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Abstract 

In an increasingly globalized business environment, sustaining 

relatively high productivity growth is essential for maintaining an 

international competitive advantage. Economists typically 

identify manufacturing companies in China as prime examples of 

firms attaining cost competitiveness through productivity growth.  

This study contributes to the analysis of productivity growth in 

China by estimating unexplained technological change, scale and 

infrastructure investment‘s contribution to annual productivity 

growth for 27 manufacturing industries. A flexible form cost 

equation for manufacturing industries classified at the two-digit 

industry code level for the 1998-2005 sample period is used to 

investigate each factor‘s impact on productivity growth. The 

findings suggest that for all industries excluding furniture 

manufacturing, unexplained technological change contributes to 

productivity growth. Infrastructure investment and scale 

contribute to such growth for 16 and 5 of the 27 industries 

respectively.

 

1. INTRODUCTION 

 
Productivity growth in China has greatly transformed its economy. Benefits from such growth 

include competitive cost advantage in a global economy, growing demand for jobs that pay well and 

improved standards of livings (see for example, Lin, 2012). While gains in the latter part of the 20
th

 

century and the beginning of the 21
st
 century have far outpaced the global average, sustaining these 

gains may prove challenging in the longer term. A growing literature identifying sources of 

productivity has developed recently with the partial objective of providing a better understanding of 

the potential of sustained productivity growth in China. 

 

Many researchers have studied productivity growth in the Chinese economy, with some focusing 

solely on its manufacturing sector (Heytens & Zebregs, 2003; Zheng et al., 2009).  
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These studies examine the impact of various factors, such as technology, foreign direct investment 

(FDI), and international trade on China‘s productivity growth. They all show significant annual 

productivity growth ranging from 1.4% to 4.5% (Hu & Khan, 1997; Zheng & Hu, 2006). Based on 

our understanding of China‘s institutional background and economic policies for the relevant time 

period (discussed below), we examine three factors: unexplained technological change, scale, and 

infrastructure investment to investigate productivity growth in the Chinese manufacturing sector.  

We decompose the annual productivity growth rate to identify each individual factor‘s contribution.  

 

The empirical approach used to analyze productivity growth in Chinese manufacturing estimates a 

long-run cost function, which allows for taking advantage of an extensive panel data set covering an 

eight-year time span for 27 manufacturing industries in China‘s 31 provinces. We first estimate 

productivity growth with a flexible translog cost function. Estimated annual productivity growth is 

subsequently decomposed to isolate individual contribution from unexplained technological change, 

scale and infrastructure investment. The analysis enhances our understanding of the sources for 

China‘s manufacturing advantage and economic growth. It can also help in formulating economic 

policies to most efficiently use governmental and societal resources to maintain China‘s 

manufacturing competitiveness. 

 

The remainder of this paper is organized as follows. Section 2 is a review of institutional factors that 

are beneficial for China‘s manufacturing productivity growth. Section 3 reviews relevant literature. 

Data and empirical approaches are explained in section 4. Section 5 discusses regression results from 

estimating the translog cost function and decomposing the annual productivity growth numbers. 

Section 6 provides concluding remarks.  

 

2. GROWTH PROMOTING INSTITUTIONAL FACTORS 
 

China‘s economic reform and opening-up policy
1
 since 1978 has achieved phenomenal success. 

Among the many other contributing factors, the Chinese government‘s determination to upgrade its 

industrial technology by attracting FDI and promoting domestic research and development (R&D), 

to invest in infrastructure, and to develop its own large industrial firms greatly contributed to the 

impressive economic growth story.  

 

One prominent policy enforced at the beginning of the economic reform was to attract FDI by 

establishing four Special Economic Zones (SEZs). Inside the SEZs, favorable policies and rules on 

tax, foreign exchange, international trade, labor, and other administrative measures were used to 

attract foreign investment. Taxes were generally much lower inside than outside the SEZs. In 

addition, firms received governmental financial assistance in obtaining land and other resources, 

such as lower rates on utility services. These policies produced remarkable outcomes: China has 

become an important destination for foreign business and has received huge amounts of incoming 

FDI. From the 1980s to late 1990s, contracted FDI into China grew from about $1.5 billion to more 

than $40 billion annually. The actual use of FDI grew from $0.5 billion to more than $40 billion a 

year during the same time period (Fung, 2002). Output growth and technological advances in the 

SEZs occurred very rapidly. The success in the SEZs encouraged the Chinese government to extend 

similar policies to 14 other large coastal cities in 1984. These policies were subsequently extended to 

even more cities. Many more new economic and technological development areas were established 

in these cities with a focus to attract FDI and improve technology to eventually boost economic 

growth and productivity.  

