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ABSTRACT 

The cell formation problem is a crucial component of a cellular 

manufacturing system. The purpose of this manufacturing system 

is to build manufacturing clusters by grouping component families 

and machine cells with the aim of minimizing the total cost of 

production. In this paper, the cell formation problem is scrutinized 

by two similarity index methods. In the first phase, a new similarity 

coefficient method is proposed to identify the closeness of 

components/machines and this closeness is in the form of a 

similarity distance matrix. In the second phase, principal 

component analysis (PCA) and agglomerative clustering algorithm 

(ACA) are applied to group components into component families 

and machines into machine cells. In the third phase, a performance 

comparison of PCA and ACA was carried out with two different 

measures, viz. grouping efficiency and grouping efficacy.  At the 

end, a complete factorial experiment is used to compare the results 

of the two algorithms, in which “Problem” is used as Factor A, 

“Algorithm” is used as Factor B and “Similarity Coefficient 

Method” is used as Factor C and the results are reported. 

 

Contribution/ Originality 

In this article a new similarity coefficient index is proposed to identify the closeness between the 

machines and component in the shop floor. The proposed similarity index proves the result quality 

compared to other similarity coefficients. 
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1. INTRODUCTION 

 
The productivity of an organization is the combined effect of excellence of several subsystems of the 

organization.  The production system is the core in the entire value chain of the organization, where 

major conversion/ value addition activities take place. There are many dimensions of improving 

productivity at shop floor level. Among all, the organization of layout forms an important basis, 

because it guides a flow of components and/ or subassemblies that are routed in the shop floor. Among 

the types of layout, viz. process layout, product layout, group technology layout and fixed position 

layout, the group technology layout gains lot of importance, because it combines the benefits of 

process and product layouts. Further, this type of layout is present in all modern manufacturing 

practices, viz. CIM, FMS, etc. The other name for this layout is cellular layout and the corresponding 

system is called as cellular manufacturing system.  

 

The objective of the cellular layout is to group the given set of components and a set of machines into 

a meaningful number of machine groups and component groups based on the similarity of operation 

sequences of components and assign the machines in each machine group to the corresponding 

component groups such that preferably the operational requirements of all the components assigned 

to each machine group are fully met within that machine group itself. The grouping of machines and 

components into a distinct number of machine-component cells gives a scheme for implementing the 

layout, in which a given combination of a group of machines and a group of components is called as 

a machine-component cell. But, it may not be possible always to have such ideal machine-component 

cell formation. Under such situation, the objective is to form the machine-component cells such that 

the number of odd elements in the off-diagonal is minimized, which will minimize the number of 

inter-cell moves. 

 

Initially, a machine-component incident matrix is formed using the operation sequences of 

components. The rows of the machine-component incident matrix represent the machines which are 

required to process the components. The columns of the matrix represent the component numbers. 

This matrix is treated as [Aij] as shown in Figure 1. The matrix is represented in the form of binary 

numbers. If the sequence of the component j has the machine number i, then the respective matrix 

element Cij is assumed as 1; otherwise it is assumed as 0. 

 

                            Components j 

    1 2 3 4 5 6  

   1 0 1 0 0 1 0 

Machine i 2 1 0 0 0 1 1  

  3 0 0 1 1 0 1 

  4 1 0 1 0 0 0 

  5 1 1 0 1 1 0 

Figure 1: Machine-components incident matrix 

Many researchers have contributed various algorithms to obtain machine-component cells with least 

exceptional elements and voids. Among these methods, the similarity index based clustering method 

is more flexible to deal with the cell formation problem. Though many researchers contributed to this 

field, very few of them used the similarity index matrix as an input in their proposed algorithms. In 

this paper, the authors made an attempt to compare the proposed similarity coefficient method with an 

existing similarity coefficient method (Panneerselvam et al., 1990), in terms of grouping efficiency as 

well as grouping efficacy. 
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2. LITERATURE REVIEW 
 

