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ABSTRACT 

Our main objective in this paper is to revisit Markowitz’s (1952) 

mean-variance approach by applying Shannon Entropy as an 

alternative measure of financial risk. We studied 33 randomly 

selected stocks of the Tunis Stock Exchange, representing the 

daily values of the Tunindex over a period of 8 years. The 

obtained results indicate that entropy behaves in a similar way to 

standard deviation, as it decreases depending on the number of 

stocks held in a portfolio. Likewise, Sharpe single-index model 

was reinterpreted under entropy theory where total risk is divided 

into systematic and non-systematic risk. Then, standard measures 

like standard deviation or beta seem to be inadequate to assess 

risk and uncertainty. Consequently, entropy offers an ideal 

alternative to identify investment-related risk.  

 
Contribution/ Originality 

The current paper proposes an alternative approach to portfolio selection. Entropy is one of the main 

concepts of information theory and market participants react to information when taking decisions. 

Entropy is believed to contribute to significantly improving the assessment of systematic and 

specific risks and thus assets pricing. 
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1. INTRODUCTION 

 
Markowitz (1952) proposed variance as a risk measure in his mean-variance model in view of 

determining an optimal portfolio by minimizing variance or maximizing returns. His model was 

largely applied by academics and practitioners alike to study portfolio selection or select portfolios. 

Sharpe (1964) simplified this approach and divided total risk into systematic and non-systematic 

risk. As a rule of thumb, systematic risk in financial theory is measured by Beta in CAPM. 

Nevertheless, these models show their limits when returns are not normally distributed. However, 

classic asset pricing models and traditional risk measures are irrelevant to how financial markets 

function in reality. Indeed, stock market crashes provide an example of the inability of classic 

models to describe real market behavior. As the assumptions underlying these models are restrictive 

in nature, the models fail to capture all relevant information and are then unable to quantify 

uncertainty over future movements.  

 

During these latter years, there has been a growing common interest across disciplines aiming at 

appreciating in real and rich terms natural and social phenomena. Among these disciplines, a striking 

bondage is noticed between physics and financial theory. Uncertainty-wise, what financial theory 

aims to study can be possible using statistical measures applied by physics and information theory. 

One of these measures is Shannon Entropy. An advantage of this latter approach is that it is a more 

general measure as it captures higher-order moments in a probability distribution.  

 

For Shannon and Weaver (1949): « The quantity precisely needed to represent « information » fits 

exactly the notion of thermodynamics of entropy ». In similar lines, a new research trend started 

focusing on this approach to better understand the dynamics, organization and functioning of 

markets.  

 

«Use of entropy as a measure of uncertainty in financial looks promising and evolving from 

theoretical and empirical standpoints”. This diversity of measures reflects but one thing; uncertainty 

lies at the core of econophysics. Although economists define and at the same time exclude 

uncertainty using one unique model, econophycists opt for this concept in an epistemological fashion 

and study its different dimensions. Each of these entropies defines a specific statistical estimation 

that can be used as a real function in a study. With this diversity, econophycists provide a panoply of 

operational instruments to deal with uncertain situations. Accordingly, financial theory can be 

inspired by work on uncertainty, and use statistical measures proper to physics and information 

theory as proposed by Shannon Entropy. In what follows, we report on an empirical application of 

Shannon’s entropy on data collected from the Tunis Stock Exchange.  

 

Our main purpose is to measure total risk, diversifiable and non-diversifiable, in portfolio 

management. To this end, we develop a new risk measure, inspired by entropy theory and which 

extrapolates the classic decision model on a real situation.  

 

Shannon Entropy is a mathematical function that specifies quantity of information contained in a 

source of information. It can be viewed as a measure of uncertainty of a random event or more 

specifically its distribution. It posits that information issued from each new event is an uncertainty 

function of this event. Accordingly, we will use uncertainty degree as our risk measure of the 

selected stocks traded on the Tunisian Stock market. Initially, Rudolf Clausius (1867)
 1

 introduced 

entropy into thermodynamics to measure the ratio of transferred heat through a reverse process in an 

isolated system. Later, around 1900, it was used by Boltzmann and Gibbs
2
 in physics. Similarly, 

mechanics interpreted entropy to measure uncertainty about a system after parameterizing in detail 

its components (pressure, temperature and volume). By mid the 20
th

 century, the concept found its 

                                                 
1 Clausius (1867) introduced entropy, which is a state function introduced in the second principle of 

thermodynamics.  
2 Boltzmann (1900) and Gibbs (1902) have developed statistical physics 
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appeal to disciplines like engineering and mathematics thanks to the wok of Shannon (1948) in 

engineering and communication and Kolmogorov in probability theory and dynamic systems theory. 

However, it was not until recently that the concept was applied to study financial phenomena, in 

particular financial markets functioning.  

 

Information contained in a supply system functions as a stochastic cybernetic system in which the 

message may be considered to be a random variable. As such, the use of entropy serves to quantify 

the expected value of information contained in a message. In other words, it measures the quantity of 

information. Indeed, information theory used entropy to compare uncertainty and inaccuracies of a 

message against a reference message. It is to similar ends that entropy is used in financial theory. 

Some researchers like Georgescu-Roegen (1971), Mayumi (1997), Gulko (1999), Dionisio (2001)
 

used entropy to measure information because they thought it is able to determine the real value of 

information circulating in financial markets. It is worth noting that this approach was initially 

borrowed from statistical physics to exclusively quantify breaks and uncertainty in dynamic systems. 

In financial theory and in many other derived disciplines (market efficiency, asset pricing and 

portfolio management), entropy was largely thought to be the approach to use.  

