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ABSTRACT 

Multi-location trials were conducted in 2016 and 2017 at Calabar, Ikom 

and Ogoja in Cross River State, Nigeria, to determine the yield stability of 

17 ginger genotypes (G1–G17) using genotype and genotype by 

environment (GGE) biplot model. The location and year combination gave 

six environments (E1–E6). The experiment was laid out in split plots using 

a randomized complete block design with three replications. Yield related 

traits like rhizome fingers, rhizome length, and rhizome yield were 

determined. E3 (i.e. Ikom in 2016) was ranked as the ideal environment 

for ginger production in Cross River State. While G5 (UGI-5-04) was 

classified as the ideal genotype for rhizome yield in Calabar, Ikom and 

Ogoja. Ikom in 2016 (E3) and 2017 (E4) were identified as mega-

environments for UG1-13-02, UG1-5-04, UG1-5-18, UG1-5-35, UG1-5-

38, UG2-11-03 and UG2-9-01 while Ogoja in 2016 (E5) and 2017 (E6) 

were identified as mega-environments for UG1-2-35, UG1-5-48, UG1-5-

52 and UG1-7-24 ginger mutants. Ikom is recommended as a suitable 

environment for the cultivation of generally adapted ginger genotypes 

namely, UG1-5-04, UG1-5-38, UG1-13-02 and UG2-9-01). Ogoja was 

suitable for specific adaptation of UG1-7-24 and UG1-5-48 ginger 

mutants. These mutants are recommended for consideration in subsequent 

ginger breeding and improvement programmes.  
 

Contribution/ Originality 

The research explored that the Ikom region has an ideal environment for the cultivation of ginger in Cross 

River State. Different varieties of ginger mutants were identified as ideal genotypes in other regions like Ogoja 

and Calabar.  
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1. INTRODUCTION  
 

Ginger (Zingiber officinale Rosc.) is a monocotyledonous perennial herb in the family 

Zingiberaceae, grown mainly for its spicy and aromatic rhizomes (Peter et al., 2007). It is a valued 

export crop in Nigeria whose demand in the international market is high because of its rich nutrient 

profile, essential oils, and oleoresin contents (Adegboye, 2011; Abua et al., 2020). Globally, the 

yearly demand for ginger is increasing due to its diverse utilization (FAO, 2017). The high demand 

for ginger in the international market makes it an important export crop for Nigeria, and thus serves 

as a source of foreign exchange earnings. In Nigeria, the demand for this crop is on a steady 

increase and the solution to this challenge is to increase its production. This requires the cultivation 

of improved ginger varieties with enhanced economic yields.  

 

Ginger has a narrow genetic base because it is vegetatively propagated (Babu et al., 2013). 

Conventional breeding procedures like hybridization is difficult for ginger improvement. Therefore, 

an alternative means for improving the crop is to create variability through induced mutation. The 

induced mutation has been considered an established method for increasing genetic variability in 

many crops. FAO (2006), documented 2,540 varieties of crops that have been commercially 

released through mutation breeding, for example, garlic, cassava, turmeric, and potato. 

 

In this study, fifteen ginger lines were developed through mutation breeding (gamma-ray exposure) 

using two ginger landraces (UG1 and UG2). Therefore, there is a need for these new ginger mutant 

lines to be evaluated across several locations to determine their yield potentials, superiority as well 

as their yield stability before their release for wide-range cultivation. This has prompted the 

establishment of this research in three agro-ecological locations across Cross River State, Nigeria. 

 

Multi-environment trials (METs) are mostly carried out by plant breeders to evaluate improved 

genotypes across test environments (several locations and over years) before a specific genotype is 

recommended to growers for commercial production. Most genotypes show crossover interactions 

(i.e. do not have uniform performance in all environments); by implication, one genotype may have 

the highest yield in some environments and the second genotype may be excellent in other 

environments (Zahia et al., 2010). The development of genotypes that can be adapted to a wide 

range of different environments is the ultimate goal of plant breeders in crop improvement 

programmes (Ahmadi et al., 2015). METs are conducted to identify locations that best represent the 

target environments and to identify the best genotypes or cultivars suited for recommendations to 

farmers (Odor et al., 2017; Vaezi et al., 2017). Multi-Environment Trials (METs) are important for 

studying yield stability, adaptation and for a prediction of yield performance of crop genotypes 

across environments (Yan and Kang, 2003; Dehghani et al., 2009). It is difficult to identify superior 

genotypes due to the genotypes × environments (G × E) interaction, but assessing such interaction 

is extremely important since it is the number one factor responsible for changing genotype 

performance in different environments (Mohamed, 2013, Oliveira et al., 2017). G × E interaction 

studies allow for the identification of the ideal location(s) to each genotype which would maximize 

yield potential and reduce production costs (Oyekunle et al., 2017). Information on the structure 

and nature of G x E interaction is particularly useful to plant breeders because it can help determine 

if they need to develop cultivars for all environments of interest or if they should develop specific 

cultivars for specific target environments.  