The similarity coefficient methods are classified into problem-oriented and general purpose similarity 

coefficient (Yin and Yasuda, 2006). The general purpose similarity coefficients are widely used in 

other disciplines, like biology, sociology, medical science, economics, etc. The problem-oriented 

similarity is designed to solve specific problem, such as cell formation problem. This problem-oriented 

similarity is either based on binary data or production information data. In this paper, the similarity 

coefficient based on binary data is considered. McAuley (1972) was the first to examine the Jaccard 

similarity coefficient (General purpose similarity coefficient) method to identify similar groups of 

machines and components.  

 

Carrie (1973) suggested a numerical taxonomy for group technology and examined the cell formation 

problem by developing a new similarity coefficient. Rajagopalan and Batra (1975) developed a graph 

theoretic approach to solve the cell formation problem. They used a matrix of Jaccard similarity 

coefficient (McAuley, 1972) for grouping similar machines. Waghodekar and Sahu (1984) developed 

a heuristic based on similarity coefficient. Seifoddini and Wolfe (1986) developed a similarity 

coefficient which overcomes the short coming of the similarity coefficient developed by McAuley 

(1972) and Seifoddini and Hammid (1984). This method gives a flexibility to deal with duplication of 

bottleneck machines and overcome the chain problem of single linkage cluster algorithm (SLCA). 

Kusiak (1987) developed a similarity coefficient method, in which p-median method is implemented 

to identify similarities of machines and components.  

 

Mosier (1989) proposed a similarity coefficient method and used an agglomerative clustering 

algorithm to identify similar groups of machine cells and component families. Wang and Roze (1995) 

presented an experimental study on machine cells and component families based on original and 

modified p-median models using similarity coefficient. They considered three similarities, viz. 

McAuley (1972), Kusiak (1987) and Wei and Kern (1989) to compare eleven machine-component 

incident matrixes. Srinivasan (1994) used minimum spanning tree (MST) for clustering the machines 

and components, in which distance based similarity coefficient is used. Nambirajan and 

Panneerselvam (1999) used a simulated annealing algorithm to solve the cell formation problem. 

 

Hachicha et al. (2008) presented the multivariate approach PCA (Principal component analysis) to 

form a machine / component matrix. In this paper, a correlation matrix is used as the similarity 

coefficient matrix and this matrix is used as an input for PCA to obtain factor loadings to identify the 

similar groups. Kitaoka et al. (1999) constructed a double centering similarity coefficient matrix and 

applied quantification method to identify the eigenvalues and eigenvectors of the double centering 

matrix. Then, a clustering algorithm is applied to form machine cells and component families such 

that the distances of the eigenvectors are minimized.  

 

Chattopadhyay et al. (2011) used PCA and self-organizing map (SOM) algorithm in which non-binary 

operation sequences are used for visual clustering of machine-component cell formation. In this paper, 

two types of similarity index (an existing and a proposed) are considered. Their effects on the solution 

accuracy are tested using two different algorithms, viz. principal component analysis (PCA) and 

agglomerative clustering algorithm (ACA).  

 

3. FRAMEWORK OF THE PROPOSED APPROACH 

 

The proposed approach consists of four phases as shown in Figure 2. 

 

3.1. Phase 1: Similarity coefficient method 

As stated earlier, this paper consists of two different similarity coefficients, the proposed similarity 

coefficient and an existing similarity coefficient (Panneerselvam et al. 1990).  