 

Pursuing these aspirations, Gulko (1999)
 
first introduced Entropy Pricing Theory (EPT) to study 

financial time series, showing that the Principle of Maximum Entropy (MEP), known also as 

information efficiency, is able to make the Market Efficiency Hypothesis operational and testable.  

 

Similarly, Philippatos and Wilson (1972) were the first two researchers who applied entropy to study 

portfolio selection. In this regard, they proposed the mean-entropy approach in order to maximize 

expected portfolio returns and minimize portfolio entropy. They compared their entropy-based 

approach to traditional construction methods of all the possible efficient portfolios on a random 

sample of 50 stocks over a period of 14 years. They found that entropy provided more general results 

and outperformed standard deviation. In particular, they found that mean-entropy portfolios were 

more consistent with Markowitz’s model and Sharpe’s single-index model. Although their study has 

several limitations, their results highly contributed to the study of portfolio selection. Kirchner and 

Zunckel (2011) believe that entropy is the best tool to identify a decrease in risk thanks to 

diversification. Moreover, Dionisio and al. (2006) indicate that entropy is able to observe 

diversification effect and as such it can measure in general terms uncertainty than variance, because 

it uses more information on distribution probability. In Dionisio and al. (2007), this was confirmed 

as the authors compared mutual information and conditional entropy with systematic and specific 

risk as estimated by CAPM.  

 

On a larger scale, Zhou and al. (2013) reviewed entropy-related concepts and principles that were 

applied to study portfolio selection over a longer period. They found that entropy is uniquely 

superior in measuring risk and describing distributions. Consequently, applying entropy to finance is 

found to be very rewarding. Subscribing to these ends, Ormos and Zibriczky (2014) used entropy to 

measure financial risk. It was found that entropy explains portfolio and equity premiums in simple 

terms and at the same time it has a higher explanatory power than Beta of CAPM. Computing 

entropy to estimate risk, the authors found that it decreases, like standard deviation, depending on 

the number of stocks in a portfolio and that efficient portfolios are hyperbolically distributed 

depending on the expected returns of the randomly selected 150 stocks over a period of 27 years.  

 

According to the above, it seems that there is a wide consensus that entropy may be a good risk 

measure. However, its application seems to be difficult. Therefore, bearing this in mind, our purpose 

in this study is twofold. First, we aim at showing that an entropy-based risk measure is more 

accurate. Second, this measure may improve assets pricing as it does not assume a specific 

distribution.  
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In this study, we explore Shannon Entropy as a risk measure in order to assess uncertainty degree in 

stocks traded on the Tunis Stock Exchange. Then, we compare this measure to standard risk 

measures estimated under CAPM.  

 

This paper is organized as follows. In section 2, we present the theoretical background of entropy, its 

mathematical specifications, and its use a risk measure in portfolio management. In section 3, we 

describe our methodology and our uncertainty measure. In section 4, we present the obtained results 

on the Tunisian stock market, showing the similarities between standard risk measures and 

information theory risk measures (entropy, conditional entropy and mutual information). Finally, 

section 5 concludes the paper.  

 

2. ENTROPY AS A RISK MEASURE 
 

Measuring risk is about examining probability, occurrence of an event and its estimation. Frank 

Knight distinguished between risk and uncertainty. The author believes that our knowledge is often 

incomplete to determine the probability of all possible events. Uncertainty, however, prevails when 

an objective quantification of probabilities is made impossible. According to Knight (1921), risk 

denotes « measurable uncertainty », i.e. its probability is objectively quantified, whereas uncertainty 

denotes « true uncertainty » for which “there is no valid ground of whatever nature to compute its 

objective probability” Knight (1921). As for risk in decision-making, we believe that there are two 

main factors determining the decision process. First, there is an uncertainty of results issued from 

processing an uncertain event and the expected utility of undertaking a particular action. The higher 

uncertainty is, the higher risk and expected utility are. This conception of risk was our motive to 

develop an entropy measure to examine the decision process. Our hypothesis posits that uncertainty 

of observations may be interpreted as a risk. For this reason we apply entropy as a risk measure.  

 

Generally, variance is the main measure of risk and uncertainty in financial markets. Some authors, 

like Maasoumi (1993) and Soofi (1997), believe that these measures may fail to measure uncertainty 

in some specific events because they require a symmetric probability distribution and ignore the 

possibility of extreme phenomena like tails. Therefore, for asymmetric or abnormal distributions, 

another uncertainty measure is needed. This latter should be more dynamic and general than 

variance and does not assume a specific distribution. As entropy is known to consider diversity, 

several authors attempted to apply it to the portfolio selection theory. The belief is it can be used as 

an alternative measure of dispersion. Entropy measures density inequality ( )Xp X  from the uniform 

distribution. It measures uncertainty in terms of the « utility » of ( )Xp X  instead of a uniform 

distribution. Variance uses the mean to measure distances of probability distribution results.  

 

Ebrahimi and al. (1999), by ordering random distributions and perspectives, examined the role of 

entropy and variance. They concluded to the absence of a general relationship between these 

measures in terms of estimating distributions. In other words, these two measures reflect 

concentration but their respective concentration measures are different. By contrast, variance-

measured density lies around the mean. However, entropy measures diffuseness of the density 

independently of location of concentration (Maasoumi, 1993). 

 

They found that, in some conditions, variance and entropy order is identical to transform continuous 

variables and showed that entropy depends on several other distribution parameters than variance. 