 

In addition to promoting FDI as a source of technological progress, the Chinese government also 

used direct funding and tax incentives to spur industrial R&D for both foreign and domestic 

                                                 
1 In December 1978 the Third Plenary Session of the 11th Chinese Communist Party Central Committee decided 

to reform and open up its economy: reduced government planning and increased the role of markets and opened 

its economy for more international trade.  
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institutions. China also used technology policies to promote industrial development. Such incentives 

contributed to increased output and productivity (Zhu et al., 2006, and Fan & Watanabe, 2006).  

 

Past research shows that as the Chinese economy grew, especially with increases in international and 

domestic trade, the need for improved infrastructure grew, particularly in transportation facilities 

(Démurger, 2001). All levels of government have huge incentives to invest in infrastructure as they 

attract investments and commerce, thus creating jobs and economic growth. Much infrastructure is 

built at the regional (local and provincial) government level. With a decentralized fiscal structure, 

local governments are responsible for their finances. Thus investments in infrastructure exhibited 

large differences and created regional disparities in productivity, income, and other economic 

outcomes (Démurger, 2001).  

 

In addition to regular budgetary revenue, local governments created various ways to finance their 

construction of public infrastructure (Herrmann-Pillath & Xingyuan, 2004), such as public-private 

cooperation in building highways, selling public land, and borrowing from local banks. Over the 

years resources devoted to public infrastructure have increased steadily in China. For example, 

revenues for urban infrastructure building increased from 2.7 billion yuan in 1980 to 198.9 billion 

yuan in 2000, and to 476.2 billion yuan in 2007 (Wang, 2011). Consequently China‘s overall 

infrastructure has improved tremendously and presents its manufacturing sector a significant cost 

advantage over many neighboring developing economies. However, the level of infrastructure in 

China is still below that in developed economies. Thus further improvement in infrastructure 

remains likely and consequent benefit to manufacturing productivities may continue. 

 

The Chinese government, especially at local levels, played an important positive role in developing 

its industries and firms as well. Government owned firms, for example, State Owned Enterprises 

(SOEs), and Township and Village Enterprises (TVEs) dominated many industries. The fastest 

growth in output and productivity occurred in these firms (Walder, 1995).  Zheng et al. (2003) show 

that considerable productivity growth was achieved through technological progress. They also find 

large SOEs were more likely to generate productivity growth than smaller ones. Based on such 

research evidence and their experience, the Chinese governments seem to lean toward making the 

strategic SOEs bigger to gain from larger scale. It is of practical importance to find out scale‘s 

impact on productivity growth.  

 

In sum, the preceding review of growth and productivity promoting institutional factors suggests the 

Chinese government has implemented policies that encourage investment in technology in part 

through FDI, investment in infrastructure and in large SOE‘s. At issue is the effectiveness of such 

investment on productivity growth. 

 

3. EMPIRICAL ANALYSIS OF DETERMINANTS OF PRODUCTIVITY 

GROWTH  
 

The tremendous growth in China‘s economy and its manufacturing sector has prompted many 

researchers to investigate China‘s productivity growth. These studies show that annual productivity 

growth varied from a low of 1.4% to a high of 4.5% since China‘s economic reform policy was first 

introduced in 1978 (Maddison, 1998; World Bank, 1997; Hu & Khan, 1997; Young, 2003; Zheng & 

Hu, 2006, OECD, 2005). Empirical research on productivity growth include technology, economies 

of scale, and investment in infrastructure as influential determinants of such growth.   