 

The formula for the proposed similarity coefficient for components is as given below. 
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m 

∑ pij  

K=1 

Sij = -------------- 

m 

 

where,  pij = 1 if aki = akj, k = 1,2,….., m. 

  m = is the number of machines  
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PHASE 4  Complete Factorial Experimentation 

 

Figure 2: Framework of the proposed approach 
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The formula for the proposed similarity coefficient for machines is as given below. 

n 

∑ pij  

K=1 

Sij = -------------- 

n 

 

where,  pij = 1 if aki = akj, k = 1,2,…..,n. 

 n = is the number of machines  

 

Next, the existing similarity coefficient proposed by Panneerselvam et al. (1990) is used to the 

similarity coefficient between component i (machine i) and component j (machine j) (Sij) is given 

below: 

 

Number of common machining operations between component i and  component j 

Sij =  

Number of machining operations in component i 

 

                m 

                             ∑ qij 

                            k=1 

    Sij  = -------------                    

                            m 

             ∑aki 

                           p=1 

 

where,  qij = 1 if aki = akj, k = 1,2,…..,m. 

  

 m = is the number of machines  

 

In the same way, the similarity coefficient matrix w.r.t different pairs of machines can be computed 

using the following formula.  

 

             n 

                ∑ qij 

                k=1 

    Sij  = ----------------                    

                            n 

               ∑aki 

                        p=1 

 

where,  qij = 1 if aki = akj, k = 1,2,…..,n. 

  

 n = is the number of machines  

 

After obtaining the similarity coefficient matrix, the PCA and ACA are employed to identify similar 

groups of component families and machine cells. The quality of the solution of these groups is 

measured by grouping efficiency as well a grouping efficacy.  

 

3.2. Phase 2: Clustering methods 

This section presents two different clustering methods, viz. Principle Component Analysis (PCA) and 

Agglomerative Clustering Algorithm (ACA) for the machine-component cell formation. 
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3.2.1. Principle component analysis 
The principle component analysis (PCA) aims to derive a reduced set of factors from a given set of 

variables. The application of PCA for the machine-component cell formation is carried out in two 

stages. The first stage is to derive factors (machine groups) by treating all the machines (rows) as the 

given set of variables and the second stage is to derive factors (component groups) by treating all the 

components (columns) as the given set of variables. The machine-component incident matrix is 

constructed by keeping the machines of machine clusters on rows one after another and keeping the 

components of component clusters on columns one after another. Then the presence of machine-

component blocks is to be checked in this matrix. In this approach, the factor loadings for machines 

as well as for components are obtained usng Varimax factor rotation. Then the grouping of machines 

and components are carried out based on two dimensional scatter plot analysis (Hachicha et al., 2008). 

The criteria for grouping the machines and components by scatter plot analysis are given below. 

 

Criteria 1: If two machines (components) have low angle distance, they consequently belong to the 

same cell.  

Criteria 2: If two machines (components) angle distance are almost 90o then they are independent and 

they do not belong to the same cell.  

Criteria 3: If the two machines (components) angle distance is almost 180o then they are negatively 

correlated and they do not belong to the same cell.  

Criteria 4: If the machines (components) do not come under these three criteria, then the machines 

(components) are considered as exceptional elements.   

 

3.2.2. Agglomerative clustering algorithm 

An  agglomerative clustering algorithm (Panneerselvam, 2004) is a bottom-up approach in which 

each object is assumed as a separate cluster and then they will be clustered in  succession  until  a  

single  cluster which consists of all  the  objects  is formed.  It is a hierarchical clustering method. 

The steps of this method are presented below.  

 

Step-0: Initialize i to the total number of objects, i = m. 

Step-1: Imagine the points in n dimensional plane , where n is the number of variables. 

Step-2: Find the distance between each pair of points. 

Step-3: Identify the two points (p,q) which are having the least distance between them. 

Step-4: Find the centroid of the two points (p,q). Let it be  ci  and the distance between them be di. 

Step-5: Identify the next two nearest clusters of point(s) and group them together. Then, find the 

centroid of the newly formed cluster. 

Step-6: Set i = i -1 

Step-7: If i > 1, then go to Step-5; otherwise go to step- 8. 

Step-8: Draw dendrogram of the sequence of cluster formation. 