 

Data from multi-environment trials (METs) are usually quite large. It is difficult to understand the 

pattern of the data without some kind of graphical presentation. The biplot technique by Gabriel 

(1971) provides a solution to this challenge. A biplot that displays the GGE of a MET data, referred 

to as a GGE biplot (graphical method), is an ideal tool for MET data analysis (Yan et al., 2000; 

Yan, 2001). The GGE biplot analysis is efficient because it allows predictions to be made on the 

mean genotype yield per specific environment, as well as helps identify the most stable genotype 

for the region of interest (Yan, 2014, Santos et al., 2017). Genotype and genotype by environment 
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(GGE) biplot analysis consists of a set of graphs that allow visualization of the patterns in a dataset 

from different angles (Yan and Kang, 2003; Yan and Tinker, 2006; Yan, 2014). 

 

A GGE biplot as a data visualization tool can graphically demonstrate a (G x E) interaction pattern, 

it is an effective tool used for: (i) mega environment analysis (e.g. “Which-Won-Where” pattern), 

whereby specific genotypes can be recommended to specific mega-environments (Yan, 2014), (ii) 

genotype evaluation (the mean performance and stability), and (iii) environmental evaluation (the 

power to discriminate among genotypes in target environments. The objectives of this study were 

(i) to display graphically, the performance and stability of 17 ginger lines across three locations in 

two years, (ii) to identify ginger lines with wide or specific adaptation and (iii) to identify the ideal 

environment for ginger cultivation among the three test locations. 

 

2. MATERIALS AND METHODS 
 

This experiment was carried out at Calabar, Ikom, and Ogoja in Cross River State, Nigeria in 2016 

and 2017 cropping seasons. These locations were chosen based on their unique differences in 

edaphic and climatic conditions such as physicochemical properties of the soil, rainfall, relative 

humidity, temperature, and sunshine duration.  

 

Seventeen ginger genotypes consisting of fifteen (15) mutant lines (UG1-11-07, UG1-13-02, UG1-

2-35, UG1-5-04, UG1,-5-18, UG1-5-22, UG1-5-31, UG1-5-35, UG1-5-38, UG1-5-48, UG1-5-49, 

UG1-5-52, UG1-7-24, UG2-9-01 and UG2-11-03) and two local check landraces (UG1 and UG2) 

were sourced from National Root Crop Research Institute (NRCRI), Umudike, Nigeria. The fifteen 

mutant lines were derived from the existing local varieties UG1 and UG2 by exposing them to 

different doses of gamma-ray irradiation. The mutant lines derived from UG1 were exposed to 

2GY, 5GY, 7GY, 11GY, and 13GY doses of gamma-ray to give the following mutant lines: UG1-

2-35, UG1-5-04, UG1-5-18, UG1-5-22, UG1-5-31, UG1-5-35, UG1-5-38, UG1-5-48, UG1-5-49, 

UG1-5-52, UG1-7-24, UG1-11-07 and UG1-13-02. The mutant lines derived from UG2 were 

exposed to 9GY and 11GY doses of gamma-ray to give the following mutant lines: UG1-9-01 and 

UG2-11-03.  

 

This experiment was a split-plot laid out in a randomized complete block design (RCBD) with three 

replications. Location served as whole plot treatment while the ginger lines served as the sub-plot. 

The following yield traits were measured: number of rhizome fingers per plant, rhizome length 

(cm), and rhizome yield (t/ha). Stability analysis was carried out using Genotype and Genotype by 

Environment (GGE) biplot model according to Yan (2001) and the model was depicted as follows: 

  

Yij = µ + αi + βj + jij 

 

Where Yij is the measure of the ith genotype in the jth environment; µ is the grand mean, αi is the 

main effect of the ith genotype; βj is the main effect of the jth environment, jij is the interaction 

between the ith genotype and jth environment. The 17 ginger lines served as the genotype while the 

three locations and the two years formed a combination of six (6) environments. 

 

3. RESULTS AND DISCUSSION 
 

3.1. GGE biplot analysis for the number of rhizome fingers per plant 

The genotype and genotype by environment (GGE) biplot captured 79.7 % of the genotype main 

effect and the genotype by environment interaction (GE) interaction with the principal component 1 

(PC1) and principal component 2 (PC2) axes explaining 54.4 % and 25.3 % respectively. Figure 1 

displays the GGE biplot environment vector view for the number of rhizome fingers per plant. The 

biplot shows the relationship among the test environments as well as their discriminating ability. 

The angle between the vectors of any two environments estimates the correlation between them. 
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The larger the angle the less correlated the environments (Yan and Tinker, 2006) The biplot 

indicated that Ikom in 2016 (E3) and Ikom in 2017 (E4) were closely correlated. Ogoja in 2016 

(E5) and Ogoja in 2017 (E6) also had strong correlations. The discriminating ability of the test 

environments is estimated by the length of their vectors. (Yan, 2001). Ogoja in 2017 (E6) (E6) was 

selected as the most discriminating environment followed by Ogoja in 2016 (E5) while Calabar in 

2016 (E2) was the least discriminating environment for this trait. 

 

Table 1: Physicochemical properties of the soil and weather conditions at the test locations 
 

Year/Location 
Sand 

(%) 

Silt 

(%) 

Clay 

(%) 

pH in 

H2O 
ECEC 

Temp.  

