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Agricultural production is increasingly vulnerable to risks and 
uncertainties associated with climate changes. Climate-smart 
agriculture (CSA) has been proposed to address challenges in 
agricultural production such as food security, water shortage, 
drought, and soil erosion, etc. The benefits of CSA adoption for 
farmers have been debated. Many previous studies have indicated that 
impacts seem to be affected by selection bias. However, controlling 
such selection bias has not been considered in studies on the CSA 
adoption. Thus, in this study, we analyzed the impacts of CSA 
adoption on major economic indicators for rice farmers. The 
Propensity Score Matching (PSM) method was employed to address 
such selection bias for a case study on rice farmers in Thai Nguyen 
province, Vietnam. Comparing main economic indicators, we found 
significant differences in rice yields and used seed inputs between CSA 
and non-CSA adopters. Ignoring selection bias control resulted in 
overestimation of economic returns. The results also indicate limited 
contribution of CSA adoption to a reduction in pesticide and herbicide 
usage, and an increase in use of organic fertilizers. Some implications 
for further research are also discussed. 

   
 
 

Contribution/Originality: This study is one of very few studies to have investigated the impacts of the CSA 
adoption on production performance of farmers while controlling for selection bias.   
 
 
 
 
 
 

DOI: 10.18488/journal.ajard.2021.114.291.301 
ISSN(P): 2304-1455/ ISSN(E): 2224-4433 

 

How to cite: Ha T.M --- Bac H.V (2021). Effects of Climate-Smart Agriculture Adoption on Performance of Rice 
Farmers in Northeast Vietnam. Asian Journal of Agriculture and Rural Development, 11(4), 291-301. 
10.18488/journal.ajard.2021.114.291.301  
© 2021 Asian Economic and Social Society. All rights reserved. 
 

 
 

1. INTRODUCTION  
Climate change is a global challenge and has no borders. Global warming has been reported as the major cause 

leading to climate change that often has adverse effects on physical, biological, and human systems, as well as other 
consequences (McSweeney, Mark, & Lizcano, 2010; Nelson & Kokic, 2004). Climate change has been affecting the 
human life in various ways (World Bank, 2010). It is a key cause of increasing extreme weather phenomena including 
drought, flood, and destruction of food chains and economic resources, especially in developing countries. Impacts 
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related to climate change are abundant and evident in many sectors and regions such as human health, agriculture 
and food security, water supply, and others. Various damages related to extreme weather events are reliable 
indicators of the negative impacts of climate change (Patt et al., 2010). In 2018, natural disasters caused damage 
worth 225 billion USD globally, of which about 95% were attributed to events related to weather change (Arora, 
2019). Agricultural production is highly vulnerable to climate change, which is closely linked to increases in 
temperature and change in rainfall, leading to considerable decrease in yield and production.  

Climate change is a natural process, but the pace of this variation has significantly increased in the last 100 years. 
Although climate change cannot be avoided, it is necessary to seek adequate mitigation and adaptation solutions 
under the context of changing environment. Mitigation measures are actions taken to reduce emissions of greenhouse 
gases, while adaption ones are based on reducing vulnerability to the impacts of climate change.  

Vietnam is among the most vulnerable nations globally affected by climate change (Dasgupta, Laplante, Meisner, 
Wheeler, & Yan, 2007; MONRE, 2016). Climate change has affected many regions of Vietnam, including the Mekong 
River delta and the northern upland region (Ha & Duong, 2018; Ha, Nguyen, Khuat, & Nguyen, 2019). The most 
pressing concerns related to climate change in the northern uplands include drought in the winter, flooding in the 
summer, soil erosion and degradation, and changing temperature regimes such as cold spells (ISPONRE, 2009; 
MONRE, 2016). Agriculture is also regarded as an important source of greenhouse gas (GHG) emission after energy, 
accounting for about 32% of total GHG emission in Vietnam (World Bank, 2010), with the subsector of rice 
production contributing up to 46.3% (FAO, 2010). Recent studies have indicated that implementing climate change 
adaptation measures, including climate-smart agriculture (CSA) practices, could improve production efficiency, 
economic gains, and food security (Ho & Shimada, 2019; Khatri-Chhetri, Aggarwal, Joshi, & Vyas, 2017). According 
to the definition of CIAT, practices and/or technologies would be climate-smart if they could achieve at least one of 
the objectives of CSA (food security improvement, adaptation, and mitigation). Thus, hundreds of practices around 
the world are related to CSA: for instance, smart water and irrigation management, adoption of improved crop varieties, 
sustainable land management, etc. (Nguyen, Roehrig, Grosjean, Tran, & Vu, 2017).   