 

As per the clustering criterion, determine the number of clusters and the objects of the clusters.   An 

example of clustering criterion may be the  sudden  jump  in  the distance between  clusters  while 

adding  a  cluster  to another  cluster.  Draw a line in the dendrogram where there is a sudden jump in 

the distance between any two clusters   and identify the final set   of   clusters accordingly. 

 

3.3. Phase 3:  Grouping measures 

The goodness of block-diagonal matrix, obtained by clustering algorithms for cellular production 

system are measured by two measures namely grouping efficiency and grouping efficacy are used. 

The grouping efficiency (Chandrasekharan and Rajagopalan, 1986 a, 1986 b) to define the quality of 

the solution, namely as grouping efficiency (η) , which is the weighted sum of two functions as given 

below.  

η = q η1 + (1-q) η2 

where, η1: is the ratio of number of 1s in the diagonal blocks to the total number of elements in the 

diagonal blocks. 
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η2: is the ratio of number of 0s in the off-diagonal blocks to the total elements in the off-

diagonal blocks. 

q: Weighting factor (0≤q≤1) and it is usually assumed as 0.5 

 

Kumar and Chandrasekaran (1990) proposed another measure named grouping efficacy (E), which 

overcomes the weaker discriminating power of grouping efficiency measure by assigning equal weight 

for the number of voids and the number of exceptional elements. This measure is defined as follows. 

(e - e0) 

                                            E = 

(e + ev) 

Where,  e: Total number of 1s in the matrix 

  e0: The number of exceptional elements 

  ev :The number of voids in the diagonal box 

 

In this paper these two measures are considered to measure the grouping accuracy of the machine-

component cell formation.   

 

3.4. Phase 4: Comparison of similarity coefficient (Factorial Experimentation) 

The objective of this paper is to select the similarity coefficient out the two such methods listed earlier, 

which gives the best result in terms of grouping measures.  

 

So, a complete factorial experiment has been designed to carry out this comparison. The complete 

factorial experiment has three factors, viz, Problem Size (Factor A), Algorithm (Factor B) and 

Similarity Coefficient (Factor C). The number of levels of the problem size is 10 (5X7, 7X7, 8X20, 

9X10, 10X12, 12X19, 14X24, 15X10, 24X40 and 30X50) and the number of levels for the Algorithm 

is two, viz. Principle Component Analysis and Agglomerative Clustering Method, and the number of 

levels for the Similarity Coefficient is 2 (New and Existing). The number of replications carried out 

under each of the experimental combinations is 2. So, the total number of observations of this 

experiment is 80 for each of the grouping measures, viz. grouping efficiency and grouping efficacy. 

The model of ANOVA is as given below. 

 

Yijkl = μ +  Ai + Bj + ABij + Ck + ACik + BCjk + ABCijk + eijkl 

where,    

Yijkl is the  lth replication under the ith treatment of the Factor A, the jth treatment of the Factor 

B and the kth treatment of the Factor C. 

μ is the overall mean of the response. 

Ai is the effect of the ith treatment of the Factor A on the response. 

Bj
 is the effect of the jth treatment of the Factor B on the response. 

ABij is the interaction effect of the ith treatment of the Factor A and the jth 

treatment of the Factor B on the response. 

Ck is the effect of kth treatment of the Factor C on the response. 

ACik is the interaction effect of the ith treatment of the Factor A and the kth 

treatment of the Factor C on the response. 

BCjk is the interaction effect of the jth treatment of the Factor B and the kth 

treatment of the Factor C on the response. 

ABCijk is the interaction effect of the ith treatment of the Factor A, the jth 

treatment of the Factor B and the kth treatment of the Factor C on the response. 

eijkl is the random error associated with the lth replication under the ith 

treatment of the Factor  A, the jth treatment of the Factor B and the kth 

treatment of the Factor C. 

 

A factorial experiment as per the proposed design has been carried out for each grouping measure and 

the results are as given in Table 1 for grouping efficiency and in Table 2 for grouping efficacy.  