(oC) 

Relative 

Humidity  

(%) 

Rainfall 

(mm) 

Sunshine 

(h) 

2016      Mean    

Calabar - - - - - 31.7 85.6 190.7 3.43 

Ikom - - - - - 30.5 83.1 210.4 5.62 

Ogoja - - - - - 33.5 71.3 146.6 5.91 

2017      Mean    

Calabar 79.0 13.0 8.0 5.7 7.94 31.3 86.8 260 3.58 

Ikom 47.0 22.0 31.0 5.8 11.74 32.5 82.4 189.5 5.15 

Ogoja 73.0 17.0 10.0 5.2 5.57 34.4 71.3 146.6 4.94 
 

ECEC: Effective Cation Exchange Capacity 

 

 

Figure 1: Relationship among the test environments  ands their discriminating ability for the 

number of rhizome fingers per plant 

 

Key: G1 = UG1; G2 = UG1-11-07; G3 = UG1-13-02; G4 = UG1-2-35; G5 = UG1-5-04; G6 = 

UG1-5-18; G7 = UG1-5-22; G8 = UG1-5-31; G9 = UG1-5-35; G10 = UG1-5-38; G11 = UG1-5-48; 

G12 = UG1-5-49; G13 = UG1-5-52; G14 = UG1-7-24; G15 = UG2; G16 = UG2-11-03; G17 = 

UG2-9-01; E1 = Calabar 2016; E2 = Calabar 2017; E3 = Ikom 2016; E4 = Ikom 2017; E5 = Ogoja 

2016; E6 = Ogoja 2017 

 

The GGE biplot environment view showing the representativeness of the test environments as well 

as the ranking of the environments to the ‘ideal test environment’ is presented in Figure 2. The 

representativeness evaluation of the test environments is the second most important aspect of test 
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environments after the discriminating ability evaluation. The representativeness of the test 

environment is estimated by the size of the angle of its vector to the AEA (Average Environment 

Axis). The smaller the angle of the environment vectors to the AEA the more representative the 

environment would be of the test environments (Yan, 2001). Thus, Calabar in 2016 (E1) is the most 

representative of the test environments while Calabar in 2016 (E2) is the least representative 

environment. The ideal test environment should be the most discriminating (informative) and also 

the most representative of the target environment. The “ideal test environment” is indicated by the 

centre of the concentric circles. It is a point on the AEA in the positive direction (“most 

representative”) with a distance to the biplot origin equal to the longest vector of all environments 

(“most informative”). Ogoja in 2016 (E5) is the closest to this point while Calabar in 2016 (E2) was 

the furthest from this point. 

 

 
Figure 2: Representativeness and ranking of the environments for a number of rhizome 

fingers per plant 

 

Key: G1 = UG1; G2 = UG1-11-07; G3 = UG1-13-02; G4 = UG1-2-35; G5 = UG1-5-04; G6 = 

UG1-5-18; G7 = UG1-5-22; G8 = UG1-5-31; G9 = UG1-5-35; G10 = UG1-5-38; G11 = UG1-5-48; 

G12 = UG1-5-49; G13 = UG1-5-52; G14 = UG1-7-24; G15 = UG2; G16 = UG2-11-03; G17 = 

UG2-9-01; E1 = Calabar 2016; E2 = Calabar 2017; E3 = Ikom 2016; E4 = Ikom 2017; E5 = Ogoja 

2016; E6 = Ogoja 2017 

 

Figure 3 shows the GGE biplot genotype view indicating the relationship among the seventeen 

ginger lines (genotypes). Genotypes are positively correlated with one another if the angle between 

each of their vectors is less than 90o. The biplot showed that G17 (UG2-9-01) and G16 (UG2-11-

03) were closely correlated while G3 (UG1-13-02), G9 (UG1-5-35), G15 (UG2) and G14 (UG1-7-

24) were closely correlated. Close correlations were also seen between G5 (UG1-5-04) and G11 

(UG1-5-48). Close correlations also existed between G1 (UG1), G2 (UG1-11-07), G4 (UG1-2-35), 

G6 (UG1-5-18), G7 (UG1-5-22), G8 (UG1-5-31), G10 (UG1-5-38) and G12 (UG1-5-49).  
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Figure 3: Relationship among the genotype for the number of rhizome fingers per plant 

 

Key: G1 = UG1; G2 = UG1-11-07; G3 = UG1-13-02; G4 = UG1-2-35; G5 = UG1-5-04; G6 = 

UG1-5-18; G7 = UG1-5-22; G8 = UG1-5-31; G9 = UG1-5-35; G10 = UG1-5-38; G11 = UG1-5-48; 

G12 = UG1-5-49; G13 = UG1-5-52; G14 = UG1-7-24; G15 = UG2; G16 = UG2-11-03; G17 = 

UG2-9-01; E1 = Calabar 2016; E2 = Calabar 2017; E3 = Ikom 2016; E4 = Ikom 2017; E5 = Ogoja 

2016; E6 = Ogoja 2017 

 

Figure 4 shows the ranking of the genotypes for both mean performance and stability for the 

number of rhizome fingers per plant across the six environments. G17 (UG2-9-01) was selected as 

the best performing genotype and relatively stable for the trait and thus ranked closest to the ideal 

genotype. This was followed by G11 (UG1-5-48). G16 (UG2-11-03) was highly stable for the trait 

but its mean performance was lower than that of G17 (UG2-9-01) and G11 (UG1-5-48). G2 (UG1-

11-07) and G7 (UG1-5-22) were the poorest performers and were ranked furthest away from the 

ideal genotype although they exhibited high stability for the character. 