Agriculture is generally the sector that is most sensitive and vulnerable to adverse climatic influences, especially 
in rice production. Limitation to accessing water constrains irrigated rice production. Shortage of water supply, water 
quality, and soil degradation have raised questions about the sustainability of commonly practised rice production 
(Bouman, Lampayan, & Tuong, 2007; Nelson et al., 2009). Thus, farmers around the world have been finding ways to 
cope with the adverse impacts of climate change in ensuring food security. In Vietnam, rice production plays an 
important role in the agriculture sector with total rice-cultivated land taking up to 67% of cropland area (GSO, 2010). 
Rice production has significantly contributed to food security and poverty reduction. The development of rice 
production has enabled Vietnam to ensure its national food security and become one of the major rice exporters in the 
world. Such outstanding achievements of Vietnam’s rice sector have arisen from much concerted effort, including 
institutional reforms, application of advanced technologies and management methods in production, improved 
production infrastructure and irrigation systems, etc. It has become accepted among Vietnamese farmers that 
applying more water, seeds, and fertilizer input is the best way to increase output (Ha, 2014). However, such 
conventional rice production practices are encountering increasing economic and environmental costs. Moreover, 
increasing water shortages are constraining irrigated rice production in Vietnam, and sustainability of conventional 
rice production is increasingly questionable under the changing context of the environment. Thus, a number of CSA 
practices based on soil and water management, crop management, and adoption of improved varieties have been 
proposed to address those challenges. These practices have many important contributions to yield improvement, and 
to reduction of the impact of adverse climate change (Dung, Ho, Hiep, & Hoi, 2018; Duong & Thanh, 2019; Ho & 
Shimada, 2019).  

In this article, CSA practices refer to the adoption of high-yielding varieties, application of the system of rice 
intensification (SRI), drought-tolerant varieties, and changes in planting dates. Many previous studies focused only 
on the impact of one adaptive measure. The impact of modern rice varieties can be found in the study of Duong and 
Thanh (2019), while a plethora of empirical studies have revealed comparison of the economic benefits between SRI 
and conventional rice practices. SRI could contribute to water saving of up to 50% and an increase in rice yield by 20-
40% (Barah, 2009; Ceesay, Reid, Fernandes, & Uphoff, 2006; Kassam, Stoop, & Uphoff, 2011; Thakur, Rath, 
Roychowdhury, & Uphoff, 2010; Uphoff, Kassam, & Harwood, 2011). Other studies found no significant yield 
increase, or even a decrease, in rice productivity for SRI adopters (Dobermann, 2004; McDonald, Hobbs, & Riha, 
2006; Tsujimoto, Horie, Randriamihary, Shiraiwa, & Homma, 2009). Those studies aimed to estimate the impact of 
only one adoption on household performance, meaning that other contributory factors were not taken into account. 
However, the assumption condition rarely exists in reality, which may lead to biased estimation of results. Ecological 
conditions may also lead to underestimation or overestimation of rice yield (Dobermann, 2004). Moreover, not only 
farm and farmer characteristics (Barrett, Moser, McHugh, & Barison, 2004), but also plot features may have 
important effects on adoption patterns and impacts (Noltze, Schwarze, & Qaim, 2012). This implies that research 
findings in a specific region should not be used to generalize and set up an intervention policy for other regions. 
Additionally, the factor of selection bias is proven to affected the output of crop production, and several different 
techniques have also been used to minimize its effects on estimated results for production of tea and modern rice 
varieties (Bac, Nanseki, & Chomei, 2019; Duong & Thanh, 2019; Tran & Goto, 2019). Although there are many 
studies on determinants or factors influencing farmers’ adoption of CSA (Dung et al., 2018; Dung., 2019; Noltze, 
Schwarze, & Qaim, 2013), very few have estimated the economic impacts of this adoption. Therefore, this study was 
conducted to provide more insights into impact of CSA on rice production.  
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2. STUDY METHODS  
2.1. Study Area  

