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Introduction 
 

Pi is a number represented by the Greek letter . It is the 

ratio of the circumference of a circle to its diameter. It is 

used in many areas and there are many laws that recognize 

its value which the normal law with expectancy   and 

standard deviation   which the probability density 

function is written: 
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Several methods for calculating the value of   have been 

proposed but have the disadvantage of being approximate. It 

is possible by running a program in Turbo C 2.0, using 

mathematical formulas derived from combining the 

properties of the circle and the Pythagorean Theorem, to 

obtain the precise value of   to 16 significant digits. 

 

 

Review of the literature 

 
The value of Pi is based on the eye such as: 
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If n  is the number of sides of a polygon inscribed in a 

circle of radius R , Liu Hui determined that since the scope 

of it is  nwp   14024.3  for 192n  and 

10R  and measuring S  and recalculating, which is an 

excellent approximation factor of p  likely to improve as n  

increases. 
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This method of approximation of the value of   is better 

than that of Archimedes earlier that the sides of regular 

polynomials, inscribed and circumscribed, to a circle of 

diameter 1 are numerous the more the value of  , 

represented by the ratio of the average perimeters of these to 

it, tends to its fair value between 3 and 3.47 on the basis of 

two hexagons and very close to 3.141592654
 
because the 

errors of measurements of these sides would be represented 

by human errors in their measures themselves and 

manufacturing errors of the instrument to measure them. 

Many other methodologies of calculation such as the 

Chinese method of calculation by false position, that of 

continued fractions, jet needles, and Monte Carlo yield 

values very close to those obtained by Archimedes and Liu 

Hui and even that by a Chinese calculator Sharp EL-506R 

 =3.141592654 

 

Mathematical Model 

 
I am strict about the need to be more precise to calculate  , 

since I propose that if  n0=8, then: 
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where : 
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The rationale for this is that since OQZ and OQ’Z’
 
are two 

similar triangles, if R0=1
 
so if: 
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That is to say that the perimeter of the circle of radius R is: 
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And the surface of the circle of radius R is S1 
such that: 
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Among other arguments lack, all things being equal, is that 

if the perimeter of a circle of radius R is 2 R, its surface 

is: 
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And the area of a circle of radius 1 is   

The application of the Pythagorean Theorem by Liu Hui in 

the circle allows me to argue that  
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that is to say 
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and it follows that if we stick to the above formulas  0
 

can not be calculated after having measured w0 and 

calculated S0 or measured S0 and calculated w0 on the basis 

that n0=8. 

 

To overcome measurement errors of S0 or w0 and an 

inability to measure Sn or wn and therefore to calculate the 

true  = n when n is very high, it is necessary to apply the 

Pythagorean theorem differently to the circle of Liu Hui to 

make it clear that since ABPQ is a square with center O and 

OCPM is a second square 
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where  0S  is the true that is to say whose values dependent 

on R  are at a number of significant digits higher than those 

of calculated 
*

0S  as: 
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by the calculator Sharp EL-506R and it follows that w0, 

however, is smaller than R such as: 
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by the same calculator for the minimum value of   that is 

 0  such that: 
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that is to say  

061467459.3*

0 
  

by the Sharp EL-506R calculator or  

3391110614674091.3*
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by running with the software program Turbo C 2.0 the 

program PI.C. 

 

Moreover, since EZD is a rectangle triangle, applying again 

the Pythagorean Theorem allows: 

222 DZEZED   

that is to say : 

2

1

2

02

1
2

w
w

v 







  

2

02

11
2










w
wv  

and that  

222 OZEZOE   

that is to say: 

  2

2

02

1
2

R
w

vR 







  

2

2

0

2
2

02

1
22

R
ww

wR 






























  

2

02

2

02

1
22



















w
R

w
wR  

2

02

2

02

1
22



















w
RR

w
w  

2
2

02

2

02

1
22 
































w
RR

w
w  

2

022

2

0

2
2

02

1
2

22
22











































w
RRR

ww
RRw

Rw











  22220  

RR
w













 


2

22
1

2

0
 

2

2

22

2

0

2

22
1

2

22
12

2
RRR

w













 














 










 

2

2

2

2

02

2

22
1

2

22
12

2
RR

w
R













 














 











 



























 














 
 22

2

2

22
12

2

22
1 RR  

2

2

2

22
1 RRR 




























 
  

2

2

2

22
RR 













 
  

22

4

22
RR 


  

2

4

22
1 R













 


 

 

Replacing this in the formula of calculation of w1 allows it 

becomes: 
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by running with the software program Turbo C 2.0 the 

program PI.C. 