 

Economic theory suggests investment in technology enhances productivity. The intuition is that by 

introducing input-saving equipment and technology, such as the adoption of robotics and computers, 

and just-in-time inventory management in manufacturing, workers become more productive. For 

instance, existing literature of the effect of technology on productivity growth focuses heavily on 

potential gains arising from R&D, technology transfer, and FDI.  Hu et al. (2005) show in-house 

R&D and technology transfers are significantly complementary in productivity growth. For 
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developing nations like China, productivity growth is also achieved through knowledge spillover 

effect, such as demonstration effect and labor mobility. Many local firms are started by the engineers 

who have worked for foreign invested companies and learned how to make similar products and 

compete with their former employers. Other local firms poach workers from foreign invested 

companies. Caves (2007) finds that it is difficult to prevent knowledge, which includes superior 

production technology, management practices or marketing information, to spill over and influence 

production efficiency of indigenous companies.  

 

However, findings from Fu (2011) show that the technology spillover effect on the development of 

international competitiveness in indigenous firm is limited.  Other studies show that the impacts of 

both domestic and foreign technology transfer on firm productivity are largely conditional on their 

interactions with in-house R&D (Hu et al., 2005). Technological investment may not always 

contribute to greater productivity growth for various reasons. For example, Li (2008) examines large 

and medium sized Chinese firms in 32 industries during the period of 1996 to 2003 and finds a 

negative rate-of-return from domestic R&D due to over-investment and soft budget constraints.  

 

As is the case for technological investment, traditional economic theory does not offer an obvious 

prediction of the effect of industry scale on productivity.  On the one hand, by increasing the size of 

operations, companies can take advantage of the gains from specialization of workers and division of 

labor, thus lowering average variable costs. It is well known that economies of scale also occur as a 

result of lowering per unit fixed costs, such as machinery and plants, by increasing output levels. 

Furthermore, it is easier to innovate when production is increased. For instance, Jacobs (1969) and 

Glaeser et al. (1992) show that new firms, especially technology-oriented firms, benefit from 

urbanization economies, which arise from the scale and diversity of urban industrial activities.
2
 On 

the other hand, large operations may experience diseconomies of scale. For instance, large 

operations may be plagued by loss of management efficiency. The complexity associated with 

managing large operations with many layers of bureaucracy creates a challenge for managers 

maintaining internal efficiency (Carlton & Perloff, 2005).  

 

Analyses of infrastructure investment‘s influence on productivity suggest that such investment has 

the potential to enhance productivity growth but such results are not guaranteed. Typically using a 

Cobb-Douglas production or cost function for empirical analysis, past research identifies over 

investment in new projects rather than upgrading existing infrastructure projects as a common 

planning mistake that impedes productivity growth (Fernald, 1999). Empirical analysis of 

infrastructure investment and productivity supports Fernald‘s observation by revealing mixed results 

for the infrastructure-productivity association. For instance, with national and regional public 

infrastructure data, Aschauer (1989) and Munnell (1990) show that output elasticity with respect to 

public infrastructure is between 0.30 and 0.40 in the U.S. In addition, Ford and Poret (1991) show 

average elasticity of total factor productivity (TFP) with respect to changes in infrastructure to be 

about 0.45 when they use data from nine OECD countries.
3
 However, estimates from Eberts (1986) 

and Garcia-Milà and McGuire (1992) show much lower elasticity, between 0.040 and 0.045. 

Furthermore, Hulten and Schwab (1991) and Holtz-Eakin (1994) find no statistically significant 

relationship between the growth of TFP and the growth of public capital when observing 

productivity trends at the regional level. 

 

These conflicting results lead to doubts over the validity of using the Cobb-Douglas production 

function framework to assess the effects of investment in public infrastructure on output and 

productivity. In addition, empirical results from using aggregate national level data are criticized as 

―too good to be true‖ (World Bank, 1994). These differences between estimates based on aggregate 

                                                 
2 Standard economic theory suggests gains associated with scale arise in part from the benefits of specialization 

and the ability to lower unit cost due to high fixed costs at least in the short-run. 
3 Total-factor productivity, is a measurement variable that accounts for effects in total output not caused by 

traditionally measured inputs of labor and capital. 

https://en.wikipedia.org/wiki/Output_(economics)
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data and state level data may reflect the impossibility of capturing all the payoffs to public sector 

capital formation at the lower regional levels (Nadiri & Mamuneas, 1991). Moreover, the Cobb-