Northeast Vietnam consists of 9 provinces that have been much affected by climate change. Crop production 
plays an important role in household’s livelihoods. Thai Nguyen was selected as a representative province in the 
region for this research. In this province, a number of CSA practices have been implemented to minimize the negative 
impacts of climate change, including SRI, high-yield rice varieties, and crop management practices. Based on local 
statistical reports and advice from leaders and staff of functional departments (including the Department of 
Agriculture & Rural Development, Center for Agriculture Extension, and Department of Natural Resources and 
Environment), two representative districts of Thai Nguyen province were selected to gather data. A total of 225 rice 
farmers were interviewed to collect all related information for the study, of which 11 household data that did not fit 
well with the objective data were excluded from the analysis. The primary data of 214 households, including 118 CSA 
adopters and 96 non-adopters, were used to generate results.  

 
Figure-1. The study locations (Dinh Hoa and Vo Nhai districts of Thai Nguyen province). 

 
2.2. Data Collection Methods 

A range of techniques was employed to collect information on rice farmers. The techniques used included focus 
groups, community workshops, and structured interviews.  

• Focus group discussions were undertaken to gather information on climate hazards, impacts, and adaptation 

practices to identify ongoing and potential CSA practices in the study area. 

• Primary data collection using questionnaire was key in the study. The questionnaires used in the data survey 

were designed with the support and advice of local consultants and colleagues, who have extensive and in-

depth experience in the area of research. Then, the questionnaire was pre-tested on 15 rice farmers in the 

selected study areas. Final questionnaires were completed based on the inputs and feedback of experts and 

research team members. All enumerators who participated in the data survey were carefully trained prior to 

the official survey. A random sampling method was employed to select both representative CSA adopters and 

non-adopters based on potential CSA practices identified as a result of focus group discussions. Finally, in-

depth structured interviews were conducted to gather information from 118 adopters and 96 non-adopters 

between December 2019 and February 2020.  

2.3. Variable Selection for Empirical Analysis 
Since the study aims to evaluate the impacts of the CSA on farmers’ performance, the following list of variables 

are used, namely:  

• Treated and untreated variables: Adopters are defined as farmers applying at least one CSA practice (high-

yielding varieties, SRI practice, crop management practices), while non-adopters are those who do not apply 

any of those.  

• Outcome variables: The economic literature shows that many indicators have been used to measure outcomes 
from the application of technology or practices, including productivity, quantity, total value, and input factors 
(Amare, Asfaw, & Shiferaw, 2012; Ly, Jensen, Bruun, Rutz, & de Neergaard, 2012; Wu, Ding, Pandey, & Tao, 

2010).  
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Table-1. Definition of variables used in the models. 

Variable lists Description Mean (SD) 

Variables used to construct propensity score 

Adoption  1 if farmer applies any CSA practices, 0 otherwise  0.55 (0.034) 
Gender  1 if farmer is male, 0 otherwise  0.31 (0.032) 
Education Number of completed grades by household head 6.98 (0.187) 
Labor size Numbers of household agricultural laborers (15–60 years) 2.50 (0.073) 
Irrigation  1 if farm is actively irrigated, 0 otherwise  0.67 (0.032) 
Land plots  Number of cultivated land plots 3.42 (0.169) 
Distance Distance from home to farm (km) 0.79 (0.050)  
Agric. credit 1 if farmer borrows agricultural loans, 0 otherwise 0.18 (0.026)  
Info. access 1 if farmer is provided information on CSA, otherwise 0.39 (0.033) 
Occupation  1 if farmer has main occupation in agriculture, 0 otherwise 0.93 (0.016) 
Owned assets  1 if farmer has owned machines, 0 otherwise 0.96 (0.012)  
Membership 1 if farmer is membership of production group, 0 otherwise  0.63 (0.033) 
Land prep. 1 if farmer prepares land by machine, 0 otherwise  0.88 (0.022) 
Income rate Proportion of rice income in household total income (%)  22.65 (1.138) 
Output variables used in PSM  
Total value Total value of family’s rice production (million VND) 13.28 (0.645) 
Rice quantity Total rice quantity of household (tons) 1.78 (0.086)  
Productivity  Rice quantity per hectare (tons/ha) 5.23 (0.103) 
Used seeds Seed quantity used (kg) 13.94 (0.635) 
Manure  Farmyard manure used in rice fields (tons)  0.43 (0.070) 
Fertilizers Chemical fertilizer used in rice fields (tons)  0.34 (0.016) 
Pesticide cost Pesticide cost in rice fields (million VND) 0.45 (0.035) 
Work days Number of working days in rice fields per year 20.98 (1.099) 
Other costs  Expenditures on other inputs (million VND) 3.27 (0.221)  