Legendre series expansion showed that entropy relates to higher-order moments of a distribution and 

then, by contrast to variance, it may better operationalize ( )Xp x because it uses more information 

on the probability distribution than variance. Maasoumi and Racine (2002) indicate that when the 

observed probability distribution is not perfectly known, entropy is an alternative measure to assess 

uncertainty, predictability and goodness of fit.  
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Mathematical properties-wise, entropy H (X) is non-negative in a discrete case. In this latter case, H 

(X) is one-to-one invariant for transformations of X, but variance is not. For a discrete case, neither 

entropy nor a continuous random variable X takes one-to-one its transformation values in ] -∞, + ∞ [ 

(Shannon,1948).  

 

Likewise, Gulko (1999) believes that entropy determines the movement and uncertainty of a given 

security, as it is able to capture complexity of systems without a need for rigid hypotheses that might 

bias the obtained results.  

 

2.1. Modeling entropy 

Be X a discrete random variable and be 
1 2, ,....... NX X X a random sample of X with size N. of 

these random variables, we consider a set of events ( )n N with a probability function given by 

1 2, ,........., np p p . 

 

For this set of events, entropy is given by the following equation: 

 

1

log
n

i i

i

H k p p


  
                                       ………………….. (1) 

 

Where H denotes entropy and 
ip is the probability that an event i occurs and k is a constant. We use 

the logarithm of 
ip of basis 2

3
, with ( )i ip P X x  .  

 

Entropy is a state function of the set of events. Then, H (X) is a function of probability distribution 

of the random variable X.  

 

According to Feldman and Crutchfield (1998), H (X) a\is a measure of total uncertainty of a 

probability distribution of an event X.  

 

As an uncertainty measure, entropy properties are very well established in the literature (Shannon 

and Weaver (1949). If the probability of an event is less than 1, the logarithm is negative and entropy 

has a positive sign.  

 

If the system generates an event, there is no uncertainty and entropy is null. Similarly, as number of 

events doubles, entropy increases by a unit. Entropy takes its maximum value when events have the 

same occurrence probability. For continuous random variables, entropy measured by the density 

function of the probability of X, is given by the following:  

 

( ) log ( )H k p x p x dx




                              …….……………………. (2) 

 

2.2. Joint-entropy and conditional entropy 

H(X) and H(Y) are entropies of random variables X and Y. Note that H (X), H (X, Y) and H (Y | X) 

are entropies of X, joint-entropies of (X, Y) and conditional entropies of Y given X and ( , )I X Y is 

mutual information between X and Y. 

 

Joint-entropy of the two random variables X and Y. 

 

2( , ) ( , ) log ( , )H X Y p x y p x y                 …………………………. (3) 

 

                                                 
3
 Our results are measured by bits. 
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Joint-entropy mesures uncertainty related to a joint-distribution. In this way, conditional entropy is 

given by: 

 

2( \ ) ( , ) log ( \ )H X Y p x y p x y                                     …………………………. (4) 

 

p (x, y) = p (x) p (y | x), joints-entropy obeys the following principle: 

 

( , ) ( ) ( \ ) ( ) ( \ )H X Y H X H Y X H Y H X Y                       …………………………. (5) 

 

2.3. Mutual information as a measure of dependence 

The principle is that it takes 0 in case of no dependence and 1 in case of total dependence. This 

measure is seen as one of the most practical tools to assess dependence between two vectors 

representing the random variables X, Y. Accordingly, Granger and al. (2004), Dionisio and al. 

(2006) posit that a good dependence measure should fill the following conditions: 

 

1. It should jointly define continuous and discrete variables. 

2. It should be standardized to zero if X and Y are independent. Generally, it ranges between  -1 and 

1.  

3. It should be weighted to 1 if there is a non-linear relationship between variables.  

4. It should be similar or simply related to a linear correlation coefficient for the case of a bivariate 

normal distribution.  

5. It should play the role of a true measure of “distance” and not simply “deviation”.  

6. It should be an invariant measure under continuous and strictly increasing transformations.  

Then, mutual information may be given by the following: 

 

,

,

( , )
( , ) ( ) ( \ ) ( , ) log

( ) ( )

X Y

x y

X Y

p x y
I X Y H Y H Y X p x y dxdy

p x p y
   

                …………………. (6) 

( , ) ( ) ( ) ( , )I X Y H X H Y H X Y    

 

We can then write: 

                                                  ( \ ) ( , ) ( )H Y X H X Y H X                   …………………. (7) 

          

( \ ) ( \ )H X Y H Y X
( , ) ( ) ( \ )

( ) ( \ )

( ) ( ) ( , )

I X Y H X H X Y

H Y H Y X

H Y H X H X Y

 

 

  

                          …………………. (8) 

 

Mutual information measures the extent to which two variables are associated. Shannon (1948) 

defines it as follows: 

 

,

,

( , )
( , ) ( ) ( \ ) ( , ) log

( ) ( )

X Y

x y

X Y

p x y
I X Y H Y H Y X p x y dxdy

p x p y
   

       ………………….  (9) 

 

                                                  
( , ) ( ) ( \ )

( ) ( \ )

( ) ( ) ( , )

I X Y H X H X Y

H Y H Y X

H Y H X H X Y

 

 

  

                           …………………. (10) 

 

Mutual information is a non-negative measure (Kullback, 1959), equal to zero if and only if X and Y 

are statistically independent.  

 

( ) ( \ )H X H Y X , we have ( , ) 0I X Y  , this supposes equality if X and Y is statistically 

independent.  
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Then, mutual information between the two random variables X and Y may be considered to measure 

dependence between these variables, or much better, it may measure correlation between X and Y. 

However, the fact that X determines Y or vice-versa is not given.  