Table 1: Results of grouping efficiency 
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Problem 

Size 
Replication 

SC1(Book) SC2 (New) 

PCA ACM PCA ACM 

Efficiency Efficiency Efficiency Efficiency 

5x7 
1 83.00 83.00 85.62 85.62 

2 77.09 77.09 79.09 77.09 

7x7 
1 68.18 68.18 68.18 70.83 

2 75.08 75.83 75.08 75.08 

8x20 
1 95.83 94.40 94.40 94.40 

2 65.19 71.02 63.93 71.02 

9x10 
1 65.83 76.66 73.76 75.98 

2 69.61 68.88 64.67 66.81 

10x12 
1 64.73 65.83 65.83 65.83 

2 78.96 64.47 79.91 77.50 

12x19 
1 72.06 62.05 70.74 74.43 

2 72.45 62.56 75.68 70.74 

14x24 
1 84.67 75.89 75.89 82.17 

2 76.29 74.56 83.33 76.11 

15x10 
1 74.96 88.31 88.31 88.31 

2 96.00 96.00 96.00 96.00 

24x40 
1 100 100 100 100 

2 93.79 92.51 95.86 92.19 

30x50 
1 68.33 68.33 71.76 72.06 

2 62.98 5.43 61.76 54.02 
 

Table 2: Results of grouping efficacy 
 

Problem 

Size 
Replication 

SC1(Book) SC2 (New) 

PCA ACM PCA ACM 

Efficacy Efficacy Efficacy Efficacy 

5x7 
1 70.00 70.00 73.68 73.68 

2 68.00 68.00 68.00 68.00 

7x7 
1 40.00 40.00 40.00 46.15 

2 53.33 55.55 53,33 53.33 

8x20 
1 85.24 83.60 83.60 83.60 

2 52.58 56.07 49.10 56.07 

9x10 
1 39.68 55.31 51.02 44.82 

2 46.00 45.09 40.00 42.59 

10x12 
1 30.76 32.78 32.78 32.78 

2 56.09 34.42 57.50 54.54 

12x19 
1 49.18 37.57 47.18 52.80 

2 50.00 38.19 54.70 47.18 

14x24 
1 67.90 51.78 51.78 61.90 

2 52.58 49.56 65.90 52.21 

15x10 
1 51.28 75.00 75.00 75.00 

2 92.00 92.00 92.00 92.00 

24x40 
1 100 100 100 100 

2 82.63 75.86 80.57 79.86 

30x50 
1 36.66 36.66 43.27 43.67 

2 26.94 10.86 25.05 13.77 
 

3.4.1. Hypotheses 

Factor A (Problem Size)  

Ho: There is no significant difference in terms of solution between different pairs of 

treatments of the Factor A (Problem size). 
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H1:  There is significant difference in terms of solution between different pairs of treatments 

of the Factor A (Problem size). 

Factor B (Similarity coefficient)  

Ho: There is no significant difference in terms of solution between different pairs of 

treatments of the Factor B (Similarity coefficient method). 

H1:  There is significant difference in terms of solution between different pairs of treatments 

of the Factor B (Similarity coefficient method). 

Factor C (Algorithm)  

Ho: There is no significant difference in terms of solution between the two treatments of the 

Factor C (Algorithm). 

H1:  There is significant difference in terms of solution between the two treatments of the 

Factor C (Algorithm). 

 

3.4.1.1. Interaction components 

Factor A X Factor B: (ABij) 

Ho: There is no significant difference in terms of solution between different pairs of 

interaction between Factor A and Factor B. 

H1:  There is significant difference in terms of solution between different pairs of interaction 

between Factor A and Factor B. 

Factor A X Factor C: (ACik) 

Ho: There is no significant difference in terms of solution between different pairs of 

interaction between Factor A and Factor C. 

H1:  There is significant difference in terms of solution between different pairs of interaction 

between Factor A and Factor C. 