 
The list of variables used to estimate the propensity scores was compiled on the basis of economic theory, the 

literature, and the actual status of rice production in the study area (Khandker, Koolwal, & Samad, 2010; Smith & 
Todd, 2005). Previous studies have extensively documented the fact that these variables should cover (1) the 
characteristics of household head (gender, formal education); (2) household demographic and socioeconomic factors 
(number of agricultural laborers, main occupation, access to credit sources, agricultural services, off-farm 
employment, method of land preparation, status of owned machine, member of production group, rate of rice income); 
and (3) area characteristics (irrigation, home–farm distance, plot number) (Kassie, Shiferaw, & Muricho, 2011; Mason 
& Smale, 2013; Matuschke & Qaim, 2009; Mendola, 2007).  
 
2.4. Data Analysis 

The collected data were checked prior to statistical analysis to ensure accuracy. In case the collected information 
and data were not consistent, farmers were contacted for further interview. Unreliable data were omitted from 
analysis.  

Economic achievements have generally been driven by related development policy, technological advances, and 
support programs, briefly termed interventions. Evaluation of impact from such interventions has received much 
attention from researchers for over a decade. Many approaches and econometric methods have been employed to 
impact evaluation (Khandker et al., 2010). Application of a specific technique is always debated in empirical economic 
studies (Wang, Moustier, & Loc, 2014). The treatment effect could be measured by coefficients of a regression model 
(Imbens, 2004), while a dummy variable is used to estimate impacts. The best output of impact evaluation can be 
generated if the original difference does not exist in the estimation. In other words, the same farmers should be 
compared with each other before and after an intervention. This could easily be done in the research trial with small 
samples, but it would appear impossible at the regional scale. Previous studies found that characteristics of 
individuals have significant effects on their performance rather than interventions (Imbens & Wooldridge, 2009). 
Another important factor that might lead to biased estimation is that datasets are often gathered from non-
randomized studies rather than randomized trials (Becker & Ichino, 2002). To estimate causality, such a self-selection 
issue needs to be overcome in treatment status.  

In the economic literature, the PSM technique has frequently been applied to control selection bias associated 
with observable variables (Rosenbaum & Rubin, 1983; Takahashi & Barrett, 2014). The counterfactual is constructed 
by matching observations with other treatments using their propensity scores. The treatment effect is estimated by 
measuring the output difference of the matched observations. PSM is a mathematical procedure used to estimate 
average treatment effects on the treated (ATT) (Becker & Ichino, 2002). The observation propensity score is first 
estimated using a logit regression model, as in Equation 1: 

  Y(1,0) = β0 + β1X1 + β2X2 + … + βnXn     (1) 

where Y denotes the dependent variable (1 implies CSA adopters, 0 for non-adopters), β are the estimated coefficients 
and Xn denotes covariates described in Table 1.  
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Secondly, the nearest-neighbor matching technique is applied to match similar observations using propensity scores 
estimated by the logit model. Kernel and radius matching techniques are also used to avoid bad matches. In addition, 
we employed matching with replacement to increase cross-checking. In the second step, the estimates of ATTs for 
the outcome variables are undertaken following Equation 2: 
  E(Y(1) – Y(0)|Di = 1) = E(Y(1)|Di = 1) – E(Y(0)|Di = 1)   (2) 

