterion
Schwarz criterion

F-statistic

Prob(F-statistic)

2.645870
37.07850
0.000000

Inverted AR Roots -.12+.57i
Inverted MA Roots .99
- 22+ 96i

-.12 -.57i

B1+.77 61 -77i
-89 -.43i -89+ .43i

-.22 - 96i

Figure-4. Correlogram of Dsddnder

Autocorrelation Partial Correlation AC

PAC

Q-Stat

Prob

-0.100
-0.333
-0.074
0.086
0.157
0.004
-0.501
0.033
0.308
10 -0.074
11 0.012
12 -0.070
13 0.084
14 0.070
15 -0.098
16 -0.187
17 0.199
18 0.021
19 0.034
20 -0.089
21 -0.042
22 0.183
23 0.027
24 -0.089
25 -0.091
26 -0.012
27 0.046
28 0.136
29 -0.143
30 -0.048
31 0.051
32 0.010

LN EWN =

-0.100
-0.347
-0.176
-0.082
0.087
0.054
-0.473
-0.137
-0.017
-0.217
0.081
-0.047
0.126
-0.220
-0.177
-0.178
-0.025
-0.007
0.133
0.022
-0.080
0.004
-0.114
0.123
0.015
0.042
0.057
0.064
0.054
-0.097
0.057
-0.071

0.7675
94518
9.8850
10.481
12.479
12.480
33.509
33.602
41.811
42288
42.300
42.749
43.400
43.853
44763
48.140
52.050
52.095
52.213
53.030
53.219
56.835
56.914
57.809
58.757
58.773
59.022
61.282
63.845
64.145
64.479
64.492

0.381
0.009
0.020
0.033
0.029
0.052
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.001
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Figure-6. Correlogram of Residuals
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PAC Q-Stat

Prob
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15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

-0.042
-0.037
-0.125
-0.013
0.009
-0.079
-0.005
-0.108
0.117
0.054
0.058
-0.005
0.040
-0.013
-0.093
-0.154
0.242
-0.085
0.103
0.032
-0.016
0.135
-0.053
0.063
-0.200
-0.014
0.004
-0.006
-0.017
-0.057
0.050

-0.042
-0.039
-0.129
-0.026
-0.003
-0.098
-0.020
-0.121
0.084
0.048
0.044
0.021
0.065
-0.008
-0.073
-0.162
0.270
-0.117
0.108
0.074
-0.029
0.144
-0.033
0.052
-0.065
-0.087
0.064
-0.079
-0.032
-0.070
-0.062

32 -0.082 -0.077

0.1355
0.2401
1.4460
1.4582
1.4654
1.9636
1.9660
29458
4.1088
4.3582
4.6489
4.6508
4.7936
4.8081
56203
7.8912
13.577
14.297
15.357
15.465
15.492
17.437
17.745
18.186
22.714
22.735
22.T37
22742
22776
23.194
23.522
24 409

0.227
0.481
0.580
0.742
0.708
0.662
0.738
0.794

0.905
0.940
0.934
0.851
0.482
0.503
0.499
0.562
0.628
0.560
0.604
0.637
0.418
0.476
0.535
0.593
0.646
0.675
0.706
0.709
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Figure-7. Histogram of Residuals

14

Series: Residuals
124 Sample 11 82
Observations 72

Mean 0.024860
Median 0.035537
Maximum 2.798122
Minimum -2.645938
Std. Dev. 0.836478
Skewness 0.030470
Kurtosis 5.040259

Jarque-Bera  12.49911
Probability ~ 0.001931
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