Douglas production function is inherently limited to a constant technology and ignores the role of 

input prices in the decision-making process by individual firms. A flexible cost function can measure 

the effects of infrastructure investment on productivity by examining savings from various 

production costs. The estimates of this cost saving on productivity effect are shown to be smaller 

(Paul et al., 2004). With a cost-function approach, Shah (1992) reports that the output elasticity of 

public infrastructure for the Mexican manufacturing sector is 0.5.  Morrison and Schwartz (1996) 

use a generalized Leontief cost function with non-constant returns to scale to analyze cost-benefits. 

Their results show that the benefits of additional infrastructure investment for manufacturing firms 

are lower than the social price of the investment. Sturm (1998) uses a generalized McFadden cost 

function to estimate the cost elasticity of public infrastructure investment for the aggregated, the 

sheltered, and the exposed sectors in the Netherlands. He finds the three elasticities are respectively -

0.31, -0.28 and -0.2. Nadiri and Mamuneas (1991) use the seemingly unrelated regression technique 

to estimate a translog cost function and input share equations simultaneously with data providing 

information at a much more disaggregated industry level than the data used by Sturm. Their 

estimates of cost saving effect on productivity suggest cost-saving effect is in the range of 0-0.2 

percent annually at the two-digit census observation level for manufacturing industries. Such small 

savings hardly support the notion that infrastructure investment promotes substantial productivity 

gains. 

 

In sum, this brief overview of past empirical analysis of the determinants of productivity growth 

reveals that while investment in technology, production scale, and investment in infrastructure are 

key to promoting such growth, their effects are not obvious a priori. In addition, empirical analysis 

reveals the importance of using a flexible form cost function when examining productivity trends. 

This study contributes to the understanding of productivity growth in China by empirically 

decomposing the overall productivity growth into individual components to see how unexplained 

technological change, scale, and infrastructure investment contribute to such growth in Chinese 

manufacturing.  

 

4. DATA AND EMPIRICAL APPROACH 
 

4.1. Data 

Individual firm-level output, input and other accounting information is used to examine productivity 

growth in major Chinese manufacturing industries. The Chinese National Bureau of Statistics (NBS) 

collects this data through its annual Chinese Industrial Enterprise Census (CIEC).  Our data cover 27 

two-digit manufacturing industries for 31 provinces for the1998-2005 time period. The CIEC is the 

most detailed and reliable database on Chinese industrial firms. It contains 165,119 firm-level 

samples in 1998 to 271,835 firm-level samples in 2005. This dataset covers more than 40 major 

industries and includes 70 indexes with basic enterprise and financial information, such as output, 

fixed assets, number of employees and wages. The census includes all the state-owned firms and 

non-state-owned enterprises with annual sales of more than 5 million Yuan RMB (called above-scale 

firms in Chinese industrial statistics terms).  

 

Since these data are reported at the firm level, we aggregate them at the provincial level for regional 

aggregation. We further aggregate the data at the 2-digit industry level (China Industry Classification 

Code: 13-40, missing 38). Consistent with other studies (such as, Cai & Liu, 2009), and to obtain a 

clean sample from the original data set, we delete observations with negative or missing values in 

total assets, the number of employees, gross value of industrial output, net value of fixed assets, and 

sales. 

 

The variables are defined as follows: the wage rate  is computed as the ratio of total wages to total 

number of employees. The price of intermediate inputs  is the purchasing price index of raw 

lP

mP
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material, fuel and power obtained from the NBS. Following Morrison (1993) and Paul et al. (2004), 

the price of private capital is measured as , where  is the price index of 

investment in fixed assets from the NBS, while d is the depreciation rate, computed as the 

depreciation this year divided by the net fixed asset; r is the 5-year interest rate; and t is the effective 

rate of taxation. All price indices are normalized to equal one in 1998 to estimate the cost equation. 

C is the total production cost for each industry in every province. It includes total wages, net fixed 

assets, and intermediate inputs. 