With a particular observation i and outcome Y, Di denotes the treatment status (Di = 1 for treatment; Di = 0 for 
control). Y(1) is the outcome of treatment while Y(0) is the outcome of control status. The term E(Y(1)|Di = 1) is an 
average outcome of treated groups, and the term E(Y(0)|Di = 1) is an average outcome of the matched control group. 
The standard errors of the ATT are also computed for statistical tests following Abadie & Imbens (2016). Several 
statistical indicators must be estimated to test matching quality. Matching quality is considered to be good enough if 
significant differences do not exist systematically after matching based on the propensity score (Caliendo & Kopeinig, 
2008). Moreover, lower standardized bias should be created after matching (Rosenbaum. & Rubin, 1985). 
Additionally, the likelihood ratio test and pseudo-R2 indicators should also be included for checking. The matching is 
good if the likelihood ratio test is not statistically significant (Smith & Todd, 2005), and pseudo-R2 should be fairly 
low (Sianesi, 2004). Finally, the condition of common support should also be tested carefully by visual inspection of 
the densities of propensity scores of treated and untreated groups. Observations outside the support region should be 
removed in effect estimation (Caliendo & Kopeinig, 2008).  
 

3. RESULTS AND DISCUSSION  
3.1. Descriptive Results  

Table 1 presents descriptive statistics for the variables used in the models. It shows that CSA farmers account for 
55% of the total sample. The results of t-tests for mean differences of covariates and outcome variables between 
treatment and control groups are reported in Tables 2 and 3. A substantial imbalance exists among selected 
covariates, implying the existence of self-selection issues. Households in the treatment group have higher numbers of 
headed males, and household heads are more highly educated than those in the control group. Notably, members of 
the treatment group often have more access to extension services through training courses on CSA compared to 
control group members. Moreover, there are also significantly positive differences in owed machinery and credit 
loans, suggesting that rice households following CSA may have been initially wealthier than other households. 
Another explanation is that some credit loans may have been used to invest in agricultural machinery and high-
yielding varieties. In addition to observed covariates, there may be unobserved covariates that have significant 
impacts on outcome variables, such as yield: for example, household motivation could not be observed. Motivated 
households are more likely to apply CSA practices in the field and, as a result, their production performance might be 
better than those with less motivation. Advanced education and technical knowledge, which can have positive impacts 
on both CSA adoption and farm performance, also cannot be quantified easily.  

In regard to outcome variables, the CSA farmer group reported significantly higher mean values than the non-
CSA farmer group on gross revenue, rice yield, and rice quantity. CSA households’ gross revenue of rice production 
was nearly 30% higher than that of non-adopted ones. Similarly, rice yield and quantity were significantly higher for 
the treatment group. Tables 2 and 3 also reveal the mean differences in other variables related to production inputs of 
rice farming. While seed quantity and labor days are significantly less used for farm systems applying CSA practices, 
other costs are more highly spent for conventional farming ones.  

As mentioned above, the difference in outcome variables may be derived from the initial imbalance of observed 
and unobserved covariates between treated and untreated farmers, rather than the effects of CSA practices. In other 
words, there might be biased conclusions on treatment effects if studies used only simple mean comparisons of 
outcome variables between two groups. Thus, it is important to control self-selection in this study.  
 

Table 2. Mean differences of variables used to construct propensity scores. 

Covariates 
CSA adopters CSA non-adopters Diff. 

Mean S.D Mean S.D Mean S.E 

Gender 0.373 0.045 0.229 0.043 0.143** 0.062 
Education 7.492 0.243 6.343 0.278 1.145*** 0.369 
Labor size 2.441 0.093 2.583 0.119 -0.143 0.151 
Irrigation 0.661 0.044 0.698 0.047 -0.037 0.064 
Land plots 3.373 0.241 3.479 0.236 -0.106 0.338 
Distance 0.746 0.061 0.858 0.083 -0.117 0.103 

Agric. credit 0.220 0.038 0.125 0.034 0.095* 0.051 
Info. access 0.534 0.046 0.219 0.042 0.315*** 0.063 
Occupation 0.979 0.015 0.898 0.028 0.081** 0.031 

Owned assets 0.932 0.023 0.823 0.042 0.109** 0.048 
Membership 0.644 0.044 0.614 0.049 0.029 0.067 
Land prep. 0.966 0.017 0.958 0.021 0.008 0.026 
Income rate 24.478 1.545 20.423 1.664 4.055* 2.271 

Note: * 10% significance level; ** 5% significance level; *** 1% significance level 
Source: Authors’ survey data 2019–2020. 
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Table-3. Mean differences of variables used to estimate rice performance. 