 

Figure 5 displays the “what-won-where” GGE biplot for the number of rhizome fingers per plant. 

Three projecting lines divided the biplot into three sectors. The most responsive genotypes are 

placed on the vertex of the polygon. In other words, genotypes located on the vertices of the 

polygon performed either the best or the poorest in one or more environments. The biplot selected 

G17 (UG2-9-01) as the winner in four of the six environments while G14 (UG1-7-24) was the 

winner in Ogoja in 2016 (E5) and Ogoja in 2017 (E6) (E6). G2 (UG1-11-03) and G7 (UG1-5-22) 

were selected as the poorest performers across all six environments.  

 

 

 



Asian Journal of Agriculture and Rural Development, 10(1)2020: 485-503 

 

 

491 

 

 
Figure 4: Mean performance and stability for the number of rhizome fingers per plant 

 

Key: G1 = UG1; G2 = UG1-11-07; G3 = UG1-13-02; G4 = UG1-2-35; G5 = UG1-5-04; G6 = 

UG1-5-18; G7 = UG1-5-22; G8 = UG1-5-31; G9 = UG1-5-35; G10 = UG1-5-38; G11 = UG1-5-48; 

G12 = UG1-5-49; G13 = UG1-5-52; G14 = UG1-7-24; G15 = UG2; G16 = UG2-11-03; G17 = 

UG2-9-01. E1 = Calabar 2016; E2 = Calabar 2017; E3 = Ikom 2016; E4 = Ikom 2017; E5 = Ogoja 

2016; E6 = Ogoja 2017 

 

 
Figure 5: “What-Won-Where” GGE biplot for number of rhizome finger per plant  

 

Key: G1 = UG1; G2 = UG1-11-07; G3 = UG1-13-02; G4 = UG1-2-35; G5 = UG1-5-04; G6 = 

UG1-5-18; G7 = UG1-5-22; G8 = UG1-5-31; G9 = UG1-5-35; G10 = UG1-5-38; G11 = UG1-5-48; 

G12 = UG1-5-49; G13 = UG1-5-52; G14 = UG1-7-24; G15 = UG2; G16 = UG2-11-03; G17 = 

UG2-9-01. E1 = Calabar 2016; E2 = Calabar 2017; E3 = Ikom 2016; E4 = Ikom 2017; E5 = Ogoja 

2016; E6 = Ogoja 2017 
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3.2. GGE biplot analysis for rhizome length (cm) 

GGE biplot for rhizome length captured 83.7% of variations due to the genotype main effect and 

G×E interaction. PC1 explained 70.4% while PC2 explained 13.3%. Figure 6 displays the GGE 

biplot environment vector view for rhizome length. The biplot showed that the environments fell 

into three groups. Ogoja in 2016 (E5) and Ogoja in 2017 (E6) were closely related and had similar 

interaction patterns. Ikom in 2016 (E3) Ikom in 2017 (E4) was closely correlated and had a similar 

interaction pattern. Calabar in 2016 (E1) and E2 Calabar in 2017 (E2) were not correlated. The 

biplot also showed Ogoja in 2016 (E5) as the most discriminating test environment as it had the 

longest vector from the origin of the biplot while Calabar in 2016 (E1) was the least discriminating 

environment. 

 

 
Figure 6: Relationship among the test environments and their discriminating ability for 

rhizome length (cm) 

 

Key: G1 = UG1; G2 = UG1-11-07; G3 = UG1-13-02; G4 = UG1-2-35; G5 = UG1-5-04; G6 = 

UG1-5-18; G7 = UG1-5-22; G8 = UG1-5-31; G9 = UG1-5-35; G10 = UG1-5-38; G11 = UG1-5-48; 

G12 = UG1-5-49; G13 = UG1-5-52; G14 = UG1-7-24; G15 = UG2; G16 = UG2-11-03; G17 = 

UG2-9-01. E1 = Calabar 2016; E2 = Calabar 2017; E3 = Ikom 2016; E4 = Ikom 2017; E5 = Ogoja 

2016; E6 = Ogoja 2017 

 

Figure 7 displays the GGE ranking biplot for the environment as well as the evaluation of their 

representativeness. Ogoja in 2017 (E6) was the most representative of the test environments as its 

vector had the smallest angle to the AEA. The biplot also ranked Ogoja in 2017 (E6) as the 

preferred test environment as it was closest to the ideal environment followed by Ogoja in 2016 

(E5). Calabar in 2016 (E1) was ranked last. 

 

Figure 8 displays the GGE biplot genotype view for rhizome length. The biplot shows the 

relationship among the genotypes. Genotypes with vectors at close angles have similar responses 

across the environments. Close correlations were shown between G17 (UG2-9-01) and G11 (UG1-

5-48); G6 (UG1-5-48) and G14 (UG1-7-24); G1 (UG1) and G9 (UG1-5-35) and between G2 

(UG1-11-07) and G7 (UG1-5-22). 
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Figure 7: Representativeness and ranking of the environments for rhizome length (cm) 

 

Key: G1 = UG1; G2 = UG1-11-07; G3 = UG1-13-02; G4 = UG1-2-35; G5 = UG1-5-04; G6 = 

UG1-5-18; G7 = UG1-5-22; G8 = UG1-5-31; G9 = UG1-5-35; G10 = UG1-5-38; G11 = UG1-5-48; 