 

Mutual information between two variables implies reducing uncertainty in one variable because we 

know about the other. If knowledge of Y reduces our uncertainty about X, then we can conclude that 

Y informs X (Dionísio and al., 2006). As shown by Garner and McGill (1956), Philippatos and 

Wilson (1972), and others, it is crucially important that two information theory measures and 

standard statistical methods behave the same like a regression analysis.  

 

Dionisio and al. (2006) has shown Similarities between regression analysis and information theory 

measures. 

 

Regression Analysis  Information Theory Similarity 

Sum of squares  

2 2( )iESS X X


   

Mutual information 

( , ) ( ) ( \ )i i i i iI Y X H Y H Y X   

These two measures 

reflect variance of the 

dependent variable as 

explained by the 

independent variable. 

Residuals Sum of squares  

2 2( ) ( )i iY Y X X
 

     

Conditional entropy 

( \ ) ( , ) ( )i i i i iH Y X H X Y H X   

Variance if the dependent 

variable not explained by 

the independent variable. 

Variance in the dependent 

variable  

2( )
i

Y Y


  

Total entropy 

( )iH Y  

Total dispersion of the 

dependent variable.  

Similarity between these measures are true only if all hypotheses of the regression analysis are confirmed. 

Nevertheless, information theory measures do not assume linear hypotheses, homoscedasticity, stationarity, and 

normal distribution of errors, as these latter make these measures much more general (Dionisio and al., 2007).  

 

3. METHODOLOGY 
 

Nowadays, there is a growing concern with exploring concepts of financial markets in terms of their 

correlation, power law distributions, unpredictability of their time series and the random processes 

that may govern their behavior. The aim behind such a concern is understanding and explaining, in 

rich and realistic terms, social and natural phenomena. Analyzing uncertainty, a crucial step towards 

understanding financial phenomena, may report itself to statistical measures often used in physics 

and information theory. One of these is Shannon Entropy. One advantage of this measure is that 

entropy is general measure of variance because it represents higher-order moments of a probability 

function of a distribution.  

 

In this study, we try to assess relevance of entropy to measure uncertainty in portfolio management 

and compare its performance to the most popular risk measures used in financial analysis (variance). 

We will use information theory measures. Of these we opt for Entropy, and mutual information, 

conditional entropy to assess dependence between the studied stocks and the stock market index.  

 

Our aim is to assess dependence between each stock and stock market index. The above described 

information theory measures, entropy, joint-entropy, conditional entropy and mutual information, are 

used to assess dependence between the studied stocks and the stock market index. 

 

3.1. The sample 

Our sample consists of 40 stocks of different Tunisian firms were chosen haphazard, belonging to 

different sectors. The sample was fitted to consider daily closing prices of the firms listed on the 

Tunis Stock Exchange. After fitting, 33 stocks were selected out of the initial 40 stocks. Stocks of 

eliminated firms belong to those firms with irregular trading patterns or whose official listing date on 
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the market is not covered by the sample period. Finally, data retained for the analysis amounts to 

90% of the initial sample. Our sample covers the period ranging from 02/01/2006 to 31/12/2013, 

totaling 2087 observations per stock.  

 

Tunindex is used as a reference market index as it represents better the Tunisian stock market.  

 

3.2. The to-be-tested model 

For long, the famous CAPM, a reference model to assess stocks and assets, have been considered the 

unique pricing model.  CAPM was introduced by Treynor (1961), Sharpe (1964) and Lintner (1965). 

Under CAPM, systematic risk is measured by Beta. It is assumed that coefficient   under CAPM is 

able to measure sensitivity of the return rate of an asset (or a portfolio) to risk premium, i.e. with 

systematic risk. CAPM divides a portfolio or an asset risk into systematic and specific risk: sum of 

squares and sum of squares of residuals issued from the regression analysis 

 
2 2 2

ii i m                                                           ………………….  (11) 

 
2

m  is variance in the dependent variable, reference market index (Tunindex and 2

i  is lenght of 

variance persistence which may be reduced thanks to a diversification process.  

In order to estimate Beta of CAPM, we use the model market given by  

  

[ ]it ft mt ft i itR R R R                                        …………………. (12) 

 

Like variance, entropy of an asset may be divided as follows:  

 

( ) ( , ) ( \ )H X I X Tunindex H X Tunindex       ………………….  (13) 

 

With X representing the stock and Tunindex is the market index. 

 

Where the first refers to association level or dependence between the asset and market index and the 

second refers to the variance of the asset. Then, we can distinguish between global uncertainty, 

i.e. ( , )I X Tunindex  and « residual uncertainty ( \ )H X Tunindex referring to entropy 

properties.  

 

3.3. Entropy and the principle of portfolio diversification  

As a reminder, we examine sensitivity of entropy to the diversification effect. Put differently, we 

study whether entropy is able to measure how diversification decreases risk in the selected sample. It 

is important, however, to keep an eye on variance properties (standard deviation) and entropy of 

uncertainty measure. Standard deviation is a convex function, which obeys Jensen’s 

inequality    
2

( ) ( )E X E X  . 

 

This property makes it possible to use variance to measure portfolio return risk as it accounts for a 

diversification effect.  

 

Moreover, entropy is a concave function and represents the maximum for most probability 

distributions. Therefore, we would like to think that entropy does not fit the diversification effect. 

However, it is worth mentioning that entropy is not a function of the values of variables, but the 

probability itself and the property H (X, Y) ≤ H (X) + H (Y) may bring some hope to that end. 

 

Accordingly, we proceed like Elton and Gruber (1995), Dionisio and al. (2006). These authors 

showed that diversification is factor that reduces specific risk (as measured by standard deviation). 