Outcome variables 
CSA adopters Non-CSA adopters Diff. 

Mean S.D Mean S.D Mean S.E 

Total value 15.348 1.026 10.746 0.605 4.602*** 1.191 

Productivity 5.751 0.129 4.605 0.142 1.145*** 0.192 

Rice quantity 2.049 0.135 1.458 0.083 0.592*** 0.158 

Used seeds 12.694 0.865 15.480 0.915 -2.786** 1.260 

Manure 0.511 0.111 0.349 0.076 0.162 0.134 
Fertilizers 0.340 0.023 0.339 0.022 0.001 0.031 

Pesticide cost 0.429 0.042 0.484 0.059 -0.056 0.072 
Labor days 18.87 1.526 23.57 1.54 -4.698** 2.171 

Other costs 1.319 0.225 1.254 0.241 0.066 0.329 
Note: * 10% significance level; ** 5% significance level; *** 1% significance level 

 
3.2. Determinants of CSA Adoption   

Table 4 presents parameter estimates of a logit model equivalent to the first stage of the treatment effect model. 
Although the main objective of the study was to assess the effect of CSA adoption, logit estimation also reveals some 
interesting findings. The results indicate that some factors have positive impacts on the adoption of CSA practices, 
including gender, formal education, main occupation, irrigated farms, access to extension services, methods of land 
preparation, credit loans, and rate of rice income. Among these, formal education of household head, rate of rice 
income, and access to extension training had statistically significant impacts on household adoption decision making. 
The positive and significant coefficients show that formal education, rate of rice income, and technical training are 
very important in adoption whereas positive and insignificant signs show no important impact on adoption decision. 
Other covariates have negative impacts on household adoption decision but have no statistical significance.  
 

Table-4. Propensity score for CSA adoption. 

Covariates Coeff. St. err 

Gender 0.425 0.345 
Education 0.130 0.061** 

Labor size -0.013 0.153 
Occupation 1.228 0.851 
Land plot -0.028 0.066 
Distance -0.076 0.219 

Info. access 1.139 0.345*** 

Irrigation 0.337 0.338 
Land prep. 0.782 0.487 

Membership -0.193 0.326 
Agric. credit 0.632 0.426 
Income rate 0.012 0.009* 

Owned assets 0.135 0.928 
_cons -0.500 1.450 

Note: * 10% significance level; ** 5% significance level; *** 1% significance level. 
 

 
3.3. Rice Yield and Economic Indicators  

As described in section 2.4, better farm performance, such as rice yield and economic indicators, could have been 
under- or overestimated due to the consequence of selection bias. Thus, before examining the casual effects of CSA 
adoption using PSM, it is important to discuss matching quality using different techniques. First, balancing the 
condition of all selected covariates between adopter and non-adopters needs to be satisfied. Table 5 reports the 
results of testing balance conditions. There is no significant difference in the propensity score after matching. 
Moreover, significantly lower standardized bias was created, as shown in Table 6. Before matching, the mean 
standardized difference for overall covariates used to construct the propensity score was about 23.8, but this was 
markedly reduced to 5.6 after matching. Additionally, there are many selected covariates with an absolute value of 
percentage of bias that >20 before matching, but these all reduced to <20 after matching (Figure 2). All these signals 
indicate very good balancing propensity (Caliendo & Kopeinig, 2008; Rosenbaum & Rubin, 1985; Sianesi, 2004). 
Second, another important requirement is to check the condition of common support regions when the matching 
procedure is performed. According to Khandker et al. (2010), the effectiveness of PSM depends on having a large 
number of treated and untreated observations. Figure 3 shows that few CSA adopters with propensity score greater 
than the maximum or lower than minimum of non-adopters fall out of the common support region. In short, both 
balancing and common support conditions are very adequate in this study.  
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Table-5. Balance checking after matching: CSA adopters and non-adopters. 