G12 = UG1-5-49; G13 = UG1-5-52; G14 = UG1-7-24; G15 = UG2; G16 = UG2-11-03; G17 = 

UG2-9-01; E1 = Calabar 2016; E2 = Calabar 2017; E3 = Ikom 2016; E4 = Ikom 2017; E5 = Ogoja 

2016; E6 = Ogoja 2017 

 

 
Figure 8: Relationship among the genotype for rhizome length (cm) 

 

Key: G1 = UG1; G2 = UG1-11-07; G3 = UG1-13-02; G4 = UG1-2-35; G5 = UG1-5-04; G6 = 

UG1-5-18; G7 = UG1-5-22; G8 = UG1-5-31; G9 = UG1-5-35; G10 = UG1-5-38; G11 = UG1-5-48; 

G12 = UG1-5-49; G13 = UG1-5-52; G14 = UG1-7-24; G15 = UG2; G16 = UG2-11-03; G17 = 

UG2-9-01; E1 = Calabar 2016; E2 = Calabar 2017; E3 = Ikom 2016; E4 = Ikom 2017; E5 = Ogoja 

2016; E6 = Ogoja 2017 
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Figure 9 displays the GGE biplot genotype ranking view for both mean performance and stability 

for rhizome length (cm). G1 (UG2-9-01), G14 (UG1-7-24), and G11 (UG1-5-48) were the best in 

terms of mean performance. However, G13 (UG1-5-52), G6 (UG1-5-18), and G16 (UG2-11-03) 

were the most stable for the trait. In the ranking of the genotypes, G17 (UG2-9-01) was ranked 

closest to the “ideal genotype” followed by G14 (UG1-7-24) and G11 (UG1-5-38). G2 (UG1-11-

07) and G7 (UG1-5-22) had the poorest mean performance and were the least ranked genotypes. 

 

 
Figure 9: Mean performance and stability for rhizome length (cm) 

 

Key: G1 = UG1; G2 = UG1-11-07; G3 = UG1-13-02; G4 = UG1-2-35; G5 = UG1-5-04; G6 = 

UG1-5-18; G7 = UG1-5-22; G8 = UG1-5-31; G9 = UG1-5-35; G10 = UG1-5-38; G11 = UG1-5-48; 

G12 = UG1-5-49; G13 = UG1-5-52; G14 = UG1-7-24; G15 = UG2; G16 = UG2-11-03; G17 = 

UG2-9-01. E1 = Calabar 2016; E2 = Calabar 2017; E3 = Ikom 2016; E4 = Ikom 2017; E5 = Ogoja 

2016; E6 = Ogoja 2017 

 

Figure 10 displays the “what-won-where” biplot for rhizome length. The biplot showed that G17 

was the winner in Ikom in 2016 (E3), Ikom in 2017 (E4), and Ogoja in 2017 (E6). G14 (UG1-7-24) 

was the winner in Ogoja in 2016 (E5) while G9 (UG1-5-35) won in Calabar in 2016 (E2). The 

performances of most of the genotypes were not so different at Calabar in 2016 (E1). G2 (UG1-11-

07) and G7 (UG1-5-22) performed poorly across all environments. 

 

3.3. GGE biplot analysis for rhizome yield (t/ha) 

GGE biplot explained 75.9% of the total variation in rhizome yield due to genotype and GE 

interactions. PC1 axis explained 58.6% while the PC2 axis explained 17.3%. Figure 11 displays the 

GGE biplot environment vector view for rhizome yield (t/ha). The biplot showed that Ikom in 2016 

(E3) and Ikom in 2017 (E4) were closely correlated and were similar in their interaction pattern. 

Ogoja in 2016 (E5) and Ogoja in 2017 (E6) were also correlated and similar. Ikom in 2016 (E3) 

had the longest vector, thus was the most discriminating environment for yield followed by Ikom in 

2017 (E4) while Calabar in 2016 (E1) was the least discriminating environment. 

 

 



Asian Journal of Agriculture and Rural Development, 10(1)2020: 485-503 

 

 

495 

 

 
Figure 10: “What-Won-Where” GGE biplot for rhizome length (cm) 

 

Key: G1 = UG1; G2 = UG1-11-07; G3 = UG1-13-02; G4 = UG1-2-35; G5 = UG1-5-04; G6 = 

UG1-5-18; G7 = UG1-5-22; G8 = UG1-5-31; G9 = UG1-5-35; G10 = UG1-5-38; G11 = UG1-5-48; 

G12 = UG1-5-49; G13 = UG1-5-52; G14 = UG1-7-24; G15 = UG2; G16 = UG2-11-03; G17 = 

UG2-9-01; E1 = Calabar 2016; E2 = Calabar 2017; E3 = Ikom 2016; E4 = Ikom 2017; E5 = Ogoja 

2016; E6 = Ogoja 2017 

 

 
Figure 11: Relationship among the test environments and their discriminating ability for 

rhizome yield (t/ha) 

 

Key: G1 = UG1; G2 = UG1-11-07; G3 = UG1-13-02; G4 = UG1-2-35; G5 = UG1-5-04; G6 = 

UG1-5-18; G7 = UG1-5-22; G8 = UG1-5-31; G9 = UG1-5-35; G10 = UG1-5-38; G11 = UG1-5-48; 

G12 = UG1-5-49; G13 = UG1-5-52; G14 = UG1-7-24; G15 = UG2; G16 = UG2-11-03; G17 = 

UG2-9-01; E1 = Calabar 2016; E2 = Calabar 2017; E3 = Ikom 2016; E4 = Ikom 2017; E5 = Ogoja 

2016; E6 = Ogoja 2017 
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Figure 12 displays the GGE biplot environment ranking view for rhizome yield (t/ha). The biplot 

showed that Calabar in 2016 (E2) was the most representative of the test environments for rhizome 

yield as its vector had the smallest angle to AEA. However, in the ranking of the test environments, 

Ikom in 2016 (E3) was ranked closest to the ideal environment while Calabar in 2016 (E1) was 

ranked least. 

