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ABSTRACT 

Time series analysis of daily Nigerian Naira-US Dollar Exchange Rates (DNDER) data is 

conducted. The time plot reveals a positive trend.  Seasonality of order 7 is observed; troughs tend 

to appear on Mondays and peaks on Fridays. Seasonal differencing once produced a series 

SDDNDER with a slightly overall negative trend. A non-seasonal differencing of SDDNDER 

yielded a series DSDDNDER with no trend but with a correlogram revealing seasonality of order 

7. Moreover, the correlogram reveals the involvement of a seasonal moving average component of 

order 1 and a nonseasonal autoregressive component of order 2. An adequate multiplicative 

seasonal autoregressive integrated moving average (ARIMA) model, (2, 1, 0)x(0, 1, 1)7, is therefore 

fitted to the series.  
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INTRODUCTION 

 
A time series is defined as a set of data collected sequentially in time. It has the property that 

neighboring values are correlated. This tendency is called autocorrelation. A time series is said to 

be stationary if it has a constant mean and variance. Moreover the autocorrelation is a function of 

the lag separating the correlated values and called the autocorrelation function (ACF).  

 

A stationary time series {Xt} is said to follow an autoregressive moving average model of orders p 

and q (designated ARMA(p, q)) if it satisfies the following difference equation 

 

Xt - 1Xt-1 - 2Xt-2 - … - pXt-p = t + 1t-1 + 2t-2 + … + qt  (1) 

 

A(L)Xt = B(L)t  (2) 
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where {t}is a sequence of uncorrelated random variables with zero mean and constant variance, 

called a white noise process, and the i’s and j’s constants; A(L) =  1- 1L - 2L
2 - … - pL

p and 

B(L) = 1 + 1L + 2L
2 + … + qL

q and L the backward shift operator defined by LkXt = Xt-k.  

 

If p = 0, the model (1) becomes a moving average model of order q (designated MA (q)). If, 

however, q = 0 it becomes an autoregressive process of order p (designated AR (p)). An AR (p) 

model may be defined as a model whereby a current value of the time series Xt depends on the 

immediate past p values: Xt-1, Xt-2, … , Xt-p. On the other hand an MA(q) model is such that the 

current value Xt is a linear combination of immediate past values of the white noise process: t-1, t-

2, … ,t-q. Apart from stationarity, invertibility is another important requirement for a time series. It 

refers to the property whereby the covariance structure of the series is unique (Priestley, 1981). 

Moreover it allows for meaningful association of current events with past history of the series (Box 

and Jenkins, 1976). 

 

An AR (p) model may be more specifically written as Xt + p1Xt-1 + p2Xt-2 + … + ppXt-p = t. 
Then the sequence of the last coefficients {ii} is called the partial autocorrelation function 

(PACF) of {Xt}. The ACF of an MA (q) model cuts off after lag q whereas that of an AR(p) model 

is a combination of sinusoidals dying off slowly. On the other hand the PACF of an MA(q) model 

dies off slowly whereas that of an AR (p) model cuts off after lag p. AR and MA models are known 

to exhibit some duality relationships. These include: 

 

1. A finite order AR model is equivalent to an infinite order MA model. 

2. A finite order MA model is equivalent to an infinite order AR model. 

3. The ACF of an AR model exhibits the same behaviour as the PACF of an MA model. 

4. The PACF of an AR model exhibits the same behaviour as the ACF of an MA model. 

5. An AR model is always invertible but is stationary if A(L) = 0 has zeros outside the unit circle. 

6. An MA model is always stationary but is invertible if B(L) = 0 has zeros outside the unit 

circle. 

 

Parametric parsimony consideration in model building entails preference for the mixed ARMA fit 

to either the pure AR or the pure MA fit. Stationarity and invertibility conditions for model (1) or 

(2) are that the equations A(L) = 0 and B(L) = 0 should have roots outside the unit circle 

respectively. Often, in practice, a time series is non-stationary. Box and Jenkins, (1976) proposed 

that differencing of appropriate order could render a non-stationary series {Xt} stationary. Let 

degree of differencing necessary for stationarity be d. Such a series {Xt} may be modelled as 

 

A(L)dXt = B(L)t  (3) 
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where = 1 - L and in which case A(L)d = 0 shall have unit roots d times. Then differencing to 

degree d renders the series stationary. The model (3) is said to be an autoregressive integrated 

moving average model of orders p, d and q and designated ARIMA (p, d, q). 