 

Data on infrastructure investment is from the Comprehensive Statistics Data and Documents of 50 

years of New China, a publication by NBS. China Info Bank Database is the source for the 

standardized industrial prices index.  Data on the stock of infrastructure capital is unavailable, so we 

separate the infrastructure into two components: one is the production and supply of electricity, 

water and fuel wherein total assets can be obtained from the database of a firm-level survey; the 

other is transportation infrastructure. Neither this survey nor the NBS has data on the stock of the 

infrastructure. We derive it by using the perpetual inventory method and setting the depreciation rate 

at 5%. The 1986 benchmark is estimated by dividing the infrastructure investment by the sum of the 

depreciation rate and the average growth rate of the capital stock for the period 1986―2007. The 

total infrastructure stock is computed by taking the sum of the two types of capital stock. Description 

of variables is presented in Table 1. 

 

 Table 1: Variable description 

  

4.2. Empirical approach 

This study uses an econometric approach that allows decomposing annual productivity gains 

attributable to unexplained technological change, production scale, and infrastructure investment.  

While early studies examining productivity gain rely primarily on estimation of production 

functions, more recent analysis has benefitted from the findings from duality theory that shows 

productivity technology can be identified by estimating a cost function. Our study estimates a 

flexible long-run cost function to investigate productivity trends in Chinese manufacturing in line 

with many past research (Wilson & Zhou, 1997; and Gollop & Roberts, 1981, 1983, Bitzan & 

Peoples, 2014).  The generalized cost function is specified as follows: 

 

C= C(  , Y,  GU, t) and i= K, L, or M   ……………………… (1) 

( )(1 )k kindexp p d r t   kindexp

Variable Variable name (units) Calculation method Data source 

Y Output (0.1 billion Yuan) 

Aggregate value added of 

industrial enterprise at 

provincial level 

CIEC 

K Capital (0.1 billion Yuan) 

Aggregate net fixed assets 

of industrial enterprise at 

provincial level 

CIEC 

L Number of employees (10 thousand) 

Aggregate number of 

employees of industrial 

enterprise at provincial level 

CIEC 

P Standardized industrial prices Na 
China Info Bank 

Database 

t Time Na CIEC 

GU 
Infrastructure investment (0.1 

billion Yuan) 

Aggregate investment of 

infrastructure at provincial 

level 

Chinese Statistic 

Yearbook 

G 
Infrastructure capital stock (0.1 

billion Yuan) 

Calculated by perpetual 

inventory method with a 5% 

depreciation rate 

CIEC 
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where the variable C denotes total cost and Pi is a vector of input prices such that    ,   , and     

respectively denote the price of labor, capital and materials; Y denotes output; GU is  a variable 

depicting infrastructure investment; and t is a time trend variable that is included to capture the 

unexplained technological change.   

 

A Taylor series expansion with a remainder is used to approximate this cost function (Friedlander & 

Spady, 1980). For the generalized cost function depicted by equation (1), a second order Taylor 

series expansion around the mean values of output, factor input prices, infrastructure investment and 

time is specified as follows: 
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This Taylor series approximation is then transformed by taking the logarithms of the variables and 

substituting the partial derivatives with parameters. After applying the symmetry of second 

derivatives (for example,
   

     
 

   

     
), simplifying and rearranging the terms, the resulting equation 

gives the translog cost function specified as follows:
4
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4 Traditionally research using the translog cost function avoid taking the log of the normalized mean if the time 

trend is used to depict unexplained technological change.  This study follows that convention. 
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Shephard‘s Lemma is applied to obtain each input share equation. This is achieved by differentiating 

the translog cost function with respect to the log of factor price as shown below. 
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represent labor capital and material‘s share of total cost respectively. In addition    represents 

economies of scale and    represent the technology effect on the factor inputs. The input shares 

equations together with the cost function are estimated using a seemingly unrelated regression 

method. The whole system of equations estimated is shown as follows: 
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Share equations are estimated for all the inputs excluding one in order to avoid singularity in 

estimated covariance matrix in the errors (Takada et al., 1995). Furthermore, the parameter estimates 

in the share equations also need to satisfy the following conditions of homogeneity and symmetry: 

 

∑      , ∑     ∑         , ∑     ∑      ∑      ,        .  