Then, we assigned the selected stocks to portfolios. The amount invested in each asset is 1 / N, N is 

the number of stocks in a portfolio.  
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4. THE RESULTS AND THEIR INTERPRETATION 
 

To test our model, we proceeded in three steps: analysis of residuals quantity, model stability and 

analysis of coefficients for significance.  

 

4.1. Descriptive statistics 

 

Table 1: Descriptive statistics of stock returns and Tunindex  

  Mean Median Maximum Minimum 
Standard 

Deviation 
Skewness Kurtosis 

Jarque-

Bera 

P 

(Jarque-

Bera) 

Tunisie 

Placement 
0.0001 0.0000 0.0822 -0.0530 0.0049 2.6736 59.3140 278121.2 0.0000 

Tunindex 0.0002 6.00E-05 0.0170 -0.0217 0.0026 -0.6723 14.7038 12062.91 0.0000 

Amen_Bq 0.0002 0.0000 0.0378 -0.0354 0.0066 0.3511 7.1874 1566.866 0.0000 

Assad 8.52E-05 0.0000 0.0377 -0.0947 0.0066 -1.3949 27.9532 54796.29 0.0000 

Astree 8.68E-05 0.0000 0.2039 -0.2079 0.0084 -0.5118 351.8444 10577187 0.0000 

Atb 6.63E-05 0.0000 0.0295 -0.0637 0.0056 -0.4121 15.1851 12964.19 0.0000 

Atl 5.36E-05 0.0000 0.0296 -0.1395 0.0071 -3.8507 79.4077 512586.5 0.0000 

Attijari 0.000151 0.0000 0.0634 -0.0594 0.0060 0.3362 17.6789 18767.11 0.0000 

Bh 3.78E-05 0.0000 0.0310 -0.0545 0.0059 -0.1375 9.7410 3956.200 0.0000 

Bna 9.66E-05 0.0000 0.0423 -0.0491 0.0064 0.2819 9.8444 4099.351 0.0000 

Bte -7.57E-07 0.0000 0.0538 -0.0369 0.0040 0.5853 30.4521 65621.06 0.0000 

Cil 9.57E-05 0.0000 0.0763 -0.1305 0.0074 -3.9416 79.0066 507519.6 0.0000 

Electrostar -5.16E-05 0.0000 0.0561 -0.0576 0.0090 0.3308 6.5781 1150.840 0.0000 

Gif_Filter -0.000149 0.0000 0.1008 -0.0969 0.0092 0.0248 22.2434 32186.24 0.0000 

Icf 0.000286 0.0000 0.0701 -0.0442 0.0067 0.8278 17.8967 19526.01 0.0000 

Al kimia 4.90E-05 0.0000 0.0816 -0.0997 0.0082 -0.4774 31.5529 70939.60 0.0000 

Air-Liquide 0.000103 0.0000 0.0256 -0.0600 0.0059 -1.4799 17.6786 19488.55 0.0000 

Magasin 

Générale 
0.000425 0.0000 0.0443 -0.0545 0.0071 0.1542 9.2087 3358.714 0.0000 

Siame 1.73E-05 0.0000 0.1471 -0.1526 0.0088 1.0394 97.5732 777765.5 0.0000 

Simpar 0.000274 0.0000 0.0573 -0.0570 0.0074 -0.0469 9.5470 3726.279 0.0000 

Siphat -0.000220 0.0000 0.0444 -0.0541 0.0073 -0.1800 8.4622 2604.481 0.0000 

Sitex 2.94E-05 0.0000 0.0749 -0.1038 0.0077 -1.7954 53.1976 220132.9 0.0000 

Somocer -0.000108 0.0000 0.0560 -0.0588 0.0091 0.3081 6.6070 1163.819 0.0000 

Sotetel -0.000263 0.0000 0.0473 -0.0902 0.0086 0.0425 10.2237 4536.097 0.0000 

Sotrapil -0.000239 0.0000 0.0446 -0.0430 0.0077 0.2289 5.3130 483.2035 0.0000 

Sotumag 0.000115 0.0000 0.1413 -0.1411 0.0085 1.0563 85.2266 588049.3 0.0000 

Sotuver 0.000334 0.0000 0.0423 -0.1343 0.0086 -1.6156 34.5811 87595.26 0.0000 

Star 0.000628 0.0000 0.0650 -0.0852 0.0081 -0.1458 20.0041 25138.47 0.0000 

Stb 1.53E-05 0.0000 0.0255 -0.0467 0.0069 0.1099 6.4546 1041.484 0.0000 

Steg 1.67E-05 0.0000 0.1128 -0.0921 0.0075 -1.0826 60.9732 292525.1 0.0000 

Tuninvest 0.000131 0.0000 0.0568 -0.1254 0.0083 -2.6314 42.3247 136817.8 0.0000 

Tunisair -0.000115 0.0000 0.0621 -0.0588 0.0075 0.5352 10.1199 4505.592 0.0000 

Tunisie Lait 5.07E-06 0.0000 0.0666 -0.0786 0.0080 -0.2942 19.2801 23066.65 0.0000 

Ubci 6.32E-05 0.0000 0.0447 -0.0822 0.0070 -0.5826 20.2172 25882.90 0.0000 
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As shown in Table 1 above, the "Star" and "Magazin générale" stocks score the highest returns 

(0.00062), followed by "Sotuver" stock (0.00033). Meanwhile, "Gif-filter" and "Somocer" stocks 

have the highest risk with a standard deviation of (0.00921), followed by "Electrostar" (0.00901). 