Covariates 
Mean 

% bias P-value 
CSA adopters CSA non-adopters 

Gender 0.187 0.229 -9.2 0.480 
Education 6.489 6.343 5.4 0.685 
Labor size 2.781 2.583 18.1 0.239 
Occupation 0.979 0.979 0.0 1.000 
Land plot 3.379 3.479 0.0 1.000 
Distance 0.882 0.858 3.3 0.819 

Info. access 0.229 0.218 2.3 0.863 
Irrigation 0.708 0.698 2.2 0.875 
Land prep. 0.843 0.822 6.1 0.711 

Membership 0.552 0.614 -12.9 0.382 
Agric. credit 0.104 0.125 -5.5 0.652 
Income rate 20.78 20.42 2.2 0.877 

Owned assets 0.947 0.955 -5.4 0.734 
Mean standardized difference before and after: 23.8 and 5.6, respectively 

 
Table-6. Results of matching quality. 

Matching techniques 
Pseudo-R2 LR chi2 (P-value) 

Before After Before After 

NNM 0.145 0.016 42.70*** 4.34 
Radius 0.145 0.011 42.70*** 2.41 
Kernel 0.145 0.006 42.70*** 1.43 

Note: *** 1% significance level. Source: authors’ survey data 2019–2020. 
NNM: Nearest-neighbor matching; Kernel: Matching with default bandwidth = 0.06; Radius: Matching with caliper = 0.05. 

 

 

 

Figure-2. Distribution of % bias across covariates. Figure-3. Density distribution of propensity score. 

 
Table-7. Average treatment effects of CSA adoption on production performance. 

 NNM Radius Kernel 

ATT S.E ATT S.E ATT S.E 

Total value 3.340** 1.462 3.212* 1.239 3.911** 1.345 
Rice quantity 0.501** 0.198 0.375** 0.170 0.532*** 0.178 
Productivity  0.715** 0.282 1.061*** 0.245 0.954*** 0.246 
Seed quantity -3.583** 1.789 -5.364*** 1.655 -3.399** 1.591 
Farmyard manure  0.288 0.202 0.119 0.153 0.274* 0.156 
Chem. fertilizers -0.028 0.048 -0.045 0.042 0.006 0.038 
Pesticide cost -0.152 0.144 -0.196 0.107 -0.155 0.096 
Work days -1.477 2.876 -3.786 2.671 -2.223 2.728 
Other costs  -0.143 0.591 -0.631 0.522 -0.183 0.521 

Note: * 10% significance level; ** 5% significance level; *** 1% significance level. 
NNM: n = 1; Kernel = 0.06; Radius = 0.05 
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The empirical analysis used various matching techniques, including nearest neighbor, radius and kernel 
matching. The estimation results for the whole observations are presented in Table 7. These results are consistent 
across different matching methods. CSA adoption clearly had positive effects on household farming performance. 
First, CSA adoption improved farmers’ total value of rice production because it resulted in a higher rice yield. More 
specifically, total value increased significantly, by approximately 3.2–3.9 million VND, which is equivalent to a 26.7% 
increase compared to the control group. Similarly, there was increase in rice yield across matching techniques, and all 
have statistical significances at 5%. The study also indicates strong evidence of higher productivity for farmers 
adopting CSA practices. Average rice productivity was significantly improved, by approximately 0.7–1.1 tons, 
representing a relative increase of about 14–21% higher than that of the non-adopters. In addition, CSA farmers 
could reduce seed input although the decreased magnitude of spent seed differs across matching techniques. Seed 
quantity was significantly reduced, by approximately 3.6–5.4 kg, equivalent to 22–31.5% compared to conventional 
farmers. Other inputs of rice production, including farmyard manure, chemical fertilizers, pesticide costs, labor days, 
and other expenses, do not have statistically significant differences for the treated group. In this study, net income of 
rice production was not estimated because rice production is mostly used for family demand rather than market sales. 
In the field survey, respondents said that rice production is primarily spent for daily food consumption and partly 
used for feeding animals, while cash income mainly comes from off-farm jobs. Thus, this can partly affect household 
time and money investment in rice production.  
 