 

Using this approach we are able to identify cost changes, and therefore productivity changes, that 

result from unexplained technological change, scale effects, and changes in infrastructure 

investment, when holding input prices constant. Gollop and Roberts (1981, 1983) show the reduction 

in average costs over time (when holding input prices constant) can be separated into a portion that 

is attributed to movements along the firm‘s average cost curve (scale economies) and a portion that 

is attributed to shifts in the firm‘s average cost curve (technological change and investment in 

infrastructure). To obtain expressions for the productivity gains realized due to technological change 

over time, scale economies, and changes in infrastructure investment, we start by defining the rate of 

change in total costs over time (holding input prices constant): 

 
     

  
  

    

    

    

  
 

    

     

     

  
  

    

  
        ……………………… (7) 

 

Equation (7) is used to derive the rate of change in average cost by subtracting the rate of change in 

output over time from the rate of change in total costs, as depicted below: 
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Duality theory indicates that productivity growth is depicted as the negative of this rate of change in 

average costs. Thus productivity growth is measured using the following equation: 
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In equation (9) the first component of the differential on right-hand-side represents productivity 

growth resulting from a change in output (scale); the second component represents productivity 

growth resulting from a change in infrastructure investment; and the last component represents 

productivity growth resulting from a change in unexplained technology.  In this study we model 

productivity growth resulting from each of these effects for the industry average in each year of our 

data.  Thus, decreases in average cost from the previous year are separated into these components by 

using cost function parameter estimates and industry averages of explanatory variables.  For 

instance, a two-year average of explanatory variables is used to measure changes due to unexplained 

technological change, infrastructure investment, and scale for any given year as follows
5
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where Pi denotes factor input prices. Including input prices in the equation allows for analysis of 

unexplained technological change while holding input prices constant.  
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In terms of unexplained technological change, the model can also identify whether technology is 

factor using or factor saving for different factors of production.  That is, we can look at time-factor 

price interaction terms to identify the impacts of input price changes on unexplained technological 

change and the changing input shares associated with technological change.  Positive time-factor 

price interactions suggest an increase in the factor share over time (factor using) and a hindrance on 

technical change associated with price increases for that factor.  On the other hand, negative time-

factor price interactions suggest a decrease in factor share over time (factor saving) and a benefit to 

technological change associated with price increases of that factor, because increasing the price of 

that factor encourages substitution to other factors of production associated with technological 

progress (Rich, 2004).  

                                                 
5 Gollop and Roberts (1981) and Bitzan and Peoples (2014) also used a two year average of independent 

variables in measuring productivity effects due to scale and technical changes in the U.S. Electric Power 

Industry. Note that the notation YRt denotes observation year at time ‗t‘. 
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5. PRODUCTIVITY RESULTS DERIVED FROM ESTIMATING THE COST 

FUNCTIONS  
 

Generally, the properties needed to satisfy the regularity conditions for a cost function are met.  The 

estimated cost functions increase with increasing input prices and monotonicity is satisfied for 

industry output.  Last, the estimated cost functions are also concave in input prices for nearly all 

observations.
6
  

 

Before examining what the cost estimation results suggest about the influence of unexplained 

technological change, scale, and infrastructure investment on manufacturing productivity, an 

analysis of the estimated coefficients on the explanatory variables is presented.  A summary of the 

findings on the first order terms of the 27 cost functions is presented in Table 2
7
.   

 

Table 2: Summary of sign and statistical significance of parameter estimates on first order 

terms 

Parameter Estimate Sign  PL PK PM Y GU t 

Positive and Statistically Significant 27 27 27 27 11 3 

Negative and Statistically Significant 0 0 0 0 4 15 

Not Statistically Significant 0 0 0 0 12 9 

Note: Separate Results for Each of the Cost Equations Estimated for 27 Industries 

 

These findings indicate that the estimated coefficient on the first order terms for input prices and 

output are all positive and statistically significant.  Although not presented in the table, the value of 

these parameters suggests that materials constitute the largest cost share of the three inputs, as the 

cost of materials comprise between 50 to 70 percent of cost attributable to the price of inputs.
8
  

Labor constitutes the smallest share of input costs ranging from 4 to 5 percent of total input cost.  

The estimated coefficients on the output variable for each cost estimate vary from a range of 0.90 to 

1.24 and are all statistically significant.   
 