 

Analysis of normality tests on stock return series shows that skewness is different from zero for all 

stocks indicating an absence of linearity in stock returns
4
. Skewness is negative for 17 stocks and the 

Tunindex. Distribution of return series is skewed to the left (a negative area). This implies that losses 

distribution (downside risk) is higher than that of profits (upside risk). It is suggested then that 

returns are likely to react more to a negative shock than to a positive one. The remaining 16 stocks 

record a positive skewness coefficient, suggesting that the distribution’s thickness lies at the right 

side (a positive area). Stock returns of "Amen banquet", "Bna" and "Bte" received more negative 

shocks (probability of obtaining positive returns is higher than that of negative returns). Moreover, 

we can suggest that investors reduce their aversion to risk when they believe that their wealth is best 

amassed with a distribution skewed to the right. This skewness manifests itself when the 

instantaneous variance of stock return series (volatility) is lower after an increase than after a 

decrease in returns. In the same line of thinking, kurtosis is neatly superior to 3 (kurtosis excess).   

 

Higher kurtosis indicates that the distribution peaks towards the mean. This is leptokurtic 

distribution with “thick tails”. Such a distribution reflects higher losses and profits than in a normal 

distribution. Therefore, the higher kurtosis is, the higher the probability of having significant losses 

or profits are. Finally, we conclude that the returns are not normally distributed.  

 

To validate this assumption, we opt for the JARQUE – BERA test to synthesize skewness and 

kurtosis and their related probabilities. The assumption here is to test the probability of rejecting the 

null hypothesis (data is normally distributed), while it is true. In our study, it is 0.0000. Therefore, 

for a significance level of α = 5%, we reject the null hypothesis that the returns are normally 

distributed.   

 

4.2. Tests of residuals: White’s errors heteroscedasticity test (no cross terms) 

Probabilities for the stocks Air_Liquide, Amen_Banque, Atb, Bh, Bna, Magasin Générale,  Siphat, 

Sitex, Somocer, Sotrapil, Stb, Tunisair and Tunisie Lait are lower than 0.005. We accept 
0H , i.e. 

errors are heteroscedastic, whereas for the stocks in Electrostal, Al_Kimia, Assad, Astrée, Atl 

Attijari_Banque, Bte, Cil, Gif_Filter, Icf, Tunisie Placement, Siame, Simpar, Sotetel, Star, Steg, 

Sotumag, Sotuver, Tuninvest et Ubci),  the probabilities of the TR
2   

 test are higher than 0.05. Then, 

we accept 1H , i.e. errors are heteroscedastic.  

 

4.3. Model stability tests: CUSUM stability test (Appendix 1) 

As the short-term model is dynamic, the test can be applied to the long-term model. If the curve does 

not cross the path (dotted line), then the model is said to be stable. However, the model is said 

unstable when the curve crosses the path. The result obtained through Eviews shows a continuous 

curve in the path. Then, for the stocks Air Liquide, Al_Kimia, Amen_Banque, Bna, Atb, Atl, Bte, Cil, 

Electrostar, Gif-Filter Magasin_Genrale, Tunisie Placement, Siphat,   Somocer, Sitex,  Sotetel, 

Siame, Star, Steg, Stb , Sotumag Tunisair, Tunisie_Lait, Tuninvest, Ubci, Simpar , CUSUM statistics 

remain within the thresholds. Therefore, we reject the structural change hypothesis. We can then 

conclude that our model is stable. However, for the models with the following dependent variables : 

"  Astree", " Attijri-banque"  and Astree, Assad, Attijri-Banque, Bh, Icf, Sotrapil, Sotuver, we accept 

the structural change hypothesis and we conclude to the instability of these models.  

 

4.4. Model estimation: Interpreting significance of coefficients 

 and   were estimated for each stock. The market model is generally estimated by an OLS. 

However, most models are found to be non-significant. Tests and data indicate that residuals are not 

                                                 
4 Non-linearity originates from the presence of whether an ARCH effect or long memory. 
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white noise. An OLS is not appropriate in this case. Moreover, we also computed systematic risk 
2 2

i m  and specific risk 2

i to compare between the two approaches.  

 

The results obtained from the Ljung-Box and the Jarque-Bera tests on residuals and the CUSUM 

stability test point to the presence of residuals resulting from applying the CAPM linear market 

model on the returns. However, these latter present higher levels of non-linearity, therefore they 

show evidence of autocorrelation, heteroscedasticity and instability. This seems to indicate that a 

linear analysis is not enough to assess.  

 