 

 
Figure 12: Representativeness and ranking of the environments for rhizome yield (t/ha) 

 

Key: G1 = UG1; G2 = UG1-11-07; G3 = UG1-13-02; G4 = UG1-2-35; G5 = UG1-5-04; G6 = 

UG1-5-18; G7 = UG1-5-22; G8 = UG1-5-31; G9 = UG1-5-35; G10 = UG1-5-38; G11 = UG1-5-48; 

G12 = UG1-5-49; G13 = UG1-5-52; G14 = UG1-7-24; G15 = UG2; G16 = UG2-11-03; G17 = 

UG2-9-01; E1 = Calabar 2016; E2 = Calabar 2017; E3 = Ikom 2016; E4 = Ikom 2017; E5 = Ogoja 

2016; E6 = Ogoja 2017 

 

Figure 13 displays the GGE biplot genotype view. The biplot displays the relationship among the 

genotypes for rhizome yield. The result showed that G5 (UG1-5-04), G16 (UG1-11-03), G17 

(UG1-9-01), G10 (UG1-5-38), G6 (UG1-5-18), G3 (UG1-13-02) and G9 (UG1-5-35) had close 

positive correlations and similar response pattern across the test environments for rhizome yield. 

G14 (UG1-7-24) and G4 (UG1-2-35) were also positively correlated. G2 (UG1-11-07) had positive 

correlations with G7 (UG1-5-22), G12 (UG1-5-49), and G1 (UG1) but was negatively correlated 

with the other genotypes. G11 (UG1-5-48) had negative correlations with G8 (UG1-5-31) while 

G14 (UG1-7-24) had negative correlations with G15 (UG2) 
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Figure 13: Relationship among the genotype for rhizome yield (t/ha) 

 

Key: G1 = UG1; G2 = UG1-11-07; G3 = UG1-13-02; G4 = UG1-2-35; G5 = UG1-5-04; G6 = 

UG1-5-18; G7 = UG1-5-22; G8 = UG1-5-31; G9 = UG1-5-35; G10 = UG1-5-38; G11 = UG1-5-48; 

G12 = UG1-5-49; G13 = UG1-5-52; G14 = UG1-7-24; G15 = UG2; G16 = UG2-11-03; G17 = 

UG2-9-01; E1 = Calabar 2016; E2 = Calabar 2017; E3 = Ikom 2016; E4 = Ikom 2017; E5 = Ogoja 

2016; E6 = Ogoja 2017 

 

The GGE biplot genotype ranking view is displayed in Figure 14. The biplot shows the 

performance of the genotype with respect to mean yield and stability. G5 (UG1-5-04) had the 

highest mean yield followed by G17 (UG2-9-01) and both genotypes were relatively stable for 

yield. G3 (UG1-13-02) and G10 (UG1-5-38) gave the third and fourth best mean yield respectively. 

G2 (UG1-11-07) and G7 (UG1-5-22) had the poorest mean yield and also exhibited high 

interactions. In the ranking of the genotypes, G5 (UG1-5-04) was ranked nearest to the “ideal 

genotype” followed by G17 (UG2-9-01), G3 (UG1-13-02) and G10 (UG1-5-38). Both G2 (UG1-

11-07) and G7 (UG1-5-22) were ranked least. 

 

 
Figure 14: Mean performance and stability for rhizome yield (t/ha) 
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Key: G1 = UG1; G2 = UG1-11-07; G3 = UG1-13-02; G4 = UG1-2-35; G5 = UG1-5-04; G6 = 

UG1-5-18; G7 = UG1-5-22; G8 = UG1-5-31; G9 = UG1-5-35; G10 = UG1-5-38; G11 = UG1-5-48; 

G12 = UG1-5-49; G13 = UG1-5-52; G14 = UG1-7-24; G15 = UG2; G16 = UG2-11-03; G17 = 

UG2-9-01. E1 = Calabar 2016; E2 = Calabar 2017; E3 = Ikom 2016; E4 = Ikom 2017; E5 = Ogoja 

2016; E6 = Ogoja 2017 

 

Figure 15 displays the “what-won-where” GGE biplot for rhizome yield. The biplot selected G5 

(UG1-5-04) as the winner in Calabar in 2016 (E2), Ikom in 2016 (E3). 