Findings on the two remaining first order terms reveal much greater variation in the sign and 

statistical significance of their estimated coefficients.  The majority of the estimated coefficients on 

the infrastructure investment variable lack statistical significance.  For infrastructure investment 

parameter estimates that are statistically significant, most are positive.  The majority of the estimated 

coefficients on the unexplained technological change (time trend) are negative and statistically 

significant.  A summary of the findings on the second order terms is presented in Table 3.   
 

Table 3: Findings on selected second order terms input prices interacted with unexplained 

technology, infrastructure investment and scale 

  Unexplained Technology Infrastructure Investment Scale 

Column number 1 2 3 4 5 6 7 8 9 

Effect on Factor Inputs K L M K L M K L M 

Input Saving 21 17 2 10 5 10 17 22 4 

Input using 0 3 21 11 12 10 5 2 19 

Neutral 6 7 4 6 10 7 5 3 4 

                                                 
6 Concavity is satisfied for a least 80 percent of the observations for 22 of the 27 industry samples.  Only textile, 

chemical products, communications equipment, processing of ferrous metals and tobacco satisfy this condition 

for less than 80 percent of the observations. Excluding tobacco production, over 70 percent of the observations 

for these four industries satisfy this condition.  Concavity in input prices is satisfied for two-thirds of the 

observations for tobacco production. 
7 Due to space limits estimates of coefficients for first order, second order, interaction terms of cost function for 

each industry sample are not reported. Rather a summary of results derived from estimating the translog cost 

function for 27 industries is presented in Table 2.  
8 Results including the value of all the estimated coefficients for cost determinants for all 27 cost functions are 

available from the authors on request. 
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In columns 1 to 3 time-factor input price interaction terms suggests that unexplained technological 

change is mainly capital and labor saving as the sign in these parameter estimates are negative and 

statistically significant for 21 and 17 of the industries for capital and labor, respectively.  Findings 

also suggest six and seven of the remaining industries in this sample suggest capital and labor 

technical changing neutrality.  In contrast to the unexplained technological change, results for capital 

and labor findings on the time-factor input price interaction term findings for materials suggest only 

two of the industries in our sample indicate technical change is associated with the use of less of this 

factor input.  On the other hand, technical change is material using for 21 of the industries in our 

sample.   

 

In columns 4-6 of Table 3, infrastructure investment-factor input price interaction terms reveal 

investment in infrastructure is as likely to be input saving as it is to be input using for capital and 

material.  Such investment is slightly less likely to have a neutral effect on capital and material.   In 

contrast investment in infrastructure is labor using in more than twice as many manufacturing 

industries that experience a decline in labor demand with investment in infrastructure.  In addition, 

infrastructure investment is labor neutral for exactly twice as many industries experiencing labor 

savings due to such investment.  Findings in columns 7-9 of Table 3 suggest that industry size 

(scale) is capital and labor saving for a large share of the industries in our sample. The estimated 

coefficient on the scale-input factor price variables suggests increased capital and labor usage for 

only five and two industries, respectively.  Industry size, however is primarily factor input using for 

materials, as the use of this input increases with scale for 19 of the 27 industries.  

 

Finding using the translog cost results to compute and decompose annual productivity growth is 

reported in Table 4.   

 

Table 4: Results for productivity decomposition derived from separately estimating the cost 

equation for each of 27 industries 

Industries 

Unexplained 

Technology 

(%) 

Infrastructure 

Investment 

(%) 

Scale 

(%) 

Annual  

Productivity 

Growth (%) 

Processing of food from agricultural 

products 
1 3 0 4 

Foods 3 2 2 7 

Beverage 2 1 -3 0 

Tobacco 5 1 -3 3 

Textile 7 1 -8 -1 

Textile footwear apparel 1 1 -1 1 

Leather, fur, leather, footwear and caps 6 -2 -1 3 

Processing of timber, wood, and bamboo 7 -2 -2 3 

Furniture 0 0 -4 -4 

Paper and paper products 3 1 -3 0 

Printing, reproduction of recording media 2 -1 0 1 

Articles for culture, education and sports 1 4 -1 4 

Processing of petroleum, coking, and 

nucleus fuel 
3 0 -1 2 

Chemical raw material and chemical 

products 
4 0 -4 0 

Pharmaceuticals 3 -3 0 0 

Chemical Fibers 3 3 2 8 

Rubber 4 -3 0 2 

Plastic 4 0 -10 -5 

Non-metallic mineral products 5 -4 -2 -1 

Manufactured and processing of ferrous 

metals 
8 5 0 13 
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Manufactured and processing of Non-