 

SEASONAL ARIMA MODELS 

 

A time series is said to be seasonal of order d if there exists a tendency for the series to exhibit 

periodic behaviour after every time interval d. Traditional time series methods involve the 

identification, unscrambling and estimation of the traditional components: secular trend, seasonal 

component, cyclical component and the irregular movement. For forecasting purpose, they are 

reintegrated. Such techniques could be quite misleading. The time series {Xt} is said to follow a 

multiplicative (p, d, q)x(P, D, Q)s seasonal ARIMA model if 

 

A(L)(Ls)dD
sXt = B(L)(Bs)t  (4) 

 

where and  are polynomials of order P and Q respectively. That is, 

 

(Ls) = 1 + 1L
s + … + PLsP   (5) 

 

(Ls) = 1 + 1L
s + … + qL

sQ                    (6) 

 

where the i and the j are constants such that the zeros of the equations (5) and (6) are all outside 

the unit circle for stationarity or invertibility respectively. Equation (5) represents the 

autoregressive operator whereas (6) represents the moving average operator. Existence of a 

seasonal nature is often evident from the time plot. Moreover for a seasonal series the ACF or 

correlogram exhibits a spike at the seasonal lag. Box and Jenkins, (1976) and Madsen, (2008) have 

written extensively on such models. Knowledge of the theoretical properties of the models provides 

basis for their identification and estimation. The purpose of this paper is to fit a seasonal ARIMA 

model to the daily Naira-Dollar exchange rates (DNDER). Etuk, (2012) fitted a (0, 1, 1)x(1, 1, 1)12 

model to the monthly exchange rates and on its basis obtained 2012 forecasts. 

 

MATERIALS AND METHODS 

 
The data for this work are eighty two daily Nigerian Naira-US Dollar exchange rates from 26 April 

to 16 July, 2012 obtainable from the daily publications of the Nation newspaper. 

 

Determination of the orders d, D, P, q and Q: 
Seasonal differencing is necessary to remove the seasonal trend. If there is secular trend non-

seasonal differencing will be necessary. To avoid undue model complexity it has been advised that 

orders of differencing d and D should add up to at most 2 (i.e. d + D < 3). If the ACF of the 
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differenced series has a positive spike at the seasonal lag then a seasonal AR component is 

suggestive; if it has a negative spike then a seasonal MA term is suggestive. As already mentioned 

above, an AR (p) model has a PACF that truncates at lag p and an MA (q) has an ACF that 

truncates at lag q. In practice 2/n where n is the sample size are the non-significance limits for 

both functions. 

 

Model Estimation 
The involvement of the white noise process in an ARIMA model entails a nonlinear iterative 

process in the estimation of the parameters. An optimization criterion like least error sum of 

squares, maximum likelihood or maximum entropy is used. An initial estimate is usually used. 

Each iteration is expected to be an improvement of the last one until the estimate converges to an 

optimal one. However, for pure AR and pure MA models linear optimization techniques exist (Box 

and Jenkins, 1976; Oyetunji, 1985). There are attempts to adopt linear methods to estimate ARMA 

models (Etuk, 1987, 1998).  

 

Diagnostic Checking 
The model that is fitted to the data should be tested for goodness-of-fit. We shall do some analysis 

of the residuals of the model. If the model is correct, the residuals would be uncorrelated and would 

follow a normal distribution with mean zero and constant variance. The autocorrelations of the 

residuals should not be significantly different from zero. 

 
RESULTS AND DISCUSSION 

 
The analysis of the series shows a seasonal pattern, with troughs tending to appear on Mondays and 

peaks on Fridays. The time plot of the original series DNDER in Figure-1 shows an overall positive 

trend. Seasonal (7-day) differencing of the series produces a series SDDNDER with a slightly 

positive trend (Figure-2). Non-seasonal differencing of SDDNDER yields a series DSDDNDER 

with no trend. Its ACF in Figure-4 has a negative spike at lag 7 revealing a seasonality of lag 7 and 

a seasonal MA component of order one to the model. The PACF shows a spike at lag 2 suggesting 

a seasonal AR component of order two. We therefore propose the seasonal model 

 

DSDDNDERt = 1DSDDNDERt-1 + 2DSDDNDERt-2 +12t-12+t   (7) 

 

The estimation of the model is summarized in Table-1. The fitted model is given by 

 

DSDDNDERt + 0.2331DSDDNDERt-1 + 0.3352DSDDNDERt-2 + 0.9018t-7  (8) 

                (0.1141)                          (0.1152)                       (0.0409)      

 

The fitted model is a (2, 1, 0)x(0, 1, 1) 7 model. The estimation involved 8 iterations. 
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All coefficients are significantly different from zero, each being larger than twice its standard error. 

There is close agreement between the actual and the fitted models as evident from Figure-5. The 

correlogram of the residuals in Figure-6 depicts the adequacy of the model. All the residual 

autocorrelations are not significantly different from zero. Moreover from the histogram of the 

residuals shown in Figure-7, they are normally distributed with zero mean indicating model 

adequacy.  

 

CONCLUSION 
 

A (2, 1, 0)x(0, 1, 1) 7  model has been fitted to the series NDER. It is found that the series 

DSDDNDER follows an ARMA (2, 7) model given by equation (8). By a variety of approaches the 

model has been found adequate for DNDER.  
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Table-1. Model Estimation 

 

Figure-4. Correlogram of Dsddnder 
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Figure-6. Correlogram of Residuals 
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Figure-7. Histogram of Residuals 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