3.4. Discussion 

Our results indicate that rice farmers received positive and significant economic impacts from applying CSA 
practices. Although several studies have reported that CSA adoption has positive impacts on economic returns, the 
issue of selection bias has been ignored in evaluation. Thus, our study has contributed to the evaluation literature on 
the economic impact of CSA practices. Our findings also reconfirmed that the adoption of CSA practices has positive 
effects on economic returns. Nevertheless, this could have been overestimated if selection bias was not controlled in 
the study. The positive effects on rice productivity are consistent with previous findings on the effects of SRI 
adoption (Castillo, Minh, & Pfeifer, 2012; Thakur et al., 2010), but the results are also contradictory to several studies 
(Dobermann, 2004; McDonald et al., 2006; Tsujimoto et al., 2009). We also found a positive impact of CSA 
application on total value. This finding could be easily understood due to an increase in rice productivity. Higher 
total value was also reported in several studies on the effects of the adoption of SRI practice or sustainable 
agricultural technologies (Noltze et al., 2013; Tuyet, Fry, Van Hoang, & Ha, 2017). Our study also compared inputs 
used and costs between CSA and non-CSA farmers. As expected, seed quantity was much less for CSA farmers, 
contributing to a decrease in their total variable costs. This is because many rice farmers apply SRI practices in their 
field – known as the use of single seeding and wider planting density. This finding is also in line with previous 
studies (Noltze et al., 2013; Tuyet et al., 2017). The use of other inputs, including chemical fertilizers, pesticides and 
labor, was also slightly lower on CSA farms, while the use of organic fertilizers and manure was slightly higher. 
However, these did not differ significantly on any variables. Remarkably, regular weeding, organic fertilizers, and 
farmyard manure are encouraged with CSA practices. However, farmers still use herbicides for weeding in practice. 
Similarly, fertilizer application was also not statistically different. The difference with CSA farmers was that they 
applied more balanced proportions of different fertilizers. Our in-depth interviews  with rice farmers in the field 
survey also indicated that income from rice production accounts for only a small proportion of total household 
income sources. Farmers often apply chemical fertilizers and herbicides in weeding for time saving and convenience. 
The time thus saved is spent on off-farm activities for additional income. In addition, farmers commonly exchange 
labor with neighbors during the rice transplantation period. Hired labor is involved only in rice harvesting, and is 
computed in other costs. These cost patterns are not different between CSA adopter and non-adopter groups.  
 

4. CONCLUSIONS  
This study analyzed the effect of CSA in Northeast Vietnam. The original data from 214 small-scale rice farmers 

were used to estimate the impact of this adoption on farm economic indicators. A logistic regression model was 
applied to determine the factors affecting household adoption decisions in the first stage, while PSM was employed to 
estimate ATT in the following step. We carefully checked both balance and common support conditions to ensure 
good matching quality after the matching process. In other words, selection bias was minimized as much as possible 
in our study.  

The study findings showed that there are many important determinants motivating households to adopt CSA in 
rice production. Of these, formal education of household heads, access to extension services, and rate of rice income 
are key contributing factors. This implies that expansion of CSA practices would be more successful if these factors 
are improved, especially in providing regular information on CSA through training courses, because this still is a key 
information channel for farmers in the research area.  

If the issue of selection bias is not controlled, simple comparison would have resulted in overestimation of 
economic indicators in the study. Our findings indicated that farmers are able to achieve higher average yield by 
applying CSA practices in rice production. As a result, this would lead to higher quantity and total value of rice 
production for local farmers. Our finding also reconfirmed a significant increase in rice quantity and total value for 
CSA adopters compared to non-adopters. Moreover, adoption has a clear impact on reduction of seed input in rice 
cultivation. Farmyard manure is used slightly more in CSA farms, while other variable inputs such chemical 
fertilizers, pesticide costs, labor, and other costs did not have significant influence.  
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Although the study has provided clear evidence on the positive impacts of CSA adoption on rice yield, other 
aspects such as environmental protection and agro-ecological conservation have not been achieved as expected. Thus, 
additional and suitable policies are needed to encourage higher application levels of organic fertilizers, and 
minimization of the use of synthetic pesticides and herbicides.  
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