ferrous metals 
3 3 -7 -2 

Metal products 1 2 2 5 

General purpose machinery 9 -1 -4 4 

Special purpose machinery 5 -1 3 7 

Transport equipment 8 -3 -3 1 

Electrical machinery and equipment 21 -2 -11 8 

Communications equipment, computer and 

other electronic equipment 
4 1 0 5 

 

The results show that 23 of the 27 industries experienced productivity gains for the 1998 to 2005 

observation sample.  The largest gains are reported for companies that manufacture ferrous metal, as 

their growth averaged 13 percent annually.  Firms manufacturing plastic goods are found to 

experience the largest productivity declines, equaling 5 percent annually.   

 

Using Gollop and Roberts‘ decomposition approach, it reveals that unexplained technological 

change is a key contributor to productivity growth.  For instance, the findings indicate increasing 

annual productivity due to unexplained technology progress for all industries in the sample except 

for furniture manufacturing.  Unexplained technology progress‘ largest impact occurs for companies 

manufacturing general-purpose machinery, as this determinant contributes to annual productivity 

gains of 9 percent.   

 

The finding also indicates that infrastructure investment contributes to productivity gains for most 

industries.  Companies manufacturing ferrous metal experience the largest productivity gains due to 

such investment, while companies producing textile for footwear apparel experience the largest 

productivity loss attributable to infrastructure investment.   

 

For scale, findings reveal a different story: it shows company size is the only determinant of those 

examined in this study that primarily contributes to annual productivity declines. For instance, 

declines due to large operating output occur for 21 of the 27 manufacturing industries. Electrical 

machinery equipment experiences the largest decline in productivity attributable to increasing 

output, while companies manufacturing special purpose machinery experience the largest increase in 

annual productivity attributable to increasing output.  

 

6. CONCLUDING REMARKS 
 

Sustaining high productivity growth is essential for China to maintain its economic growth and 

international competitiveness in manufacturing. Existing research presents inconclusive evidence on 

the rate of productivity growth and their sources. Our study furnishes further evidence on the 

analysis of China‘s productivity growth and identifies sources for the growth. Adopting a flexible 

form cost function, our study estimates the annual productivity growth rates for 27 manufacturing 

industries over the 1998-2005 time period. Three sources contributing to the growth are examined: 

unexplained technological change, scale, and infrastructure investment. The factor input demand 

effect of these productivity determinants is also examined, with special emphasis on the demand for 

labor.  

 

Our findings reveal that for all industries, except furniture manufacturing, unexplained technological 

change contributes to productivity growth. Infrastructure investment contributes to productivity 

growth for the 16 out of the 27 industries investigated in this study. Scale contributes to productivity 

growth in only 6 manufacturing industries. These results on technology‘s influence on productivity 

support the Chinese government‘s policy encouraging investment in R&D and FDI. In addition, 

findings on the interaction of wage and unexplained technological change indicate labor-input 

saving, which is consistent with the notion that unexplained technological change enhances worker 

productivity. 
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Findings on the productivity effects of infrastructure investment generally support the government‘s 

emphasis on financially supporting better roads, transmission of electricity and supply of water and 

fuel. However, findings, that indicate approximately one-third of the industries did not experience 

productivity gains due to infrastructure investment, are consistent with the observation of past 

research for other countries. This latter finding on infrastructure investment in China highlights the 

importance of investigating the merits of up-grading existing infrastructure projects rather than 

excess investing in new projects.   

 

Last, findings on industry scale suggest the existence of inefficiencies associated with large 

operations. This provides evidence that over capacity is an issue that warrants policy attention while 

China grows its economy to an enormous size. Nonetheless, productivity findings from this study 

indicate a highly productive manufacturing sector in the Chinese economy. 
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