 

It follows by a recurrent reasoning that: 
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Program for calculating   

 

The program PI.C I designed for getting values of   with 

16 decimal places is such that: 

#include <stdio.h> 

#include <math.h> 

main () 

{ 

struct calpi 

{ 

float w, w1, x1, x2, x3, x4, n, dn, pi; 

}; 

struct calpi p [ ]; /* put an integer in place of    the 

highest possible reflecting the large number of rows in the 

table of variables that is to say the number of iterations 

possible, therefore, of the extent of the pi calculable and 

their degree of precision*/ 

int i=1; 

printf("\n\nPI.C calculate PI"); 

p[0].x1=2-sqrt(2); 

p[0].w=sqrt(p[0].x1); 

p[0].w1=p[0].w/2; 

p[0].pi=4*p[0].w; 

printf("\n\nn = 0"); 

printf("\n\nw0 = %.16f", p[0].w); 

printf("\n\npi0 = %.16f", p[0].pi); 

p[0].n=2; 

do 

{ 

p[i].x1=p[i-1].w/2; 

p[i].x2=pow(p[i].x1,2); 

p[i].x3=1-p[i].x2; 

p[i].x4=2-2*sqrt(p[i].x3); 

p[i].w=sqrt(p[i].x4); 

p[i].w1=p[i-1].w/2; 

p[i].n=p[i-1].n+1; 

p[i].pi=pow(2,p[i].n)*p[i].w; 

p[i].dn=p[i].w+p[i-1].w*(p[i].w-p[i-1].w)/(2*p[i].w 

*(2-pow(p[i].w,2))); 
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printf("\n\nn = %i", i); 

printf("\n\nw%i = %.16f", i, p[i].w); 

printf("\n\npi%i = %.16f", i, p[i].pi); 

printf("\n\ndn = %.16f", p[i].dn); 

i++; 

} 

while(p[i-1].w >= p[i-1].w1); 

printf("\n\nFin"); 

printf("\n\nEnter 7 to exit the program\n\n"); 

scanf("%i", &i); 

} 

 

Results of the program 
 

The execution of it by the software Turbo C 2.0 produces 

the following results: 
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The program PI.C execution with a replacement condition 

while (i <14); for the do loop products in addition to 

previous results the following results: 
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true decimals, 
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*

n  

0 0.7653668522834778 3.0614674091339111 

1 0.3901805877685547 3.1214447021484375 

2 0.1960343122482300 3.1365489959716797 

3 0.0981354266405106 3.1403336524963379 

4 0.0490827970206738 3.1412990093231201 

5 0.0245437510311604 3.1416001319885254 

6 0.0122730033472180 3.1418888568878174 

7 0.0061376290395856 3.1424660682678223 

8 0.0030688035767525 3.1424548625946045 

n  

R

wn
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*

n  

9 0.0015440813731402 3.1622786521511621 

10 0.0007720405119471 3.1622779369354248 

11 0.0004228639882058 3.4641017913818359 

12 0.0002441406250000 4.0000000000000000 

13 0.0000000000000000 0.0000000000000000 
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The maximum error of assessment of nw , to the inclusion 
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inability to increment  
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combining the values of variables involved at the same 
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*
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a polynomial regular with 102428 7   sides inscribed 

in the circle with center O , equal to 
*

7  and can be re-
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is to consider the need that 
*n  is met when 0nd  on the 
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And I could get the same result by using nw  instead of 
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