Factor B X Factor C: (BCjk) 

Ho: There is no significant difference in terms of solution between different pairs of 

interaction between Factor B and Factor C. 

H1:  There is significant difference in terms of solution between different pairs of interaction 

between Factor B and Factor C. 

Factor A X Factor B X Factor C: (ABCijk) 

Ho: There is no significant difference in terms of solution between different pairs of 

interaction between Factor A, Factor B and Factor C. 

H1:  There is significant difference in terms of solution between different pairs of interaction 

between Factor A, Factor B and Factor C. 

α = 0.05 – level of significance for testing the above hypotheses.  

 

3.4.2. Comparison Based on grouping Efficiency: 

The data on grouping efficiency which are shown in Table 1 are analyzed using a three factor complete 

factorial ANOVA, whose model is already shown. The results of ANOVA based on the grouping 

efficiency are shown in Table 3.  

 

Table 3: ANOVA based on grouping efficiency 
 

 
Sum of 

Square 

Degree of 

freedom 

Mean sum of 

square 
F-ratio 

Significance 

(α = 0.5) 

A 9033.031 9 1003.67 8.4488 2.12 

B 180.1875 1 180.1875 1.51680 4.08 

AB 75.6875 1 75.6875 0.63713 4.08 

C 318.2188 9 35.3576 0.29763 2.12 

AC 625.7188 9 69.5243 0.58525 2.12 

BC 61.5 1 61.5 0.51770 4.08 

ABC 351.4063 9 39.0451 0.32867 2.12 

Error 4751.75 40 118.7938   

Total 15397.5 79    
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From this table, it is clear that the calculated F values are lesser than the respective table F values for 

all the components at a significant level of 5%, except for the Factor A. The calculated F value for the 

Factor A is 8.44884161 as against the table F value of 2.12. Hence, the corresponding null hypotheses 

is to be rejected and its alternative hypotheses is to be accepted. This means that there is a significant 

difference between the problems.  

 

The calculated F value for the Factor B, Factor C, and interaction between AB, AC, BC and ABC are 

lesser than the respective table F values. Hence, the corresponding null hypotheses are to be accepted 

and their alternative hypotheses are to be rejected. As a researcher, we are very much keen in whether 

there is significant difference between the similarity coefficients in terms of the grouping efficiency. 

As per the ANOVA result, there is no significant difference between the similarity coefficient methods 

in terms of grouping efficiency. So, any one of the similarity coefficient methods can be used to solve 

the machine-component cell formation problem.  

 

However the mean, standard deviation and coefficient of variation of the grouping efficiencies of the 

similarity coefficient methods are presented in Table 4. 

 

Table 4: Means, standard deviations and coefficient of variations of grouping efficiencies of 

algorithms 
 

Measure 

Existing Similarity 

Coefficient 

New Similarity Coefficient 

PCA ACA PCA ACA 

Mean 78.4900 78.3095 77.2515 73.5500 

Standard deviation 11.6994 11.5271 11.4622 19.8130 

Coefficient of variation 14.9056 14.7200 14.8375 26.9381 

 

From Table 4, it is clear that the mean grouping efficiency of PCA of the existing similarity coefficient 

is the highest, but its coefficient of variation is next to that of ACA of the existing similarity coefficient 

in the increasing order. So, one has to see the trade-off between PCA and ACA of existing similarity 

coefficient. The difference between the mean grouping efficiencies of PCA and ACA for existing 

similarity coefficient is 0.18%. Similarly, the difference between the coefficient of variations of the 

existing similarity coefficient for PCA and ACA is 0.19% and since this difference is very minimal, 

the existing similarity coefficient with the maximum mean grouping efficiency, which is PCA 

(Principal component analysis), is suggested for implementation to maximize the grouping efficiency 

of the machine-component cell formation problem.  

 

3.4.3. Comparison based on grouping efficacy 

The data on grouping efficacy as shown in Table 2 are analyzed using a three factor complete factorial 

ANOVA, whose model is already shown. The results of ANOVA based on the grouping efficacy are 

shown in Table 5.  