 

 
Figure 15: “What-Won-Where” GGE biplot for rhizome yield (t/ha) 

 

Key: G1 = UG1; G2 = UG1-11-07; G3 = UG1-13-02; G4 = UG1-2-35; G5 = UG1-5-04; G6 = 

UG1-5-18; G7 = UG1-5-22; G8 = UG1-5-31; G9 = UG1-5-35; G10 = UG1-5-38; G11 = UG1-5-48; 

G12 = UG1-5-49; G13 = UG1-5-52; G14 = UG1-7-24; G15 = UG2; G16 = UG2-11-03; G17 = 

UG2-9-01; E1 = Calabar 2016; E2 = Calabar 2017; E3 = Ikom 2016; E4 = Ikom 2017; E5 = Ogoja 

2016; E6 = Ogoja 2017 

 

Ikom in 2017 (E4) and also shared Ogoja in 2016 (E5) with G14 (UG1-7-24). G11 (UG1-5-48) and 

14 (UG1-7-24) were the winners at Ogoja in 2017 (E6). G2 (UG1-11-07) and G7 (UG1-5-22) 

performed poorly across the six environments. The biplot also identified Ikom (E3 and E4) as the 

mega environment for G5 (UG1-5-04), G17 (UG2-9-01), G16 (UG2-11-03), G10 (UG1-5-38), G9 

(UG1-35), G6 (UG1-5-18) and G3 (UG1-13-02) while Ogoja (E5 and E6) was identified as the 

mega environment for G11 (UG1-5-48), G14 (UG1-7-24), G13 (UG1-5-52) and G4 (UG1-2-35). 

 

4. DISCUSSION 
       

Genotype and genotype by environment (GGE) interaction biplot analysis is an important technique 

for the selection of genotypes best suited for different environmental conditions; especially since 

yield trial, data can be daunting. This tool was employed for the evaluation of ginger lines in 

Calabar, Ikom, and Ogoja in Cross River State, Nigeria. A significant genotype by environment 

interaction was observed for all the traits studied with cross over interactions observed for some of 

them. The high significant effect of genotype by environment interaction observed for these traits 

demonstrates that genotype and environment interaction across the environments plays a 

meaningful role in breeding adaptable genotypes for wide environments. The variations observed in 

yield and yield traits of the ginger lines across the locations and years may be attributed to the 
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inherent transferable parental trait differences in the ginger lines as well as the environmental 

influence. Das et al. (2000) also observed significant genotype by environment interactions in some 

growth and yield traits of ginger. Alghamdi (2004) reported that significant genotype by 

environment (GE) interactions suggests that across environments, some genotypes were more 

stable than others. According to Ghaffari and Depao (2005), yield differences attributed to the 

environment are relevant to genotype evaluation and mega- environment investigations while 

Samonte et al. (2005) suggested the use of either AMMI or GGE biplots as appropriate tools for 

analyzing the multiple environment trials data.  

 

According to Yan (2001), the two sources of variation that are relevant to genotype evaluation and 

should be considered simultaneously for appropriate genotype evaluation are Genotype main effect 

(primary effects) and genotype by environment interaction (secondary effects). Genotype by 

environment interaction (GEI) evaluation and stability analysis is an important and efficient tool for 

plant breeders and agronomists. It helps to identify and select the most stable and high performing 

genotypes that are suitable under a given set of environmental conditions. According to Edugbo et 

al. (2015), the evaluation of genotypes in different environments and across years is an essential 

step in determining their desirability and identifying genotypes with the best mean response across 

the environments that have a wide scope of adaptation. GGE biplot model was used to evaluate the 

GEI of the ginger lines as well as their stability across the three locations in the two years (i.e. 

across six environments). The ginger lines used in this experiment exhibited different levels of 

stability for the characters evaluated. Their mean performances for the characters varied 

substantially across the six environments. 

 

4.1. Discriminating ability and representativeness of test environments 
The purpose of the test-environment evaluation is to identify test environments that effectively 

identify superior genotypes for a mega-environment. In this study, the GGE biplot model estimated 

Ikom in 2016 (E3) as the best environment for mean yield and also the most discriminating 

environment. Test environments that are both discriminating and representative are good test 

environments for selecting generally adapted genotypes as reported by Yan and Tinker (2006). On 

the other hand, discriminating but nonrepresentative test environments are useful for selecting 

specifically adapted genotypes and for culling unstable genotypes. A test location that lacks 

discriminating ability provides no information about the cultivars (Dehghani et al., 2006; Yan and 

Tinker, 2006). If a test location is not representative of the target environment, it is not only useless 

but also misleading since it may provide biased information about the tested genotypes (Dehghani 

et al., 2006). Therefore, an ideal environment or test location must have discriminating ability 

(provide much information about the differences among genotypes) and representative (consistent). 

A representative environment is the most consistent when compared to other test environments and 

it gives an idea about the stability of the environment. Yan (2002) also stated that the selected 

environment should have a high ability to discriminate genotypes, as well as the representativeness 

of the standard growing conditions. Non-discriminating environments provide little information 

about the genotypes and therefore should not be used as test environments. The existence of close 

associations among test environments suggests that the same information about the genotypes could 

be obtained from them; as some of them can be dropped without loss of much information about the 

genotypes and hence lead to a reduction of the test cost (Yan and Tinker, 2006)  

 

4.2. Ranking of genotypes based on mean performance and stability 

An ideal genotype should have the highest mean performance and be stable (Karimizadehi et al., 