Table 2: CAPM-based analysis of Betas and stocks’ systematic and specific risks 

 
Alpha BETA 

Standard 

Deviation 

Systematic risk 
2 2

i m   

Specific risk 
2

i  

Tunindex  0.0002 0.2646 0.0066 0.0477 4.2541 

Amen Banque -0.0002 0.9529 0.0059 0.6189 2.8296 

Bh -0.0001 1.0110 0.5479 0.6966 3.3366 

Bna -0.0002 0.9825 0.0069 0.6578 4.0872 

Stb -0.0003 0.5953 0.0075 0.2415 5.4168 

Tunisair 0.0000 0.4871 0.0085 0.1617 6.9995 

Sotumag  -0.0001 0.4590 0.0090 0.0144 7.9843 

Electrostar 0.0003 0.5953 0.0071 0.2415 4.7961 

Magazin Genrale  -0.0001 0.9991 0.0066 0.6803 3.6649 

Assad  -0.0004 0.6337 0.0077 0.2737 5.7041 

Sotrapil  -0.0001 1.0399 0.0056 0.7370 2.4375 

Atb 0.0000 0.1548 0.0040 0.0163 1.5504 

Bte 0.0000 0.0206 0.0075 0.0003 5.6506 

Steg -0.0002 0.0892 0.0073 0.0054 5.3846 

Siphat -0.0002 0.2635 0.0091 0.0473 8.3122 

Somocer 0.0000 0.0683 0.0070 0.0032 4.8612 

Ubci 0.0002 0.6431 0.0086 0.2819 7.0518 

Sotuver 0.0000 0.1175 0.0077 0.0094 5.8968 

Sitex 0.0001 -0.0667 0.0082 0.0030 6.7927 

Al Kimia  0.0112 0.1652 0.0084 0.0186 7.0368 

Astree -0.0001 0.8626 0.0071 0.5071 4.5691 

Atl -0.0003 0.7560 0.0092 0.3895 8.1101 

Gif 0.0003 0.1272 0.0067 0.0110 4.4897 

Icf 0.0002 -0.0465 0.0049 0.0015 2.4427 

Placement -0.0001 0.4941 0.0088 0.1664 7.5393 

Siame 0.0000 0.2014 0.0080 0.0276 6.4108 

Tunisie 0.0000 0.4606 0.0083 0.1446 6.8235 

Tuninvest 0.0001 0.1729 0.0059 0.0204 3.4750 

Airliquid  0.0001 0.6958 0.0074 0.3300 5.0928 

Simpar 0.0005 0.8622 0.0081 0.5066 6.0455 

Star  -0.0001 0.8746 0.0074 0.5213 4.9989 

Cil -0.0001 1.1346 0.0060 0.8774 2.6966 

Attijari Bq -0.0005 0.9739 0.0086 0.6465 6.8089 

Sotetel 0.0002 0.2646 0.0066 0.0477 4.2541 
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Table 3: Information theory-based analysis of stocks’ systematic and specific risks 

 

Total risk 

(Entropy) 

Systematic risk 

(Mutual 

Information) 

Joint-

entropy 

Specific risk 

(conditional 

Entropy) 

Tunindex  0.7578 
   

Amen banque 1.3417 0.1544 1.9451 1.1873 

Bh 1.1871 0.2126 1.7323 0.9745 

Bna 1.2871 0.2007 1.8442 1.0864 

Stb 1.3789 0.2112 1.9255 1.1677 

Tunisair 1.4518 0.1704 2.0392 1.2814 

Sotumag  1.3441 0.1202 1.9817 1.2239 

Electrostar 1.5634 0.0852 2.236 1.4782 

Magazin 

genrale  
1.3853 0.1626 1.9805 1.2227 

Assad  1.3297 0.205 1.8825 1.1247 

Sotrapil  1.4827 0.1643 2.0762 1.3184 

Atb 1.219 0.2593 1.7175 0.9597 

Bte 0.7652 0.0073 1.5157 0.7579 

Steg 0.7965 0.0015 1.5528 0.795 

Siphat 1.1782 0.0672 1.8688 1.111 

Somocer 1.6147 0.1565 2.216 1.4582 

Ubci 1.0292 0.0088 1.7782 1.0204 

Sotuver 1.4756 0.1744 2.059 1.3012 

Sitex 0.5312 0.00085 1.2881 0.5303 

Al kimia  0.8052 0.00085 1.5621 0.8043 

Astree 0.5606 0.00062 1.3177 0.5599 

Atl 1.3322 0.1925 1.8975 1.1397 

Gif 1.474 0.1646 2.0672 1.3094 

Icf 0.977 0.0639 1.6709 0.9131 

Placement 0.3804 0.0015 1.1367 0.3789 

Siame 1.3236 0.1521 1.9293 1.1715 

Tunisie 0.8055 0.0005 1.5627 0.8049 

Tuninvest 1.2874 0.0733 1.9719 1.2141 

Airliquid  0.9074 0.074 1.5912 0.8334 

Simpar 1.3798 0.1347 2.0029 1.2451 

Star  1.4891 0.1693 2.0776 1.3198 

Cil 1.3033 0.1568 1.9043 1.1465 

Attijari bq 1.2612 0.2684 1.7506 0.9928 

Sotetel 1.5325 0.1827 2.1076 1.3498 

 

We computed mutual information between each stock and Tunindex ( , )I X Tunindex , conditional 

entropy ( \ )H X Tunindex . 

 

 
Figure 1: Comparison between systematic risk 2 2

i m 
 
and mutual information ( , )I X Tunindex  

                        

Mutual Information 

 

2 2

i m   
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As shown in Figures 1 and 2, there is a positive relationship between systematic risk and mutual 

information and between specific risk and conditional entropy. Our results join those reported by 

Dionisio and al. (2007). 

 

 
Figure 2: Comparison between specific risk 2

i ,  and conditional entropy ( \ )H X Tunindex  

 

Despite the significant and strong relationship between variance and information theory measures, 

we thought it fit to compare the measures that can be directly compared. Figures 1 and 2 indicate 

that entropy behaves similarly but not identically to standard deviation, in a way that it can be used 

as a good risk measure. As such, it can be used to accurately measure news risk by combining 

advantages of Beta (CAPM) and standard deviation.  

 

Indeed, entropy can quantify jointly systematic and specific risks. We found that the relationship 

between the stock and the market index Tunindex deviates strongly under the global linear analysis. 

Referring to the standard deviation, we found that the most risky stocks are Somocer and Gif with a 

value of 0.0092, followed by Electrostar stock with a standard deviation of 1.6147, whereas the 

Electrostar stock comes second with entropy of 1.5634.  