 

Table 5: ANOVA based on grouping efficacy 
 

 
Sum of 

Square 

Degree of 

freedom 

Mean sum of 

square 
F-ratio 

Significance 

(α = 0.5) 

A 25923.25 9 2880.361 17.332 2.12 

B 123.3125 1 123.3125 0.7420 4.08 

AB 35.3437 1 35.3437 0.2126 4.08 

C 165.9063 9 18.4340 0.1109 2.12 

AC 375.25 9 41.6944 0.2508 2.12 

BC 12.6562 1 12.6562 0.0761 4.08 

ABC 235.8438 9 26.2048 0.1576 2.12 

Error 6647.344 40 166.1836   

Total 33518.91 79    
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From this table, it is clear that the calculated F values are lesser than the respective table F values for 

all the components at the significant level of 5%, except for the Factor A. The calculated F value for 

the Factor A is 17.3324022 as against the table F value of 2.12. Hence, the corresponding null 

hypotheses is to be rejected and its alternative hypotheses is to be accepted. This means that there is a 

significant difference between the problems. The calculated F values for the Factor B, Factor C, and 

interaction between AB, AC, BC and ABC are lesser than the respective table F values. Hence, the 

corresponding null hypotheses are to be accepted and their alternative hypotheses are to be rejected. 

As per the ANOVA result, there is no significant difference between the similarity coefficients in 

terms of grouping efficacy. So, any one of the similarity coefficient can be used to solve the machine-

component cell formation problem.  

 

However, the mean grouping efficacy, standard deviation and coefficient of variation of the grouping 

efficacy of the similarity coefficients methods are presented in Table 6. 

 

Table 6: Means, standard deviations and coefficient of variations of grouping efficacy of 

algorithms 
 

Measure 

Existing Similarity 

Coefficient 

New Similarity Coefficient 

PCA ACA PCA ACA 

Mean 59.2230 58.6975 57.5425 55.4150 

Standard deviation 20.0728 20.8478 20.3177 22.4671 

Coefficient of variation 33.8937 35.5173 35.3091 40.5435 

 

From Table 5, it is clear that the mean grouping efficacy of PCA of the existing similarity coefficient 

is the highest, and for coefficient of variation the same PCA of the existing similarity coefficient is the 

highest. So, the existing similarity coefficient with the maximum mean grouping efficacy, which is 

PCA (Principal component analysis), is suggested for implementation to maximize the grouping 

efficacy of the machine-component cell formation problem.  
 

4. CONCLUSION 
 

In this paper, the author stated the importance of similarity coefficient matrix as a better input for 

superior algorithms to solve a cell formation problem. In this paper, an attempt has been made to select 

the best similarity index out the proposed similarity index and an existing similarity index through 

comparison of results using a complete factorial experiment. Through the ANOVA result, it is found 

that there is no significant difference between these similarity coefficients in terms of each grouping 

measures (grouping efficiency, grouping efficacy). By taking the means and coefficient of variations 

of the grouping efficiencies of the two similarity coefficients, it is suggested to use the Principal 

Component Analysis (PCA) of the existing similarity coefficient to maximize the grouping efficiency 

of the machine-component cell formation problem. By doing a similar comparison with respect to 

grouping efficacy, it is suggested to use the same Principle Component Analysis (PCA) of the existing 

similarity coefficient to maximize the grouping efficacy. Hence, it is recommended to use the relevant 

algorithm depending on the objective (maximizing grouping efficiency/ grouping efficacy) as the seed 

generation algorithm if meta-heuristic is used to solve the machine component cell formation problem. 

Further, if the hybrid algorithm is designed for this problem, depending on the objective (maximizing 

grouping efficiency/ grouping efficacy), relevant algorithm may be used at some stage of the algorithm 

or as a local optimization procedure in such algorithm. 
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