2013). Although such an ideal genotype may not exist in reality, it can be used as a reference for 

genotype evaluation (Farshadfar et al., 2012). A genotype is more favourable if it is closer to the 

ideal genotype and the genotypes further away from the ideal genotype are considered 

unfavourable, therefore, the genotypes with low mean performance and further away from the ideal 

genotypes are unfavourable. In this study, G2 (UG1-11-07) and G7 (UG1-5-22) were considered 

unfavourable genotypes in terms of mean performance. Yan and Kang (2003) classified genotypes 
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into three categories based on their yield and stability performance: (1) generally adapted: 

genotypes with high yield and high stability performance (2) specifically adapted: genotypes with 

high mean yield but low stability performance and (3) adapted nowhere: genotypes with low yield 

and low stability performance. This classification is similar to the previous work of family 

behaviour plots by Finlay and Wilkinson (1963) using joint regression. Finlay and Wilkinson 

classified genotypes into four groups based on their mean performance and stability as follows: 

Group one is highly desirable (high yielding and high stability) – these genotypes, ranked in 

descending order), are G17 (UG2-9-01), G11 (UG1-5-48), G5 (UG1-5-04), G3 (UG1-13-02) and 

G10 (UG1-5-38). The second group which is high yielding but low stability is desirable for specific 

selection, the genotypes that fall into this group from this study are; G14 (UG1-7-24) and G11 

(UG1-5-48), whereas low yield and low stability are possible for special breeding purposes e.g. 

drought resistance. The genotypes that had both low yield and low stability in this study are G12 

(UG1-5-49), G1(UG1), G13(UG1-5-52). The most undesirable group is low yield but high stability, 

(G2) UG1-11-07, and G7 (UG1-5-22) falls into this group.  

 

4.3. “Which won where” and mega- environment groupings  

The which won where polygon view shows which genotypes win in which environment. It 

addresses mega-environment groupings, specific adaptation, and crossover interactions. Yan et al. 

(2007) reported that responsive genotypes were those having either best or the poorest performance 

in one or all environments. For rhizome fingers per plant, G17 (UG2-9-01) won in four of the six 

environments while G14 (UG1-7-24) was the winner in Ogoja in 2016 (E5) and Ogoja in 2017 

(E6). G2 (UG1-11-03) and G7 (UG1-5-22) were indicated by the biplot as the poorest performers 

across all six environments. For rhizome length, G17 was the winner in Ikom in 2016 (E3), Ikom in 

2017 (E4), and Ogoja in 2017 (E6). G14 (UG1-7-24) was the winner in Ogoja in 2016 (E5) while 

G9 (UG1-5-35) won in Calabar in 2016 (E2). The performances of most of the genotypes were not 

much different at Calabar in 2016 (E1). G2 (UG1-11-07) and G7 (UG1-5-22) performed poorly 

across all environments. For rhizome yield, G5 (UG1-5-04) won in Calabar in 2016 (E2), Ikom in 

2016 (E3), Ikom in 2017 (E4), and also shared Ogoja in 2016 (E5) with G14 (UG1-7-24). G11 

(UG1-5-48) and G14 (UG1-7-24) were the winners at E6 (Ogoja 2017). G2 (UG1-11-07) and G7 

(UG1-5-22) performed poorly across the six environments. The biplot also identified Ikom (E3 and 

E4) as a mega environment for G5 (UG1-5-04), G17 (UG2-9-01), G16 (UG2-11-03), G10 (UG1-5-

38), G9 (UG1-35), G6 (UG1-5-18) and G3 (UG1-13-02) while Ogoja (E5 and E6) was identified as 

a mega environment for G11 (UG1-5-48), G14 (UG1-7-24), G13 (UG1-5-52) and G4 (UG1-2-35). 

A mega-environment is defined as a location or group of locations that consistently share the same 

best genotypes (Yan and Tinker, 2006). Mega-environment groupings allow a breeder to 

recommend genotypes which are good for a particular environment (Gasura et al., 2015). Two 

mega–environments Ikom (E3 and E4) and Ogoja (E5 and E6) were therefore formed from this 

study. 

 

5. SUMMARY, CONCLUSION, AND RECOMMENDATION 
 

Ginger is an aromatic rhizome crop used as spice and medicine worldwide; the production of the 

crop cannot meet the demand for it. This research was therefore carried out to evaluate the yield 

stability of 17 ginger lines as well as identify the ideal environment for ginger cultivation among 

some test sites using GGE biplot model. GGE biplot models selected UG2-9-01 as the genotype of 

choice with respect to stability and mean performance for the number of rhizome fingers per plant 

and rhizome length, UG2-9-01 is therefore recommended as suitable breeding material for the 

improvement of these traits in ginger. 

 

UG1-5-04 was selected as the "ideal genotype" with respect to rhizome yield. UG2-9-01 was the 

most stable high performing genotype and was ranked next to UG1-5-04. GGE biplot ranked UG1-

13-02 and UG1-5-38 as 3rd and 4th respectively, therefore these genotypes are recommended for 

broad cultivation as stable and high yielding genotypes across the three locations used in this study. 
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Among the three locations, Ikom was selected as the most discriminating test location and ranked 

closest to the "ideal test environment", this study, therefore, recommends Ikom as a good test 

environment for the cultivation of generally adapted ginger genotypes. The study further showed 

that UG1-5-48 and UG1-7-24 interacted positively with Ogoja in both years. This is an indication 

of the specific adaptation of these genotypes to the soil and agro-climatic conditions of Ogoja and 

this suggests the location as favourable for their cultivation. 
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