 

To find out about the possible reasons behind these differences, we run a number of tests on 

residuals issued from the linear estimation of the market model, i.e. the Jarque-Bera test, the Engle 

test, the CUSUM stability tests. The obtained results specifically point to the presence of residuals 

issued from applying the linear market model of returns, which seem to have higher levels of non-

linearity. Such a finding implies the presence of autocorrelation, abnormality, heteroscedasticity and 

instability in the model. This amounts to say that the linear analysis is not enough to assess risk and 

uncertainty.  

 

If residuals are white noise and the linear correlation coefficient ( 2R ) is high, Beta is a good 

measure of systematic risk. Nevertheless, in case of non-linearity and irregularity of residuals, in a 

simple linear regression, the model is inadequate to detect a relationship between assets and market 

index Tunindex. Since entropy is a measure that jointly detects linear and non-linear dependences 

without specifying any dependence model, then mutual information and conditional entropy may 

potentially inform investors and be more adequate to measure risk.  

 

Conditional Entropy 
2

i  
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Figure 3: Risk (entropy) and diversification 
 

Accordingly, the mean-variance approach will be labelled as the mean-entropy approach of selecting 

assets. Likewise, Sharpe single-index model was treated under entropy theory where total risk is 

divided into systematic and non-systematic risk. We also examined the effect of diversification on 

the selected stocks. 

 

In this study, we found that entropy tends to diminish like standard deviation with the inclusion of 

more assets in a portfolio. This finding is similar to that reported by Wagner and Low, with risk 

fades away with time. Then, we may conclude that entropy is sensitive to diversification 

corroborating thus the results of Dionisio and al. (2006), Ormos and Zibriczky (2014). 

 

The obtained results help us to conclude that entropy detects diversification effect and is a more 

general measure of uncertainty of variance, as it uses more information on the probability 

distribution. This finding is consistent with results of Dionisio and al. (2006, 2007) and Ormos and 

Zibriczky (2014) who showed the ability of entropy to measure risk in portfolio management.  

 

Moreover, these results can be explained by the fact that when the number of assets in a portfolio 

increases, the number of the portfolio’s possible configurations gradually diminish and uncertainty 

in the portfolio tend to decrease as well. Mutual information and conditional entropy outperforms the 

linear market model under CAPM in terms of measuring systematic and specific risks.  

 

Furthermore, the main differences found between entropy and standard deviation relate to returns, 

which show high levels of kurtosis, skewness, autocorrelation and heteroscedasticity. Therefore, 

entropy seems to be sensitive to higher-order moments, providing more information about returns 

and probability distribution.  

 

5.  CONCLUSION 
 

Risk measurement was born along financial theory. Although development of financial theory is 

attributed to the work of Bachelier (1900), it was Markowitz (1952) and Sharpe (1964) who first 

conceptualized risk and developed the CAPM and Arbitrage Pricing Theory (APT).   

 

In their modeling, risk is computed as a function of correlation between a portfolio’s assets. These 

models rest on several fundamental assumptions of which are normality of stock returns distributions 

and preferences of agents. The first essential hypothesis pertains to investors’ problem in choosing 

assets under an alternative risk. It is equally difficult to explain risk-averse agents’ behavior 

(Friedman and Savagen, 1948). The second hypothesis expresses expected utility as an exact 

function of forecasting and variance of returns distribution, rooted in the mean-variance approach as 

its theoretical foundation. 

../../../../../../../Downloads/work/2017/3-Mar/10/Bachelier
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Nevertheless, normal distribution of returns is neatly rejected in the theoretical and empirical 

literature (Engle, 1982; Mandelbrot, 1971). The leptokurtic type of observed distributions needs to 

be seriously considered in the analysis and modeling of financial risk.  

 

This leads us to reject the presence of a linear relationship between systematic risk and returns and 

abandon the CAPM as a risk measure. These assumptions ushered in a great concern with measuring 

risk and finding new alternatives to CAPM (Fama and French, 1996; Hwang and Satchell, 1999; 

Harvey and Siddique, 2000; Pedersen and Satchell, 1998). 

 

Our aim in this study was to extend risk measurement and decision-making to entropy theory, i.e. 

portfolio theory (a normative portfolio selection model) and Sharpe single-index model. This 

combination helped to develop an assets pricing model.  

 

The main objective of modern finance rests on pricing assets. The choice of a pricing model depends 

on available information. In this regard, as entropy is one of the major concepts of information 

theory and as market agents react to information when taking decisions, we believe that entropy 

should find its way into financial analysis.  

 

Moreover, as classic assets pricing models fail to consider thick tails and skewness of almost all 

assets distributions, entropy may be used to measure, in general terms, uncertainty derived from 

variance, providing them more information about an asset and its probability distribution. Its use is 

to examine risk highly contributes to improving risk and portfolio management.  

 

The method we proposed in this study may be used reliably and efficiently in practice. Therefore, 

entropy may be preferred to variance when returns distributions are not Gaussian. The use of power 

laws in this study is particularly relevant to analyze uncertainty and assets values, as they do not 

assume the normal distribution as a requirement. Interestingly, the works of Markowiz were revised 

under such an understanding of uncertainty. Therefore, the mean-variance approach will be labelled 

the mean-entropy approach of assets selection. Likewise, Sharpe single-index model was 

reinterpreted under entropy theory where total risk is divided into systematic and non-systematic 

risk. Entropy is believed to contribute to significantly improving the assessment of systematic and 

specific risks and thus assets pricing.  

 

In conclusion, researchers in finance and risk management have developed this coherent index that 

takes into account the reality and needs of firms, to measure volatility. However, use of the concept 

entropy is complex and needs a robust algorithm to be able to assess risk and portfolio selection. The 

implications of these results are numerous for researchers using measures of risk like VaR or 

involved in modeling volatility of returns.  
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